Spaces:
Running
Running
File size: 10,716 Bytes
66e2b77 c446bbe 66e2b77 c3b5102 fe0dc3e 66e2b77 e1b3f69 66e2b77 87a8740 66e2b77 a864fee 66e2b77 a864fee 66e2b77 a864fee 66e2b77 a864fee 66e2b77 059c226 66e2b77 059c226 66e2b77 c446bbe a864fee 66e2b77 87a8740 66e2b77 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 |
#import module
import streamlit as st
import pandas as pd
import re
import nltk
nltk.download('punkt')
from nltk.tokenize import word_tokenize
from mlxtend.preprocessing import TransactionEncoder
te = TransactionEncoder()
from mlxtend.frequent_patterns import fpgrowth
from mlxtend.frequent_patterns import association_rules
from streamlit_agraph import agraph, Node, Edge, Config
import nltk
nltk.download('wordnet')
from nltk.stem import WordNetLemmatizer
nltk.download('stopwords')
from nltk.corpus import stopwords
from nltk.stem.snowball import SnowballStemmer
import sys
import time
#===config===
st.set_page_config(
page_title="Coconut",
page_icon="π₯₯",
layout="wide"
)
st.header("Bidirected Keywords Network")
hide_streamlit_style = """
<style>
#MainMenu {visibility: hidden;}
footer {visibility: hidden;}
</style>
"""
st.markdown(hide_streamlit_style, unsafe_allow_html=True)
st.subheader('Put your file here...')
#===clear cache===
def reset_all():
st.cache_data.clear()
#===check type===
@st.cache_data(ttl=3600)
def get_ext(extype):
extype = uploaded_file.name
return extype
@st.cache_data(ttl=3600)
def upload(extype):
papers = pd.read_csv(uploaded_file)
return papers
@st.cache_data(ttl=3600)
def conv_txt(extype):
col_dict = {'TI': 'Title',
'SO': 'Source title',
'DT': 'Document Type',
'DE': 'Author Keywords',
'ID': 'Keywords Plus'}
papers = pd.read_csv(uploaded_file, sep='\t', lineterminator='\r')
papers.rename(columns=col_dict, inplace=True)
return papers
#===Read data===
uploaded_file = st.file_uploader("Choose a file", type=['csv', 'txt'], on_change=reset_all)
if uploaded_file is not None:
extype = get_ext(uploaded_file)
if extype.endswith('.csv'):
papers = upload(extype)
elif extype.endswith('.txt'):
papers = conv_txt(extype)
@st.cache_data(ttl=3600)
def get_data_arul(extype):
list_of_column_key = list(papers.columns)
list_of_column_key = [k for k in list_of_column_key if 'Keyword' in k]
return papers, list_of_column_key
papers, list_of_column_key = get_data_arul(extype)
col1, col2 = st.columns(2)
with col1:
method = st.selectbox(
'Choose method',
('Lemmatization', 'Stemming'), on_change=reset_all)
with col2:
keyword = st.selectbox(
'Choose column',
(list_of_column_key), on_change=reset_all)
#===body===
@st.cache_data(ttl=3600)
def clean_arul(extype):
global keyword, papers
try:
arul = papers.dropna(subset=[keyword])
except KeyError:
st.error('Error: Please check your Author/Index Keywords column.')
sys.exit(1)
arul[keyword] = arul[keyword].map(lambda x: re.sub('-ββ', ' ', x))
arul[keyword] = arul[keyword].map(lambda x: re.sub('; ', ' ; ', x))
arul[keyword] = arul[keyword].map(lambda x: x.lower())
arul[keyword] = arul[keyword].dropna()
return arul
arul = clean_arul(extype)
#===stem/lem===
@st.cache_data(ttl=3600)
def lemma_arul(extype):
lemmatizer = WordNetLemmatizer()
def lemmatize_words(text):
words = text.split()
words = [lemmatizer.lemmatize(word) for word in words]
return ' '.join(words)
arul[keyword] = arul[keyword].apply(lemmatize_words)
return arul
@st.cache_data(ttl=3600)
def stem_arul(extype):
stemmer = SnowballStemmer("english")
def stem_words(text):
words = text.split()
words = [stemmer.stem(word) for word in words]
return ' '.join(words)
arul[keyword] = arul[keyword].apply(stem_words)
return arul
if method is 'Lemmatization':
arul = lemma_arul(extype)
else:
arul = stem_arul(extype)
@st.cache_data(ttl=3600)
def arm(extype):
arule = arul[keyword].str.split(' ; ')
arule_list = arule.values.tolist()
te_ary = te.fit(arule_list).transform(arule_list)
df = pd.DataFrame(te_ary, columns=te.columns_)
return df
df = arm(extype)
col1, col2, col3 = st.columns(3)
with col1:
supp = st.slider(
'Select value of Support',
0.001, 1.000, (0.010), on_change=reset_all)
with col2:
conf = st.slider(
'Select value of Confidence',
0.001, 1.000, (0.050), on_change=reset_all)
with col3:
maxlen = st.slider(
'Maximum length of the itemsets generated',
2, 8, (2), on_change=reset_all)
tab1, tab2, tab3 = st.tabs(["π Result & Generate visualization", "π Reference", "π Recommended Reading"])
with tab1:
#===Association rules===
@st.cache_data(ttl=3600)
def freqitem(extype):
freq_item = fpgrowth(df, min_support=supp, use_colnames=True, max_len=maxlen)
return freq_item
freq_item = freqitem(extype)
col1, col2 = st.columns(2)
with col1:
st.write('π¨ The more data you have, the longer you will have to wait.')
with col2:
showall = st.checkbox('Show all nodes', value=True, on_change=reset_all)
@st.cache_data(ttl=3600)
def arm_table(extype):
restab = association_rules(freq_item, metric='confidence', min_threshold=conf)
restab = restab[['antecedents', 'consequents', 'antecedent support', 'consequent support', 'support', 'confidence', 'lift', 'conviction']]
restab['antecedents'] = restab['antecedents'].apply(lambda x: ', '.join(list(x))).astype('unicode')
restab['consequents'] = restab['consequents'].apply(lambda x: ', '.join(list(x))).astype('unicode')
if showall:
restab['Show'] = True
else:
restab['Show'] = False
return restab
if freq_item.empty:
st.error('Please lower your value.', icon="π¨")
else:
restab = arm_table(extype)
restab = st.data_editor(restab, use_container_width=True)
res = restab[restab['Show'] == True]
#===visualize===
if st.button('π Generate network visualization', on_click=reset_all):
with st.spinner('Visualizing, please wait ....'):
@st.cache_data(ttl=3600)
def map_node(extype):
res['to'] = res['antecedents'] + ' β ' + res['consequents'] + '\n Support = ' + res['support'].astype(str) + '\n Confidence = ' + res['confidence'].astype(str) + '\n Conviction = ' + res['conviction'].astype(str)
res_ant = res[['antecedents','antecedent support']].rename(columns={'antecedents': 'node', 'antecedent support': 'size'})
res_con = res[['consequents','consequent support']].rename(columns={'consequents': 'node', 'consequent support': 'size'})
res_node = pd.concat([res_ant, res_con]).drop_duplicates(keep='first')
return res_node, res
res_node, res = map_node(extype)
@st.cache_data(ttl=3600)
def arul_network(extype):
nodes = []
edges = []
for w,x in zip(res_node['size'], res_node['node']):
nodes.append( Node(id=x,
label=x,
size=50*w+10,
shape="dot",
labelHighlightBold=True,
group=x,
opacity=10,
mass=1)
)
for y,z,a,b in zip(res['antecedents'],res['consequents'],res['confidence'],res['to']):
edges.append( Edge(source=y,
target=z,
title=b,
width=a*2,
physics=True,
smooth=True
)
)
return nodes, edges
nodes, edges = arul_network(extype)
config = Config(width=1200,
height=800,
directed=True,
physics=True,
hierarchical=False,
maxVelocity=5
)
return_value = agraph(nodes=nodes,
edges=edges,
config=config)
time.sleep(1)
st.toast('Process completed', icon='π')
with tab2:
st.markdown('**Santosa, F. A. (2023). Adding Perspective to the Bibliometric Mapping Using Bidirected Graph. Open Information Science, 7(1), 20220152.** https://doi.org/10.1515/opis-2022-0152')
with tab3:
st.markdown('**Agrawal, R., ImieliΕski, T., & Swami, A. (1993). Mining association rules between sets of items in large databases. In ACM SIGMOD Record (Vol. 22, Issue 2, pp. 207β216). Association for Computing Machinery (ACM).** https://doi.org/10.1145/170036.170072')
st.markdown('**Brin, S., Motwani, R., Ullman, J. D., & Tsur, S. (1997). Dynamic itemset counting and implication rules for market basket data. ACM SIGMOD Record, 26(2), 255β264.** https://doi.org/10.1145/253262.253325')
st.markdown('**Edmonds, J., & Johnson, E. L. (2003). Matching: A Well-Solved Class of Integer Linear Programs. Combinatorial Optimization β Eureka, You Shrink!, 27β30.** https://doi.org/10.1007/3-540-36478-1_3')
st.markdown('**Li, M. (2016, August 23). An exploration to visualise the emerging trends of technology foresight based on an improved technique of co-word analysis and relevant literature data of WOS. Technology Analysis & Strategic Management, 29(6), 655β671.** https://doi.org/10.1080/09537325.2016.1220518') |