Spaces:
Running
Running
Create 2 Topic Modeling.py
Browse files- pages/2 Topic Modeling.py +329 -0
pages/2 Topic Modeling.py
ADDED
@@ -0,0 +1,329 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#import module
|
2 |
+
import streamlit as st
|
3 |
+
import pandas as pd
|
4 |
+
import numpy as np
|
5 |
+
import re
|
6 |
+
import nltk
|
7 |
+
nltk.download('wordnet')
|
8 |
+
from nltk.stem import WordNetLemmatizer
|
9 |
+
nltk.download('stopwords')
|
10 |
+
from nltk.corpus import stopwords
|
11 |
+
import gensim
|
12 |
+
import gensim.corpora as corpora
|
13 |
+
from gensim.corpora import Dictionary
|
14 |
+
from gensim.models.coherencemodel import CoherenceModel
|
15 |
+
from gensim.models.ldamodel import LdaModel
|
16 |
+
from pprint import pprint
|
17 |
+
import pickle
|
18 |
+
import pyLDAvis
|
19 |
+
import pyLDAvis.gensim_models as gensimvis
|
20 |
+
import matplotlib.pyplot as plt
|
21 |
+
import streamlit.components.v1 as components
|
22 |
+
from io import StringIO
|
23 |
+
from ipywidgets.embed import embed_minimal_html
|
24 |
+
from nltk.stem.snowball import SnowballStemmer
|
25 |
+
from bertopic import BERTopic
|
26 |
+
import plotly.express as px
|
27 |
+
from sklearn.cluster import KMeans
|
28 |
+
import bitermplus as btm
|
29 |
+
import tmplot as tmp
|
30 |
+
import tomotopy
|
31 |
+
import sys
|
32 |
+
import spacy
|
33 |
+
import en_core_web_sm
|
34 |
+
import pipeline
|
35 |
+
|
36 |
+
|
37 |
+
#===config===
|
38 |
+
st.set_page_config(
|
39 |
+
page_title="Coconut",
|
40 |
+
page_icon="π₯₯",
|
41 |
+
layout="wide"
|
42 |
+
)
|
43 |
+
st.header("Topic Modeling")
|
44 |
+
st.subheader('Put your file here...')
|
45 |
+
|
46 |
+
#========unique id========
|
47 |
+
@st.cache_resource(ttl=3600)
|
48 |
+
def create_list():
|
49 |
+
l = [1, 2, 3]
|
50 |
+
return l
|
51 |
+
|
52 |
+
l = create_list()
|
53 |
+
first_list_value = l[0]
|
54 |
+
l[0] = first_list_value + 1
|
55 |
+
uID = str(l[0])
|
56 |
+
|
57 |
+
@st.cache_data(ttl=3600)
|
58 |
+
def get_ext(uploaded_file):
|
59 |
+
extype = uID+uploaded_file.name
|
60 |
+
return extype
|
61 |
+
|
62 |
+
#===clear cache===
|
63 |
+
|
64 |
+
def reset_biterm():
|
65 |
+
try:
|
66 |
+
biterm_map.clear()
|
67 |
+
biterm_bar.clear()
|
68 |
+
except NameError:
|
69 |
+
biterm_topic.clear()
|
70 |
+
|
71 |
+
def reset_all():
|
72 |
+
st.cache_data.clear()
|
73 |
+
|
74 |
+
#===clean csv===
|
75 |
+
@st.cache_data(ttl=3600, show_spinner=False)
|
76 |
+
def clean_csv(extype):
|
77 |
+
try:
|
78 |
+
paper = papers.dropna(subset=['Abstract'])
|
79 |
+
except KeyError:
|
80 |
+
st.error('Error: Please check your Abstract column.')
|
81 |
+
sys.exit(1)
|
82 |
+
paper = paper[~paper.Abstract.str.contains("No abstract available")]
|
83 |
+
paper = paper[~paper.Abstract.str.contains("STRAIT")]
|
84 |
+
|
85 |
+
#===mapping===
|
86 |
+
paper['Abstract_pre'] = paper['Abstract'].map(lambda x: re.sub('[,:;\.!-?β’=]', '', x))
|
87 |
+
paper['Abstract_pre'] = paper['Abstract_pre'].map(lambda x: x.lower())
|
88 |
+
paper['Abstract_pre'] = paper['Abstract_pre'].map(lambda x: re.sub('Β©.*', '', x))
|
89 |
+
|
90 |
+
#===stopword removal===
|
91 |
+
stop = stopwords.words('english')
|
92 |
+
paper['Abstract_stop'] = paper['Abstract_pre'].apply(lambda x: ' '.join([word for word in x.split() if word not in (stop)]))
|
93 |
+
|
94 |
+
#===lemmatize===
|
95 |
+
lemmatizer = WordNetLemmatizer()
|
96 |
+
def lemmatize_words(text):
|
97 |
+
words = text.split()
|
98 |
+
words = [lemmatizer.lemmatize(word) for word in words]
|
99 |
+
return ' '.join(words)
|
100 |
+
paper['Abstract_lem'] = paper['Abstract_stop'].apply(lemmatize_words)
|
101 |
+
|
102 |
+
topic_abs = paper.Abstract_lem.values.tolist()
|
103 |
+
return topic_abs, paper
|
104 |
+
|
105 |
+
#===upload file===
|
106 |
+
@st.cache_data(ttl=3600)
|
107 |
+
def upload(file):
|
108 |
+
papers = pd.read_csv(uploaded_file)
|
109 |
+
return papers
|
110 |
+
|
111 |
+
@st.cache_data(ttl=3600)
|
112 |
+
def conv_txt(extype):
|
113 |
+
col_dict = {'TI': 'Title',
|
114 |
+
'SO': 'Source title',
|
115 |
+
'DT': 'Document Type',
|
116 |
+
'AB': 'Abstract',
|
117 |
+
'PY': 'Year'}
|
118 |
+
papers = pd.read_csv(uploaded_file, sep='\t', lineterminator='\r')
|
119 |
+
papers.rename(columns=col_dict, inplace=True)
|
120 |
+
return papers
|
121 |
+
|
122 |
+
|
123 |
+
#===Read data===
|
124 |
+
uploaded_file = st.file_uploader("Choose a file", type=['csv', 'txt'], on_change=reset_all)
|
125 |
+
|
126 |
+
if uploaded_file is not None:
|
127 |
+
extype = get_ext(uploaded_file)
|
128 |
+
|
129 |
+
if extype.endswith('.csv'):
|
130 |
+
papers = upload(extype)
|
131 |
+
elif extype.endswith('.txt'):
|
132 |
+
papers = conv_txt(extype)
|
133 |
+
|
134 |
+
topic_abs, paper=clean_csv(extype)
|
135 |
+
method = st.selectbox(
|
136 |
+
'Choose method',
|
137 |
+
('Choose...', 'pyLDA', 'Biterm','BERTopic'), on_change=reset_all)
|
138 |
+
|
139 |
+
#===topic===
|
140 |
+
if method == 'Choose...':
|
141 |
+
st.write('')
|
142 |
+
|
143 |
+
elif method == 'pyLDA':
|
144 |
+
num_topic = st.slider('Choose number of topics', min_value=2, max_value=15, step=1, on_change=reset_all)
|
145 |
+
@st.cache_data(ttl=3600, show_spinner=False)
|
146 |
+
def pylda(extype):
|
147 |
+
topic_abs_LDA = [t.split(' ') for t in topic_abs]
|
148 |
+
id2word = Dictionary(topic_abs_LDA)
|
149 |
+
corpus = [id2word.doc2bow(text) for text in topic_abs_LDA]
|
150 |
+
#===LDA===
|
151 |
+
lda_model = LdaModel(corpus=corpus,
|
152 |
+
id2word=id2word,
|
153 |
+
num_topics=num_topic,
|
154 |
+
random_state=0,
|
155 |
+
chunksize=100,
|
156 |
+
alpha='auto',
|
157 |
+
per_word_topics=True)
|
158 |
+
|
159 |
+
pprint(lda_model.print_topics())
|
160 |
+
doc_lda = lda_model[corpus]
|
161 |
+
|
162 |
+
#===visualization===
|
163 |
+
coherence_model_lda = CoherenceModel(model=lda_model, texts=topic_abs_LDA, dictionary=id2word, coherence='c_v')
|
164 |
+
coherence_lda = coherence_model_lda.get_coherence()
|
165 |
+
vis = pyLDAvis.gensim_models.prepare(lda_model, corpus, id2word)
|
166 |
+
py_lda_vis_html = pyLDAvis.prepared_data_to_html(vis)
|
167 |
+
return py_lda_vis_html, coherence_lda
|
168 |
+
|
169 |
+
tab1, tab2, tab3 = st.tabs(["π Generate visualization & Calculate coherence", "π Reference", "π Recommended Reading"])
|
170 |
+
|
171 |
+
with tab1:
|
172 |
+
#===visualization===
|
173 |
+
with st.spinner('Calculating and Creating pyLDAvis Visualization ...'):
|
174 |
+
py_lda_vis_html, coherence_lda = pylda(extype)
|
175 |
+
st.write('Coherence: ', (coherence_lda))
|
176 |
+
components.html(py_lda_vis_html, width=1700, height=800)
|
177 |
+
st.markdown('Copyright (c) 2015, Ben Mabey. https://github.com/bmabey/pyLDAvis')
|
178 |
+
|
179 |
+
with tab2:
|
180 |
+
st.markdown('**Sievert, C., & Shirley, K. (2014). LDAvis: A method for visualizing and interpreting topics. Proceedings of the Workshop on Interactive Language Learning, Visualization, and Interfaces.** https://doi.org/10.3115/v1/w14-3110')
|
181 |
+
|
182 |
+
with tab3:
|
183 |
+
st.markdown('**Chen, X., & Wang, H. (2019, January). Automated chat transcript analysis using topic modeling for library reference services. Proceedings of the Association for Information Science and Technology, 56(1), 368β371.** https://doi.org/10.1002/pra2.31')
|
184 |
+
st.markdown('**Joo, S., Ingram, E., & Cahill, M. (2021, December 15). Exploring Topics and Genres in Storytime Books: A Text Mining Approach. Evidence Based Library and Information Practice, 16(4), 41β62.** https://doi.org/10.18438/eblip29963')
|
185 |
+
st.markdown('**Lamba, M., & Madhusudhan, M. (2021, July 31). Topic Modeling. Text Mining for Information Professionals, 105β137.** https://doi.org/10.1007/978-3-030-85085-2_4')
|
186 |
+
st.markdown('**Lamba, M., & Madhusudhan, M. (2019, June 7). Mapping of topics in DESIDOC Journal of Library and Information Technology, India: a study. Scientometrics, 120(2), 477β505.** https://doi.org/10.1007/s11192-019-03137-5')
|
187 |
+
|
188 |
+
#===Biterm===
|
189 |
+
elif method == 'Biterm':
|
190 |
+
num_bitopic = st.slider('Choose number of topics', min_value=2, max_value=20, step=1, on_change=reset_all)
|
191 |
+
#===optimize Biterm===
|
192 |
+
@st.cache_data(ttl=3600)
|
193 |
+
def biterm_topic(extype):
|
194 |
+
X, vocabulary, vocab_dict = btm.get_words_freqs(topic_abs)
|
195 |
+
tf = np.array(X.sum(axis=0)).ravel()
|
196 |
+
docs_vec = btm.get_vectorized_docs(topic_abs, vocabulary)
|
197 |
+
docs_lens = list(map(len, docs_vec))
|
198 |
+
biterms = btm.get_biterms(docs_vec)
|
199 |
+
model = btm.BTM(
|
200 |
+
X, vocabulary, seed=12321, T=num_bitopic, M=20, alpha=50/8, beta=0.01)
|
201 |
+
model.fit(biterms, iterations=20)
|
202 |
+
p_zd = model.transform(docs_vec)
|
203 |
+
coherence = model.coherence_
|
204 |
+
phi = tmp.get_phi(model)
|
205 |
+
topics_coords = tmp.prepare_coords(model)
|
206 |
+
totaltop = topics_coords.label.values.tolist()
|
207 |
+
return topics_coords, phi, totaltop
|
208 |
+
|
209 |
+
try:
|
210 |
+
topics_coords, phi, totaltop = biterm_topic(extype)
|
211 |
+
#with st.spinner('Visualizing, please wait ....'):
|
212 |
+
tab1, tab2, tab3 = st.tabs(["π Generate visualization", "π Reference", "π Recommended Reading"])
|
213 |
+
with tab1:
|
214 |
+
col1, col2 = st.columns(2)
|
215 |
+
|
216 |
+
@st.cache_data(ttl=3600)
|
217 |
+
def biterm_map(extype):
|
218 |
+
btmvis_coords = tmp.plot_scatter_topics(topics_coords, size_col='size', label_col='label', topic=numvis)
|
219 |
+
return btmvis_coords
|
220 |
+
|
221 |
+
@st.cache_data(ttl=3600)
|
222 |
+
def biterm_bar(extype):
|
223 |
+
terms_probs = tmp.calc_terms_probs_ratio(phi, topic=numvis, lambda_=1)
|
224 |
+
btmvis_probs = tmp.plot_terms(terms_probs, font_size=12)
|
225 |
+
return btmvis_probs
|
226 |
+
|
227 |
+
with col1:
|
228 |
+
numvis = st.selectbox(
|
229 |
+
'Choose topic',
|
230 |
+
(totaltop), on_change=reset_biterm)
|
231 |
+
btmvis_coords = biterm_map(extype)
|
232 |
+
st.altair_chart(btmvis_coords, use_container_width=True)
|
233 |
+
with col2:
|
234 |
+
btmvis_probs = biterm_bar(extype)
|
235 |
+
st.altair_chart(btmvis_probs, use_container_width=True)
|
236 |
+
|
237 |
+
with tab2:
|
238 |
+
st.markdown('**Yan, X., Guo, J., Lan, Y., & Cheng, X. (2013, May 13). A biterm topic model for short texts. Proceedings of the 22nd International Conference on World Wide Web.** https://doi.org/10.1145/2488388.2488514')
|
239 |
+
with tab3:
|
240 |
+
st.markdown('**Cai, M., Shah, N., Li, J., Chen, W. H., Cuomo, R. E., Obradovich, N., & Mackey, T. K. (2020, August 26). Identification and characterization of tweets related to the 2015 Indiana HIV outbreak: A retrospective infoveillance study. PLOS ONE, 15(8), e0235150.** https://doi.org/10.1371/journal.pone.0235150')
|
241 |
+
st.markdown('**Chen, Y., Dong, T., Ban, Q., & Li, Y. (2021). What Concerns Consumers about Hypertension? A Comparison between the Online Health Community and the Q&A Forum. International Journal of Computational Intelligence Systems, 14(1), 734.** https://doi.org/10.2991/ijcis.d.210203.002')
|
242 |
+
st.markdown('**George, Crissandra J., "AMBIGUOUS APPALACHIANNESS: A LINGUISTIC AND PERCEPTUAL INVESTIGATION INTO ARC-LABELED PENNSYLVANIA COUNTIES" (2022). Theses and Dissertations-- Linguistics. 48.** https://doi.org/10.13023/etd.2022.217')
|
243 |
+
st.markdown('**Li, J., Chen, W. H., Xu, Q., Shah, N., Kohler, J. C., & Mackey, T. K. (2020). Detection of self-reported experiences with corruption on twitter using unsupervised machine learning. Social Sciences & Humanities Open, 2(1), 100060.** https://doi.org/10.1016/j.ssaho.2020.100060')
|
244 |
+
|
245 |
+
except ValueError:
|
246 |
+
st.error('Please raise the number of topics')
|
247 |
+
|
248 |
+
#===BERTopic===
|
249 |
+
elif method == 'BERTopic':
|
250 |
+
num_btopic = st.slider('Choose number of topics', min_value=4, max_value=20, step=1, on_change=reset_all)
|
251 |
+
@st.cache_data(ttl=3600)
|
252 |
+
def bertopic_vis(extype):
|
253 |
+
topic_time = paper.Year.values.tolist()
|
254 |
+
cluster_model = KMeans(n_clusters=num_btopic)
|
255 |
+
nlp = en_core_web_sm.load(exclude=['tagger', 'parser', 'ner', 'attribute_ruler', 'lemmatizer'])
|
256 |
+
topic_model = BERTopic(embedding_model=nlp, hdbscan_model=cluster_model, language="multilingual").fit(topic_abs)
|
257 |
+
topics, probs = topic_model.fit_transform(topic_abs)
|
258 |
+
return topic_model, topic_time, topics, probs
|
259 |
+
|
260 |
+
@st.cache_data(ttl=3600)
|
261 |
+
def Vis_Topics(extype):
|
262 |
+
fig1 = topic_model.visualize_topics()
|
263 |
+
return fig1
|
264 |
+
|
265 |
+
@st.cache_data(ttl=3600)
|
266 |
+
def Vis_Documents(extype):
|
267 |
+
fig2 = topic_model.visualize_documents(topic_abs)
|
268 |
+
return fig2
|
269 |
+
|
270 |
+
@st.cache_data(ttl=3600)
|
271 |
+
def Vis_Hierarchy(extype):
|
272 |
+
fig3 = topic_model.visualize_hierarchy(top_n_topics=num_btopic)
|
273 |
+
return fig3
|
274 |
+
|
275 |
+
@st.cache_data(ttl=3600)
|
276 |
+
def Vis_Heatmap(extype):
|
277 |
+
global topic_model
|
278 |
+
fig4 = topic_model.visualize_heatmap(n_clusters=num_btopic-1, width=1000, height=1000)
|
279 |
+
return fig4
|
280 |
+
|
281 |
+
@st.cache_data(ttl=3600)
|
282 |
+
def Vis_Barchart(extype):
|
283 |
+
fig5 = topic_model.visualize_barchart(top_n_topics=num_btopic, n_words=10)
|
284 |
+
return fig5
|
285 |
+
|
286 |
+
@st.cache_data(ttl=3600)
|
287 |
+
def Vis_ToT(extype):
|
288 |
+
topics_over_time = topic_model.topics_over_time(topic_abs, topic_time)
|
289 |
+
fig6 = topic_model.visualize_topics_over_time(topics_over_time)
|
290 |
+
return fig6
|
291 |
+
|
292 |
+
tab1, tab2, tab3 = st.tabs(["π Generate visualization", "π Reference", "π Recommended Reading"])
|
293 |
+
with tab1:
|
294 |
+
topic_model, topic_time, topics, probs = bertopic_vis(extype)
|
295 |
+
#===visualization===
|
296 |
+
viz = st.selectbox(
|
297 |
+
'Choose visualization',
|
298 |
+
('Visualize Topics', 'Visualize Documents', 'Visualize Document Hierarchy', 'Visualize Topic Similarity', 'Visualize Terms', 'Visualize Topics over Time'))
|
299 |
+
|
300 |
+
if viz == 'Visualize Topics':
|
301 |
+
fig1 = Vis_Topics(extype)
|
302 |
+
st.write(fig1)
|
303 |
+
|
304 |
+
elif viz == 'Visualize Documents':
|
305 |
+
fig2 = Vis_Documents(extype)
|
306 |
+
st.write(fig2)
|
307 |
+
|
308 |
+
elif viz == 'Visualize Document Hierarchy':
|
309 |
+
fig3 = Vis_Hierarchy(extype)
|
310 |
+
st.write(fig3)
|
311 |
+
|
312 |
+
elif viz == 'Visualize Topic Similarity':
|
313 |
+
fig4 = Vis_Heatmap(extype)
|
314 |
+
st.write(fig4)
|
315 |
+
|
316 |
+
elif viz == 'Visualize Terms':
|
317 |
+
fig5 = Vis_Barchart(extype)
|
318 |
+
st.write(fig5)
|
319 |
+
|
320 |
+
elif viz == 'Visualize Topics over Time':
|
321 |
+
fig6 = Vis_ToT(extype)
|
322 |
+
st.write(fig6)
|
323 |
+
|
324 |
+
with tab2:
|
325 |
+
st.markdown('**Grootendorst, M. (2022). BERTopic: Neural topic modeling with a class-based TF-IDF procedure. arXiv preprint arXiv:2203.05794.** https://doi.org/10.48550/arXiv.2203.05794')
|
326 |
+
|
327 |
+
with tab3:
|
328 |
+
st.markdown('**Jeet Rawat, A., Ghildiyal, S., & Dixit, A. K. (2022, December 1). Topic modelling of legal documents using NLP and bidirectional encoder representations from transformers. Indonesian Journal of Electrical Engineering and Computer Science, 28(3), 1749.** https://doi.org/10.11591/ijeecs.v28.i3.pp1749-1755')
|
329 |
+
st.markdown('**Yao, L. F., Ferawati, K., Liew, K., Wakamiya, S., & Aramaki, E. (2023, April 20). Disruptions in the Cystic Fibrosis Communityβs Experiences and Concerns During the COVID-19 Pandemic: Topic Modeling and Time Series Analysis of Reddit Comments. Journal of Medical Internet Research, 25, e45249.** https://doi.org/10.2196/45249')
|