File size: 21,430 Bytes
c2c9bab
 
684371d
c2c9bab
 
 
 
 
 
 
 
712d2ad
c2c9bab
 
 
 
 
 
 
 
 
 
 
 
b909f69
c2c9bab
 
 
 
 
 
a3adb5d
ef7d900
c2c9bab
662b398
843bacb
8e31adb
532995b
c2c9bab
 
 
 
712d2ad
 
 
 
c2c9bab
712d2ad
8e31adb
 
712d2ad
 
8e31adb
712d2ad
8e31adb
 
712d2ad
 
 
c050f1c
712d2ad
 
 
 
 
 
8e31adb
712d2ad
 
c2c9bab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8e31adb
 
 
c2c9bab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
712d2ad
c2c9bab
 
 
 
 
 
 
 
20fe7b5
 
 
 
35fca6a
c2c9bab
35fca6a
20fe7b5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
79c48b0
20fe7b5
 
 
 
 
 
 
 
 
 
 
 
79c48b0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ef7d900
79c48b0
 
66c4866
 
712d2ad
 
 
 
c2c9bab
 
 
 
35fca6a
79c48b0
c2c9bab
 
 
35fca6a
 
 
 
 
 
 
 
 
79c48b0
 
35fca6a
 
 
 
 
 
 
 
 
 
 
ac9c1fe
35fca6a
 
 
ac9c1fe
79c48b0
684371d
35fca6a
662b398
 
 
 
 
 
 
 
 
 
 
9b8caa6
 
 
662b398
 
 
 
 
 
 
ac9c1fe
dd0cc30
c2c9bab
 
 
 
 
 
 
 
 
 
 
35fca6a
 
c2c9bab
35fca6a
c2c9bab
 
 
 
 
 
 
79c48b0
 
c2c9bab
 
 
 
 
79c48b0
 
c2c9bab
35fca6a
 
 
 
79c48b0
35fca6a
c2c9bab
35fca6a
 
 
 
 
 
 
 
 
 
 
 
79c48b0
 
35fca6a
 
 
 
 
 
 
 
 
 
 
 
dd0cc30
c2c9bab
35fca6a
c2c9bab
35fca6a
c2c9bab
 
 
 
 
 
 
35fca6a
c2c9bab
79c48b0
 
35fca6a
79c48b0
 
 
ef7d900
 
a3adb5d
79c48b0
 
 
 
c2c9bab
20fe7b5
c2c9bab
35fca6a
c2c9bab
 
 
 
35fca6a
c2c9bab
 
 
 
35fca6a
c2c9bab
35fca6a
c2c9bab
 
35fca6a
c2c9bab
 
35fca6a
c2c9bab
 
35fca6a
c2c9bab
20fe7b5
c2c9bab
81d75dd
c2c9bab
 
35fca6a
8964654
 
20fe7b5
532995b
 
79c48b0
532995b
 
 
79c48b0
532995b
 
 
79c48b0
532995b
 
 
79c48b0
532995b
 
 
79c48b0
532995b
8964654
 
 
 
 
 
 
 
 
 
20fe7b5
ef7d900
 
35fca6a
676cdd7
 
c2c9bab
 
 
e83974b
c2c9bab
 
8e31adb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
#import module
import streamlit as st
import streamlit.components.v1 as components
import pandas as pd
import numpy as np
import re
import nltk
nltk.download('wordnet')
from nltk.stem import WordNetLemmatizer
nltk.download('stopwords')
from nltk.corpus import stopwords
#from scipy import triu
import gensim
import gensim.corpora as corpora
from gensim.corpora import Dictionary
from gensim.models.coherencemodel import CoherenceModel
from gensim.models.ldamodel import LdaModel
from pprint import pprint
import pickle
import pyLDAvis
import pyLDAvis.gensim_models as gensimvis
from io import StringIO
from ipywidgets.embed import embed_minimal_html
from nltk.stem.snowball import SnowballStemmer
from bertopic import BERTopic
import plotly.express as px
from sklearn.cluster import KMeans
import bitermplus as btm
import tmplot as tmp
import tomotopy
import sys
import spacy
import en_core_web_md
import pipeline
from html2image import Html2Image
from umap import UMAP
import os
import time


#===config===
st.set_page_config(
    page_title="Coconut",
    page_icon="๐Ÿฅฅ",
    layout="wide",
    initial_sidebar_state="collapsed"
)

hide_streamlit_style = """
            <style>
            #MainMenu 
            {visibility: hidden;}
            footer {visibility: hidden;}
            [data-testid="collapsedControl"] {display: none}
            </style>
            """
st.markdown(hide_streamlit_style, unsafe_allow_html=True)

with st.popover("๐Ÿ”— Menu"):
    st.page_link("https://www.coconut-libtool.com/", label="Home", icon="๐Ÿ ")
    st.page_link("pages/1 Scattertext.py", label="Scattertext", icon="1๏ธโƒฃ")
    st.page_link("pages/2 Topic Modeling.py", label="Topic Modeling", icon="2๏ธโƒฃ")
    st.page_link("pages/3 Bidirected Network.py", label="Bidirected Network", icon="3๏ธโƒฃ")
    st.page_link("pages/4 Sunburst.py", label="Sunburst", icon="4๏ธโƒฃ")
    st.page_link("pages/5 Burst Detection.py", label="Burst Detection", icon="5๏ธโƒฃ")
    st.page_link("pages/6 Keywords Stem.py", label="Keywords Stem", icon="6๏ธโƒฃ")

st.header("Topic Modeling", anchor=False)
st.subheader('Put your file here...', anchor=False)

#========unique id========
@st.cache_resource(ttl=3600)
def create_list():
    l = [1, 2, 3]
    return l

l = create_list()
first_list_value = l[0]
l[0] = first_list_value + 1
uID = str(l[0])

@st.cache_data(ttl=3600)
def get_ext(uploaded_file):
    extype = uID+uploaded_file.name
    return extype

#===clear cache===

def reset_biterm():
     try:
          biterm_map.clear()
          biterm_bar.clear()
     except NameError:
          biterm_topic.clear()

def reset_all():
     st.cache_data.clear()

#===avoiding deadlock===
os.environ["TOKENIZERS_PARALLELISM"] = "false"
        
#===upload file===
@st.cache_data(ttl=3600)
def upload(file):
    papers = pd.read_csv(uploaded_file)
    return papers

@st.cache_data(ttl=3600)
def conv_txt(extype):
    col_dict = {'TI': 'Title',
            'SO': 'Source title',
            'DT': 'Document Type',
            'AB': 'Abstract',
            'PY': 'Year'}
    papers = pd.read_csv(uploaded_file, sep='\t', lineterminator='\r')
    papers.rename(columns=col_dict, inplace=True)
    return papers


#===Read data===
uploaded_file = st.file_uploader('', type=['csv', 'txt'], on_change=reset_all)

if uploaded_file is not None:
    extype = get_ext(uploaded_file)

    if extype.endswith('.csv'):
         papers = upload(extype) 
    elif extype.endswith('.txt'):
         papers = conv_txt(extype)

    coldf = sorted(papers.select_dtypes(include=['object']).columns.tolist())
        
    c1, c2 = st.columns([3,4])
    method = c1.selectbox(
            'Choose method',
            ('Choose...', 'pyLDA', 'Biterm', 'BERTopic'), on_change=reset_all)
    num_cho = c1.number_input('Choose number of topics', min_value=2, max_value=30, value=5)
    ColCho = c2.selectbox(
            'Choose column',
            (coldf), on_change=reset_all)
    words_to_remove = c2.text_input("Remove specific words. Separate words by semicolons (;)")
    rem_copyright = c1.toggle('Remove copyright statement', value=True, on_change=reset_all)
    rem_punc = c2.toggle('Remove punctuation', value=True, on_change=reset_all)
     
    #===clean csv===
    @st.cache_data(ttl=3600, show_spinner=False)
    def clean_csv(extype):
        paper = papers.dropna(subset=[ColCho])
                 
        #===mapping===
        paper['Abstract_pre'] = paper[ColCho].map(lambda x: x.lower())
        if rem_punc:
             paper['Abstract_pre'] = paper['Abstract_pre'].map(lambda x: re.sub('[,:;\.!-?โ€ข=]', ' ', x))
             paper['Abstract_pre'] = paper['Abstract_pre'].str.replace('\u201c|\u201d', '', regex=True) 
        if rem_copyright:  
             paper['Abstract_pre'] = paper['Abstract_pre'].map(lambda x: re.sub('ยฉ.*', '', x))
        
        #===stopword removal===
        stop = stopwords.words('english')
        paper['Abstract_stop'] = paper['Abstract_pre'].apply(lambda x: ' '.join([word for word in x.split() if word not in (stop)]))
          
        #===lemmatize===
        lemmatizer = WordNetLemmatizer()
        def lemmatize_words(text):
            words = text.split()
            words = [lemmatizer.lemmatize(word) for word in words]
            return ' '.join(words)
        paper['Abstract_lem'] = paper['Abstract_stop'].apply(lemmatize_words)
    
        words_rmv = [word.strip() for word in words_to_remove.split(";")]
        remove_dict = {word: None for word in words_rmv}
        def remove_words(text):
             words = text.split()
             cleaned_words = [word for word in words if word not in remove_dict]
             return ' '.join(cleaned_words) 
        paper['Abstract_lem'] = paper['Abstract_lem'].map(remove_words)
         
        topic_abs = paper.Abstract_lem.values.tolist()
        return topic_abs, paper

    d1, d2 = st.columns([7,3]) 
    d2.info("Don't do anything during the computing", icon="โš ๏ธ")
    topic_abs, paper=clean_csv(extype) 

    #===advance settings===
    with d1.expander("๐Ÿงฎ Show advance settings"): 
         t1, t2 = st.columns([5,5])
         if method == 'pyLDA':
              py_random_state = t1.number_input('Random state', min_value=0, max_value=None, step=1)
              py_chunksize = t2.number_input('Chunk size', value=100 , min_value=10, max_value=None, step=1)
         elif method == 'Biterm':
              btm_seed = t1.number_input('Random state seed', value=100 , min_value=1, max_value=None, step=1)
              btm_iterations = t2.number_input('Iterations number', value=20 , min_value=2, max_value=None, step=1)
         elif method == 'BERTopic':
              bert_top_n_words = t1.number_input('top_n_words', value=5 , min_value=5, max_value=25, step=1)
              bert_random_state = t1.number_input('random_state', value=42 , min_value=1, max_value=None, step=1)
              bert_n_components = t2.number_input('n_components', value=5 , min_value=1, max_value=None, step=1)
              bert_n_neighbors = t2.number_input('n_neighbors', value=15 , min_value=1, max_value=None, step=1)
              bert_embedding_model = st.radio(
                   "embedding_model", 
                   ["all-MiniLM-L6-v2", "paraphrase-multilingual-MiniLM-L12-v2", "en_core_web_md"], index=0, horizontal=True)
         else:
              st.write('Please choose your preferred method')
    if st.button("Submit", on_click=reset_all):
         num_topic = num_cho  

    if method == 'BERTopic':
        st.info('BERTopic is an expensive process when dealing with a large volume of text with our existing resources. Please kindly wait until the visualization appears.', icon="โ„น๏ธ")
           
    #===topic===
    if method == 'Choose...':
        st.write('')

    elif method == 'pyLDA':       
         tab1, tab2, tab3 = st.tabs(["๐Ÿ“ˆ Generate visualization", "๐Ÿ“ƒ Reference", "๐Ÿ““ Recommended Reading"])

         with tab1:
         #===visualization===
              @st.cache_data(ttl=3600, show_spinner=False)
              def pylda(extype):
                 topic_abs_LDA = [t.split(' ') for t in topic_abs]
                 id2word = Dictionary(topic_abs_LDA)
                 corpus = [id2word.doc2bow(text) for text in topic_abs_LDA]
                 #===LDA===
                 lda_model = LdaModel(corpus=corpus,
                             id2word=id2word,
                             num_topics=num_topic, 
                             random_state=py_random_state,
                             chunksize=py_chunksize,
                             alpha='auto',
                             per_word_topics=True)
     
                 pprint(lda_model.print_topics())
                 doc_lda = lda_model[corpus]
     
                 #===visualization===
                 coherence_model_lda = CoherenceModel(model=lda_model, texts=topic_abs_LDA, dictionary=id2word, coherence='c_v')
                 coherence_lda = coherence_model_lda.get_coherence()
                 vis = pyLDAvis.gensim_models.prepare(lda_model, corpus, id2word)
                 py_lda_vis_html = pyLDAvis.prepared_data_to_html(vis)
                 return py_lda_vis_html, coherence_lda, vis
                   
              with st.spinner('Performing computations. Please wait ...'):
                   try:
                        py_lda_vis_html, coherence_lda, vis = pylda(extype)
                        st.write('Coherence score: ', coherence_lda)
                        components.html(py_lda_vis_html, width=1500, height=800)
                        st.markdown('Copyright (c) 2015, Ben Mabey. https://github.com/bmabey/pyLDAvis')
                       
                        @st.cache_data(ttl=3600, show_spinner=False)
                        def img_lda(vis):
                             pyLDAvis.save_html(vis, 'output.html')
                             hti = Html2Image()
                             hti.browser.flags = ['--default-background-color=ffffff', '--hide-scrollbars']
                             css = "body {background: white;}"
                             hti.screenshot(
                                  other_file='output.html', css_str=css, size=(1500, 800),
                                  save_as='ldavis_img.png'
                             )
                             
                        img_lda(vis)   
                        with open("ldavis_img.png", "rb") as file:
                              btn = st.download_button(
                                  label="Download image",
                                  data=file,
                                  file_name="ldavis_img.png",
                                  mime="image/png"
                                  )
                       
                   except NameError:
                        st.warning('๐Ÿ–ฑ๏ธ Please click Submit')

         with tab2:
             st.markdown('**Sievert, C., & Shirley, K. (2014). LDAvis: A method for visualizing and interpreting topics. Proceedings of the Workshop on Interactive Language Learning, Visualization, and Interfaces.** https://doi.org/10.3115/v1/w14-3110')

         with tab3:
             st.markdown('**Chen, X., & Wang, H. (2019, January). Automated chat transcript analysis using topic modeling for library reference services. Proceedings of the Association for Information Science and Technology, 56(1), 368โ€“371.** https://doi.org/10.1002/pra2.31')
             st.markdown('**Joo, S., Ingram, E., & Cahill, M. (2021, December 15). Exploring Topics and Genres in Storytime Books: A Text Mining Approach. Evidence Based Library and Information Practice, 16(4), 41โ€“62.** https://doi.org/10.18438/eblip29963')
             st.markdown('**Lamba, M., & Madhusudhan, M. (2021, July 31). Topic Modeling. Text Mining for Information Professionals, 105โ€“137.** https://doi.org/10.1007/978-3-030-85085-2_4')
             st.markdown('**Lamba, M., & Madhusudhan, M. (2019, June 7). Mapping of topics in DESIDOC Journal of Library and Information Technology, India: a study. Scientometrics, 120(2), 477โ€“505.** https://doi.org/10.1007/s11192-019-03137-5')
     
     #===Biterm===
    elif method == 'Biterm':            
             
        #===optimize Biterm===
        @st.cache_data(ttl=3600, show_spinner=False)
        def biterm_topic(extype):
            X, vocabulary, vocab_dict = btm.get_words_freqs(topic_abs)
            tf = np.array(X.sum(axis=0)).ravel()
            docs_vec = btm.get_vectorized_docs(topic_abs, vocabulary)
            docs_lens = list(map(len, docs_vec))
            biterms = btm.get_biterms(docs_vec)
            model = btm.BTM(
              X, vocabulary, seed=btm_seed, T=num_topic, M=20, alpha=50/8, beta=0.01)
            model.fit(biterms, iterations=btm_iterations)
            p_zd = model.transform(docs_vec)
            coherence = model.coherence_
            phi = tmp.get_phi(model)
            topics_coords = tmp.prepare_coords(model)
            totaltop = topics_coords.label.values.tolist()
            perplexity = model.perplexity_
            return topics_coords, phi, totaltop, perplexity

        tab1, tab2, tab3 = st.tabs(["๐Ÿ“ˆ Generate visualization", "๐Ÿ“ƒ Reference", "๐Ÿ““ Recommended Reading"])
        with tab1:
             try:
               with st.spinner('Performing computations. Please wait ...'): 
                    topics_coords, phi, totaltop, perplexity = biterm_topic(extype)            
                    col1, col2 = st.columns([4,6])
                  
                    @st.cache_data(ttl=3600)
                    def biterm_map(extype):
                         btmvis_coords = tmp.plot_scatter_topics(topics_coords, size_col='size', label_col='label', topic=numvis)
                         return btmvis_coords
                            
                    @st.cache_data(ttl=3600)
                    def biterm_bar(extype):
                         terms_probs = tmp.calc_terms_probs_ratio(phi, topic=numvis, lambda_=1)
                         btmvis_probs = tmp.plot_terms(terms_probs, font_size=12)
                         return btmvis_probs
                            
                    with col1:
                         st.write('Perplexity score: ', perplexity)
                         st.write('')
                         numvis = st.selectbox(
                              'Choose topic',
                              (totaltop), on_change=reset_biterm)
                         btmvis_coords = biterm_map(extype)
                         st.altair_chart(btmvis_coords)
                    with col2:
                         btmvis_probs = biterm_bar(extype)
                         st.altair_chart(btmvis_probs, use_container_width=True)

             except ValueError:
                   st.error('๐Ÿ™‡โ€โ™‚๏ธ Please raise the number of topics and click submit')
             except NameError:
                   st.warning('๐Ÿ–ฑ๏ธ Please click Submit')

        with tab2: 
            st.markdown('**Yan, X., Guo, J., Lan, Y., & Cheng, X. (2013, May 13). A biterm topic model for short texts. Proceedings of the 22nd International Conference on World Wide Web.** https://doi.org/10.1145/2488388.2488514')
        with tab3:
            st.markdown('**Cai, M., Shah, N., Li, J., Chen, W. H., Cuomo, R. E., Obradovich, N., & Mackey, T. K. (2020, August 26). Identification and characterization of tweets related to the 2015 Indiana HIV outbreak: A retrospective infoveillance study. PLOS ONE, 15(8), e0235150.** https://doi.org/10.1371/journal.pone.0235150')
            st.markdown('**Chen, Y., Dong, T., Ban, Q., & Li, Y. (2021). What Concerns Consumers about Hypertension? A Comparison between the Online Health Community and the Q&A Forum. International Journal of Computational Intelligence Systems, 14(1), 734.** https://doi.org/10.2991/ijcis.d.210203.002')
            st.markdown('**George, Crissandra J., "AMBIGUOUS APPALACHIANNESS: A LINGUISTIC AND PERCEPTUAL INVESTIGATION INTO ARC-LABELED PENNSYLVANIA COUNTIES" (2022). Theses and Dissertations-- Linguistics. 48.** https://doi.org/10.13023/etd.2022.217')
            st.markdown('**Li, J., Chen, W. H., Xu, Q., Shah, N., Kohler, J. C., & Mackey, T. K. (2020). Detection of self-reported experiences with corruption on twitter using unsupervised machine learning. Social Sciences & Humanities Open, 2(1), 100060.** https://doi.org/10.1016/j.ssaho.2020.100060')
          
     #===BERTopic===
    elif method == 'BERTopic':
        @st.cache_data(ttl=3600, show_spinner=False)
        def bertopic_vis(extype):
          umap_model = UMAP(n_neighbors=bert_n_neighbors, n_components=bert_n_components, 
                  min_dist=0.0, metric='cosine', random_state=bert_random_state)   
          cluster_model = KMeans(n_clusters=num_topic)
          if bert_embedding_model == 'all-MiniLM-L6-v2':
               emb_mod = 'all-MiniLM-L6-v2'
               lang = 'en'
          elif bert_embedding_model == 'en_core_web_md':
               emb_mod = en_core_web_md.load(exclude=['tagger', 'parser', 'ner', 'attribute_ruler', 'lemmatizer'])
               lang = 'en'
          elif bert_embedding_model == 'paraphrase-multilingual-MiniLM-L12-v2':
               emb_mod = 'paraphrase-multilingual-MiniLM-L12-v2'
               lang = 'multilingual'
          topic_model = BERTopic(embedding_model=emb_mod, hdbscan_model=cluster_model, language=lang, umap_model=umap_model, top_n_words=bert_top_n_words)
          topics, probs = topic_model.fit_transform(topic_abs)
          return topic_model, topics, probs
        
        @st.cache_data(ttl=3600, show_spinner=False)
        def Vis_Topics(extype):
          fig1 = topic_model.visualize_topics()
          return fig1
        
        @st.cache_data(ttl=3600, show_spinner=False)
        def Vis_Documents(extype):
          fig2 = topic_model.visualize_documents(topic_abs)
          return fig2

        @st.cache_data(ttl=3600, show_spinner=False)
        def Vis_Hierarchy(extype):
          fig3 = topic_model.visualize_hierarchy(top_n_topics=num_topic)
          return fig3
    
        @st.cache_data(ttl=3600, show_spinner=False)
        def Vis_Heatmap(extype):
          global topic_model
          fig4 = topic_model.visualize_heatmap(n_clusters=num_topic-1, width=1000, height=1000)
          return fig4

        @st.cache_data(ttl=3600, show_spinner=False)
        def Vis_Barchart(extype):
          fig5 = topic_model.visualize_barchart(top_n_topics=num_topic)
          return fig5
       
        tab1, tab2, tab3 = st.tabs(["๐Ÿ“ˆ Generate visualization", "๐Ÿ“ƒ Reference", "๐Ÿ““ Recommended Reading"])
        with tab1:
          try:
               with st.spinner('Performing computations. Please wait ...'):
               
                    topic_model, topics, probs = bertopic_vis(extype)
                    time.sleep(.5)
                    st.toast('Visualize Topics', icon='๐Ÿƒ')
                    fig1 = Vis_Topics(extype)
                   
                    time.sleep(.5)
                    st.toast('Visualize Document', icon='๐Ÿƒ')
                    fig2 = Vis_Documents(extype)
                   
                    time.sleep(.5)
                    st.toast('Visualize Document Hierarchy', icon='๐Ÿƒ')
                    fig3 = Vis_Hierarchy(extype)
                   
                    time.sleep(.5)
                    st.toast('Visualize Topic Similarity', icon='๐Ÿƒ')
                    fig4 = Vis_Heatmap(extype)
                   
                    time.sleep(.5)
                    st.toast('Visualize Terms', icon='๐Ÿƒ')
                    fig5 = Vis_Barchart(extype)
                   
                    with st.expander("Visualize Topics"):
                        st.write(fig1)
                    with st.expander("Visualize Terms"):
                        st.write(fig5)
                    with st.expander("Visualize Documents"):
                        st.write(fig2)
                    with st.expander("Visualize Document Hierarchy"):  
                        st.write(fig3)
                    with st.expander("Visualize Topic Similarity"):
                        st.write(fig4)
                                        
          except ValueError:
               st.error('๐Ÿ™‡โ€โ™‚๏ธ Please raise the number of topics and click submit')
          
          except NameError:
               st.warning('๐Ÿ–ฑ๏ธ Please click Submit')

        with tab2:
          st.markdown('**Grootendorst, M. (2022). BERTopic: Neural topic modeling with a class-based TF-IDF procedure. arXiv preprint arXiv:2203.05794.** https://doi.org/10.48550/arXiv.2203.05794')
          
        with tab3:
          st.markdown('**Jeet Rawat, A., Ghildiyal, S., & Dixit, A. K. (2022, December 1). Topic modelling of legal documents using NLP and bidirectional encoder representations from transformers. Indonesian Journal of Electrical Engineering and Computer Science, 28(3), 1749.** https://doi.org/10.11591/ijeecs.v28.i3.pp1749-1755')
          st.markdown('**Yao, L. F., Ferawati, K., Liew, K., Wakamiya, S., & Aramaki, E. (2023, April 20). Disruptions in the Cystic Fibrosis Communityโ€™s Experiences and Concerns During the COVID-19 Pandemic: Topic Modeling and Time Series Analysis of Reddit Comments. Journal of Medical Internet Research, 25, e45249.** https://doi.org/10.2196/45249')