Spaces:
Running
Running
Create 3 Bidirected Network.py
Browse files- pages/3 Bidirected Network.py +236 -0
pages/3 Bidirected Network.py
ADDED
@@ -0,0 +1,236 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#import module
|
2 |
+
import streamlit as st
|
3 |
+
import pandas as pd
|
4 |
+
import re
|
5 |
+
import nltk
|
6 |
+
nltk.download('punkt')
|
7 |
+
from nltk.tokenize import word_tokenize
|
8 |
+
from mlxtend.preprocessing import TransactionEncoder
|
9 |
+
te = TransactionEncoder()
|
10 |
+
from mlxtend.frequent_patterns import fpgrowth
|
11 |
+
from mlxtend.frequent_patterns import association_rules
|
12 |
+
from streamlit_agraph import agraph, Node, Edge, Config
|
13 |
+
import nltk
|
14 |
+
nltk.download('wordnet')
|
15 |
+
from nltk.stem import WordNetLemmatizer
|
16 |
+
nltk.download('stopwords')
|
17 |
+
from nltk.corpus import stopwords
|
18 |
+
from nltk.stem.snowball import SnowballStemmer
|
19 |
+
import sys
|
20 |
+
|
21 |
+
#===config===
|
22 |
+
st.set_page_config(
|
23 |
+
page_title="Coconut",
|
24 |
+
page_icon="π₯₯",
|
25 |
+
layout="wide"
|
26 |
+
)
|
27 |
+
st.header("Biderected Keywords Network")
|
28 |
+
st.subheader('Put your file here...')
|
29 |
+
|
30 |
+
#===clear cache===
|
31 |
+
def reset_all():
|
32 |
+
st.cache_data.clear()
|
33 |
+
|
34 |
+
#===check type===
|
35 |
+
@st.cache_data(ttl=3600)
|
36 |
+
def get_ext(extype):
|
37 |
+
extype = uploaded_file.name
|
38 |
+
return extype
|
39 |
+
|
40 |
+
@st.cache_data(ttl=3600)
|
41 |
+
def upload(extype):
|
42 |
+
papers = pd.read_csv(uploaded_file)
|
43 |
+
return papers
|
44 |
+
|
45 |
+
@st.cache_data(ttl=3600)
|
46 |
+
def conv_txt(extype):
|
47 |
+
col_dict = {'TI': 'Title',
|
48 |
+
'SO': 'Source title',
|
49 |
+
'DT': 'Document Type',
|
50 |
+
'DE': 'Author Keywords',
|
51 |
+
'ID': 'Keywords Plus'}
|
52 |
+
papers = pd.read_csv(uploaded_file, sep='\t', lineterminator='\r')
|
53 |
+
papers.rename(columns=col_dict, inplace=True)
|
54 |
+
return papers
|
55 |
+
|
56 |
+
#===Read data===
|
57 |
+
uploaded_file = st.file_uploader("Choose a file", type=['csv', 'txt'], on_change=reset_all)
|
58 |
+
|
59 |
+
if uploaded_file is not None:
|
60 |
+
extype = get_ext(uploaded_file)
|
61 |
+
if extype.endswith('.csv'):
|
62 |
+
papers = upload(extype)
|
63 |
+
elif extype.endswith('.txt'):
|
64 |
+
papers = conv_txt(extype)
|
65 |
+
|
66 |
+
@st.cache_data(ttl=3600)
|
67 |
+
def get_data_arul(extype):
|
68 |
+
list_of_column_key = list(papers.columns)
|
69 |
+
list_of_column_key = [k for k in list_of_column_key if 'Keyword' in k]
|
70 |
+
return papers, list_of_column_key
|
71 |
+
|
72 |
+
papers, list_of_column_key = get_data_arul(extype)
|
73 |
+
|
74 |
+
col1, col2 = st.columns(2)
|
75 |
+
with col1:
|
76 |
+
method = st.selectbox(
|
77 |
+
'Choose method',
|
78 |
+
('Stemming', 'Lemmatization'), on_change=reset_all)
|
79 |
+
with col2:
|
80 |
+
keyword = st.selectbox(
|
81 |
+
'Choose column',
|
82 |
+
(list_of_column_key), on_change=reset_all)
|
83 |
+
|
84 |
+
|
85 |
+
#===body===
|
86 |
+
@st.cache_data(ttl=3600)
|
87 |
+
def clean_arul(extype):
|
88 |
+
global keyword, papers
|
89 |
+
try:
|
90 |
+
arul = papers.dropna(subset=[keyword])
|
91 |
+
except KeyError:
|
92 |
+
st.error('Error: Please check your Author/Index Keywords column.')
|
93 |
+
sys.exit(1)
|
94 |
+
arul[keyword] = arul[keyword].map(lambda x: re.sub('-ββ', ' ', x))
|
95 |
+
arul[keyword] = arul[keyword].map(lambda x: re.sub('; ', ' ; ', x))
|
96 |
+
arul[keyword] = arul[keyword].map(lambda x: x.lower())
|
97 |
+
arul[keyword] = arul[keyword].dropna()
|
98 |
+
return arul
|
99 |
+
|
100 |
+
arul = clean_arul(extype)
|
101 |
+
|
102 |
+
#===stem/lem===
|
103 |
+
@st.cache_data(ttl=3600)
|
104 |
+
def lemma_arul(extype):
|
105 |
+
lemmatizer = WordNetLemmatizer()
|
106 |
+
def lemmatize_words(text):
|
107 |
+
words = text.split()
|
108 |
+
words = [lemmatizer.lemmatize(word) for word in words]
|
109 |
+
return ' '.join(words)
|
110 |
+
arul[keyword] = arul[keyword].apply(lemmatize_words)
|
111 |
+
return arul
|
112 |
+
|
113 |
+
@st.cache_data(ttl=3600)
|
114 |
+
def stem_arul(extype):
|
115 |
+
stemmer = SnowballStemmer("english")
|
116 |
+
def stem_words(text):
|
117 |
+
words = text.split()
|
118 |
+
words = [stemmer.stem(word) for word in words]
|
119 |
+
return ' '.join(words)
|
120 |
+
arul[keyword] = arul[keyword].apply(stem_words)
|
121 |
+
return arul
|
122 |
+
|
123 |
+
if method is 'Lemmatization':
|
124 |
+
arul = lemma_arul(extype)
|
125 |
+
else:
|
126 |
+
arul = stem_arul(extype)
|
127 |
+
|
128 |
+
@st.cache_data(ttl=3600)
|
129 |
+
def arm(extype):
|
130 |
+
arule = arul[keyword].str.split(' ; ')
|
131 |
+
arule_list = arule.values.tolist()
|
132 |
+
te_ary = te.fit(arule_list).transform(arule_list)
|
133 |
+
df = pd.DataFrame(te_ary, columns=te.columns_)
|
134 |
+
return df
|
135 |
+
df = arm(extype)
|
136 |
+
|
137 |
+
col1, col2, col3 = st.columns(3)
|
138 |
+
with col1:
|
139 |
+
supp = st.slider(
|
140 |
+
'Select value of Support',
|
141 |
+
0.001, 1.000, (0.010), on_change=reset_all)
|
142 |
+
with col2:
|
143 |
+
conf = st.slider(
|
144 |
+
'Select value of Confidence',
|
145 |
+
0.001, 1.000, (0.050), on_change=reset_all)
|
146 |
+
with col3:
|
147 |
+
maxlen = st.slider(
|
148 |
+
'Maximum length of the itemsets generated',
|
149 |
+
2, 8, (2), on_change=reset_all)
|
150 |
+
|
151 |
+
tab1, tab2 = st.tabs(["π Result & Generate visualization", "π Recommended Reading"])
|
152 |
+
|
153 |
+
with tab1:
|
154 |
+
#===Association rules===
|
155 |
+
@st.cache_data(ttl=3600)
|
156 |
+
def freqitem(extype):
|
157 |
+
freq_item = fpgrowth(df, min_support=supp, use_colnames=True, max_len=maxlen)
|
158 |
+
return freq_item
|
159 |
+
|
160 |
+
@st.cache_data(ttl=3600)
|
161 |
+
def arm_table(extype):
|
162 |
+
res = association_rules(freq_item, metric='confidence', min_threshold=conf)
|
163 |
+
res = res[['antecedents', 'consequents', 'antecedent support', 'consequent support', 'support', 'confidence', 'lift', 'conviction']]
|
164 |
+
res['antecedents'] = res['antecedents'].apply(lambda x: ', '.join(list(x))).astype('unicode')
|
165 |
+
res['consequents'] = res['consequents'].apply(lambda x: ', '.join(list(x))).astype('unicode')
|
166 |
+
restab = res
|
167 |
+
return res, restab
|
168 |
+
|
169 |
+
freq_item = freqitem(extype)
|
170 |
+
st.write('π¨ The more data you have, the longer you will have to wait.')
|
171 |
+
|
172 |
+
if freq_item.empty:
|
173 |
+
st.error('Please lower your value.', icon="π¨")
|
174 |
+
else:
|
175 |
+
res, restab = arm_table(extype)
|
176 |
+
st.dataframe(restab, use_container_width=True)
|
177 |
+
|
178 |
+
#===visualize===
|
179 |
+
|
180 |
+
if st.button('π Generate network visualization', on_click=reset_all):
|
181 |
+
with st.spinner('Visualizing, please wait ....'):
|
182 |
+
@st.cache_data(ttl=3600)
|
183 |
+
def map_node(extype):
|
184 |
+
res['to'] = res['antecedents'] + ' β ' + res['consequents'] + '\n Support = ' + res['support'].astype(str) + '\n Confidence = ' + res['confidence'].astype(str) + '\n Conviction = ' + res['conviction'].astype(str)
|
185 |
+
res_ant = res[['antecedents','antecedent support']].rename(columns={'antecedents': 'node', 'antecedent support': 'size'}) #[['antecedents','antecedent support']]
|
186 |
+
res_con = res[['consequents','consequent support']].rename(columns={'consequents': 'node', 'consequent support': 'size'}) #[['consequents','consequent support']]
|
187 |
+
res_node = pd.concat([res_ant, res_con]).drop_duplicates(keep='first')
|
188 |
+
return res_node, res
|
189 |
+
|
190 |
+
res_node, res = map_node(extype)
|
191 |
+
|
192 |
+
@st.cache_data(ttl=3600)
|
193 |
+
def arul_network(extype):
|
194 |
+
nodes = []
|
195 |
+
edges = []
|
196 |
+
|
197 |
+
for w,x in zip(res_node['size'], res_node['node']):
|
198 |
+
nodes.append( Node(id=x,
|
199 |
+
label=x,
|
200 |
+
size=50*w+10,
|
201 |
+
shape="circularImage",
|
202 |
+
labelHighlightBold=True,
|
203 |
+
group=x,
|
204 |
+
opacity=10,
|
205 |
+
mass=1,
|
206 |
+
image="https://upload.wikimedia.org/wikipedia/commons/f/f1/Eo_circle_yellow_circle.svg")
|
207 |
+
)
|
208 |
+
|
209 |
+
for y,z,a,b in zip(res['antecedents'],res['consequents'],res['confidence'],res['to']):
|
210 |
+
edges.append( Edge(source=y,
|
211 |
+
target=z,
|
212 |
+
title=b,
|
213 |
+
width=a*2,
|
214 |
+
physics=True,
|
215 |
+
smooth=True
|
216 |
+
)
|
217 |
+
)
|
218 |
+
return nodes, edges
|
219 |
+
|
220 |
+
nodes, edges = arul_network(extype)
|
221 |
+
config = Config(width=1200,
|
222 |
+
height=800,
|
223 |
+
directed=True,
|
224 |
+
physics=True,
|
225 |
+
hierarchical=False,
|
226 |
+
maxVelocity=5
|
227 |
+
)
|
228 |
+
|
229 |
+
return_value = agraph(nodes=nodes,
|
230 |
+
edges=edges,
|
231 |
+
config=config)
|
232 |
+
with tab2:
|
233 |
+
st.markdown('**Agrawal, R., ImieliΕski, T., & Swami, A. (1993). Mining association rules between sets of items in large databases. In ACM SIGMOD Record (Vol. 22, Issue 2, pp. 207β216). Association for Computing Machinery (ACM).** https://doi.org/10.1145/170036.170072')
|
234 |
+
st.markdown('**Brin, S., Motwani, R., Ullman, J. D., & Tsur, S. (1997). Dynamic itemset counting and implication rules for market basket data. ACM SIGMOD Record, 26(2), 255β264.** https://doi.org/10.1145/253262.253325')
|
235 |
+
st.markdown('**Edmonds, J., & Johnson, E. L. (2003). Matching: A Well-Solved Class of Integer Linear Programs. Combinatorial Optimization β Eureka, You Shrink!, 27β30.** https://doi.org/10.1007/3-540-36478-1_3')
|
236 |
+
st.markdown('**Li, M. (2016, August 23). An exploration to visualise the emerging trends of technology foresight based on an improved technique of co-word analysis and relevant literature data of WOS. Technology Analysis & Strategic Management, 29(6), 655β671.** https://doi.org/10.1080/09537325.2016.1220518')
|