File size: 8,080 Bytes
e951f20
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4c4579a
 
 
 
 
 
 
 
e951f20
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
762ceed
e951f20
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e13cd47
 
 
 
 
 
 
 
e951f20
 
 
 
 
 
 
 
 
 
 
 
 
 
814ee0a
e951f20
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
import streamlit as st
import pandas as pd
import numpy as np
import re
import nltk
nltk.download('wordnet')
from nltk.stem import WordNetLemmatizer
nltk.download('stopwords')
from nltk.corpus import stopwords
from pprint import pprint
import pickle
import streamlit.components.v1 as components
from io import StringIO
from nltk.stem.snowball import SnowballStemmer
import csv
import sys

#===config===
st.set_page_config(
     page_title="Coconut",
     page_icon="πŸ₯₯",
     layout="wide"
)
st.header("Keywords Stem")
hide_streamlit_style = """
            <style>
            #MainMenu {visibility: hidden;}
            footer {visibility: hidden;}
            </style>
            """
st.markdown(hide_streamlit_style, unsafe_allow_html=True) 

st.subheader('Put your file here...')

def reset_data():
     st.cache_data.clear()

#===check filetype===
@st.cache_data(ttl=3600)
def get_ext(extype):
    extype = uploaded_file.name
    return extype
     
#===upload===
@st.cache_data(ttl=3600)
def upload(extype):
    keywords = pd.read_csv(uploaded_file)
    return keywords

@st.cache_data(ttl=3600)
def conv_txt(extype):
    col_dict = {'TI': 'Title',
            'SO': 'Source title',
            'DE': 'Author Keywords',
            'ID': 'Keywords Plus'}
    keywords = pd.read_csv(uploaded_file, sep='\t', lineterminator='\r')
    keywords.rename(columns=col_dict, inplace=True)
    return keywords

@st.cache_data(ttl=3600)
def rev_conv_txt(extype):
    col_dict_rev = {'Title': 'TI',
            'Source title': 'SO',
            'Author Keywords': 'DE',
            'Keywords Plus': 'ID'}
    keywords.rename(columns=col_dict_rev, inplace=True)
    return keywords

@st.cache_data(ttl=3600)
def get_data(extype):
    list_of_column_key = list(keywords.columns)
    list_of_column_key = [k for k in list_of_column_key if 'Keyword' in k]
    return list_of_column_key

uploaded_file = st.file_uploader("Choose your a file", type=['csv','txt'], on_change=reset_data)

if uploaded_file is not None:
     extype = get_ext(uploaded_file)
     if extype.endswith('.csv'):
         keywords = upload(extype) 
                  
     elif extype.endswith('.txt'):
         keywords = conv_txt(extype)
         
     list_of_column_key = get_data(extype)

     col1, col2 = st.columns(2)
     with col1:
        method = st.selectbox(
             'Choose method',
           ('Lemmatization', 'Stemming'), on_change=reset_data)
     with col2:
        keyword = st.selectbox(
            'Choose column',
           (list_of_column_key), on_change=reset_data)

     @st.cache_data(ttl=3600)
     def clean_keyword(extype):      
        global keyword, keywords
        try:
            key = keywords[keyword]
        except KeyError:
            st.error('Error: Please check your Author/Index Keywords column.')
            sys.exit(1)
        keywords = keywords.replace(np.nan, '', regex=True)
        keywords[keyword] = keywords[keyword].astype(str)
        keywords[keyword] = keywords[keyword].map(lambda x: re.sub('-', ' ', x))
        keywords[keyword] = keywords[keyword].map(lambda x: re.sub('; ', ' ; ', x))
        keywords[keyword] = keywords[keyword].map(lambda x: x.lower())
        
        #===Keywords list===
        key = key.dropna()
        key = pd.concat([key.str.split('; ', expand=True)], axis=1)
        key = pd.Series(np.ravel(key)).dropna().drop_duplicates().sort_values().reset_index()
        key[0] = key[0].map(lambda x: re.sub('-', ' ', x))
        key['new']=key[0].map(lambda x: x.lower())

        return keywords, key
     
     #===stem/lem===
     @st.cache_data(ttl=3600)
     def Lemmatization(extype):
        lemmatizer = WordNetLemmatizer()
        def lemmatize_words(text):
            words = text.split()
            words = [lemmatizer.lemmatize(word) for word in words]
            return ' '.join(words)
        keywords[keyword] = keywords[keyword].apply(lemmatize_words)
        key['new'] = key['new'].apply(lemmatize_words)
        keywords[keyword] = keywords[keyword].map(lambda x: re.sub(' ; ', '; ', x))
        return keywords, key
                
     @st.cache_data(ttl=3600)
     def Stemming(extype):
        stemmer = SnowballStemmer("english")
        def stem_words(text):
            words = text.split()
            words = [stemmer.stem(word) for word in words]
            return ' '.join(words)
        keywords[keyword] = keywords[keyword].apply(stem_words)
        key['new'] = key['new'].apply(stem_words)
        keywords[keyword] = keywords[keyword].map(lambda x: re.sub(' ; ', '; ', x))
        return keywords, key
     
     keywords, key = clean_keyword(extype) 
     
     if method is 'Lemmatization':
         keywords, key = Lemmatization(extype)
     else:
         keywords, key = Stemming(extype)
            
     st.write('Congratulations! 🀩 You choose',keyword ,'with',method,'method. Now, you can easily download the result by clicking the button below')
     st.divider()
          
     #===show & download csv===
     tab1, tab2, tab3, tab4 = st.tabs(["πŸ“₯ Result", "πŸ“₯ List of Keywords", "πŸ“ƒ Reference", "πŸ“ƒ Recommended Reading"])
     
     with tab1:
         st.dataframe(keywords, use_container_width=True)
         @st.cache_data(ttl=3600)
         def convert_df(extype):
            return keywords.to_csv(index=False).encode('utf-8')
         
         @st.cache_data(ttl=3600)
         def convert_txt(extype):
             return keywords.to_csv(index=False, sep='\t', lineterminator='\r').encode('utf-8')
         
         if extype.endswith('.csv'):
             csv = convert_df(extype)
             st.download_button(
                "Press to download result πŸ‘ˆ",
                csv,
                "scopus.csv",
                "text/csv")
  
         elif extype.endswith('.txt'):
             keywords = rev_conv_txt(extype)
             txt = convert_txt(extype)
             st.download_button(
                "Press to download result πŸ‘ˆ",
                txt,
                "savedrecs.txt",
                "text/csv")    
         
     with tab2:
         @st.cache_data(ttl=3600)
         def table_keyword(extype):
             keytab = key.drop(['index'], axis=1).rename(columns={0: 'old'})
             return keytab
         #===coloring the same keywords===
         @st.cache_data(ttl=3600)
         def highlight_cells(value):
             if keytab['new'].duplicated(keep=False).any() and keytab['new'].duplicated(keep=False)[keytab['new'] == value].any():
                 return 'background-color: yellow'
             return '' 
         keytab = table_keyword(extype) 
         st.dataframe(keytab.style.applymap(highlight_cells, subset=['new']), use_container_width=True, hide_index=True)
                  
         @st.cache_data(ttl=3600)
         def convert_dfs(extype):
             return key.to_csv(index=False).encode('utf-8')
                
         csv = convert_dfs(extype)

         st.download_button(
             "Press to download keywords πŸ‘ˆ",
             csv,
             "keywords.csv",
             "text/csv")
             
     with tab3:
         st.markdown('**Santosa, F. A. (2023). Prior steps into knowledge mapping: Text mining application and comparison. Issues in Science and Technology Librarianship, 102.** https://doi.org/10.29173/istl2736')
     
     with tab4:
         st.markdown('**Beri, A. (2021, January 27). Stemming vs Lemmatization. Medium.** https://towardsdatascience.com/stemming-vs-lemmatization-2daddabcb221')
         st.markdown('**Khyani, D., Siddhartha B S, Niveditha N M, &amp; Divya B M. (2020). An Interpretation of Lemmatization and Stemming in Natural Language Processing. Journal of University of Shanghai for Science and Technology , 22(10), 350–357.**  https://jusst.org/an-interpretation-of-lemmatization-and-stemming-in-natural-language-processing/')
         st.markdown('**Lamba, M., & Madhusudhan, M. (2021, July 31). Text Pre-Processing. Text Mining for Information Professionals, 79–103.** https://doi.org/10.1007/978-3-030-85085-2_3')