Spaces:
Running
on
Zero
Running
on
Zero
<h1 align="center">LivePortrait: Efficient Portrait Animation with Stitching and Retargeting Control</h1> | |
<div align='center'> | |
<a href='https://github.com/cleardusk' target='_blank'><strong>Jianzhu Guo</strong></a><sup> 1β </sup>  | |
<a href='https://github.com/KwaiVGI' target='_blank'><strong>Dingyun Zhang</strong></a><sup> 1,2</sup>  | |
<a href='https://github.com/KwaiVGI' target='_blank'><strong>Xiaoqiang Liu</strong></a><sup> 1</sup>  | |
<a href='https://github.com/KwaiVGI' target='_blank'><strong>Zhizhou Zhong</strong></a><sup> 1,3</sup>  | |
<a href='https://scholar.google.com.hk/citations?user=_8k1ubAAAAAJ' target='_blank'><strong>Yuan Zhang</strong></a><sup> 1</sup>  | |
</div> | |
<div align='center'> | |
<a href='https://scholar.google.com/citations?user=P6MraaYAAAAJ' target='_blank'><strong>Pengfei Wan</strong></a><sup> 1</sup>  | |
<a href='https://openreview.net/profile?id=~Di_ZHANG3' target='_blank'><strong>Di Zhang</strong></a><sup> 1</sup>  | |
</div> | |
<div align='center'> | |
<sup>1 </sup>Kuaishou Technology  <sup>2 </sup>University of Science and Technology of China  <sup>3 </sup>Fudan University  | |
</div> | |
<br> | |
<div align="center"> | |
<!-- <a href='LICENSE'><img src='https://img.shields.io/badge/license-MIT-yellow'></a> --> | |
<a href='https://liveportrait.github.io'><img src='https://img.shields.io/badge/Project-Homepage-green'></a> | |
<a href='https://arxiv.org/pdf/2407.03168'><img src='https://img.shields.io/badge/Paper-arXiv-red'></a> | |
</div> | |
<br> | |
<p align="center"> | |
<img src="./assets/docs/showcase2.gif" alt="showcase"> | |
<br> | |
π₯ For more results, visit our <a href="https://liveportrait.github.io/"><strong>homepage</strong></a> π₯ | |
</p> | |
## π₯ Updates | |
- **`2024/07/04`**: π₯ We released the initial version of the inference code and models. Continuous updates, stay tuned! | |
- **`2024/07/04`**: π We released the [homepage](https://liveportrait.github.io) and technical report on [arXiv](https://arxiv.org/pdf/2407.03168). | |
## Introduction | |
This repo, named **LivePortrait**, contains the official PyTorch implementation of our paper [LivePortrait: Efficient Portrait Animation with Stitching and Retargeting Control](https://arxiv.org/pdf/2407.03168). | |
We are actively updating and improving this repository. If you find any bugs or have suggestions, welcome to raise issues or submit pull requests (PR) π. | |
## π₯ Getting Started | |
### 1. Clone the code and prepare the environment | |
```bash | |
git clone https://github.com/KwaiVGI/LivePortrait | |
cd LivePortrait | |
# create env using conda | |
conda create -n LivePortrait python==3.9.18 | |
conda activate LivePortrait | |
# install dependencies with pip | |
pip install -r requirements.txt | |
``` | |
### 2. Download pretrained weights | |
Download our pretrained LivePortrait weights and face detection models of InsightFace from [Google Drive](https://drive.google.com/drive/folders/1UtKgzKjFAOmZkhNK-OYT0caJ_w2XAnib) or [Baidu Yun](https://pan.baidu.com/s/1MGctWmNla_vZxDbEp2Dtzw?pwd=z5cn). We have packed all weights in one directory π. Unzip and place them in `./pretrained_weights` ensuring the directory structure is as follows: | |
```text | |
pretrained_weights | |
βββ insightface | |
β βββ models | |
β βββ buffalo_l | |
β βββ 2d106det.onnx | |
β βββ det_10g.onnx | |
βββ liveportrait | |
βββ base_models | |
β βββ appearance_feature_extractor.pth | |
β βββ motion_extractor.pth | |
β βββ spade_generator.pth | |
β βββ warping_module.pth | |
βββ landmark.onnx | |
βββ retargeting_models | |
βββ stitching_retargeting_module.pth | |
``` | |
### 3. Inference π | |
```bash | |
python inference.py | |
``` | |
If the script runs successfully, you will get an output mp4 file named `animations/s6--d0_concat.mp4`. This file includes the following results: driving video, input image, and generated result. | |
<p align="center"> | |
<img src="./assets/docs/inference.gif" alt="image"> | |
</p> | |
Or, you can change the input by specifying the `-s` and `-d` arguments: | |
```bash | |
python inference.py -s assets/examples/source/s9.jpg -d assets/examples/driving/d0.mp4 | |
# or disable pasting back | |
python inference.py -s assets/examples/source/s9.jpg -d assets/examples/driving/d0.mp4 --no_flag_pasteback | |
# more options to see | |
python inference.py -h | |
``` | |
**More interesting results can be found in our [Homepage](https://liveportrait.github.io)** π | |
### 4. Gradio interface | |
We also provide a Gradio interface for a better experience, just run by: | |
```bash | |
python app.py | |
``` | |
### 5. Inference speed evaluation πππ | |
We have also provided a script to evaluate the inference speed of each module: | |
```bash | |
python speed.py | |
``` | |
Below are the results of inferring one frame on an RTX 4090 GPU using the native PyTorch framework with `torch.compile`: | |
| Model | Parameters(M) | Model Size(MB) | Inference(ms) | | |
|-----------------------------------|:-------------:|:--------------:|:-------------:| | |
| Appearance Feature Extractor | 0.84 | 3.3 | 0.82 | | |
| Motion Extractor | 28.12 | 108 | 0.84 | | |
| Spade Generator | 55.37 | 212 | 7.59 | | |
| Warping Module | 45.53 | 174 | 5.21 | | |
| Stitching and Retargeting Modules| 0.23 | 2.3 | 0.31 | | |
*Note: the listed values of Stitching and Retargeting Modules represent the combined parameter counts and the total sequential inference time of three MLP networks.* | |
## Acknowledgements | |
We would like to thank the contributors of [FOMM](https://github.com/AliaksandrSiarohin/first-order-model), [Open Facevid2vid](https://github.com/zhanglonghao1992/One-Shot_Free-View_Neural_Talking_Head_Synthesis), [SPADE](https://github.com/NVlabs/SPADE), [InsightFace](https://github.com/deepinsight/insightface) repositories, for their open research and contributions. | |
## Citation π | |
If you find LivePortrait useful for your research, welcome to π this repo and cite our work using the following BibTeX: | |
```bibtex | |
@article{guo2024live, | |
title = {LivePortrait: Efficient Portrait Animation with Stitching and Retargeting Control}, | |
author = {Jianzhu Guo and Dingyun Zhang and Xiaoqiang Liu and Zhizhou Zhong and Yuan Zhang and Pengfei Wan and Di Zhang}, | |
year = {2024}, | |
journal = {arXiv preprint:2407.03168}, | |
} | |
``` | |