Spaces:
Paused
Paused
File size: 7,172 Bytes
653ce35 7ca5351 454eedf 3097555 454eedf fb325b2 454eedf 7ca5351 f6be7c6 454eedf 7ca5351 73ea2e9 f6be7c6 7ca5351 f6be7c6 454eedf f6be7c6 454eedf f6be7c6 454eedf 12fdb87 454eedf f6be7c6 454eedf f6be7c6 454eedf f6be7c6 454eedf f6be7c6 454eedf f6be7c6 454eedf f6be7c6 454eedf f6be7c6 454eedf f6be7c6 454eedf f6be7c6 454eedf f6be7c6 7ca5351 0269ee9 106f93a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 |
import gradio as gr
import os
import numpy as np
import argparse
import imageio
import torch
from einops import rearrange
from diffusers import DDIMScheduler, AutoencoderKL
from transformers import CLIPTextModel, CLIPTokenizer
# from annotator.canny import CannyDetector
# from annotator.openpose import OpenposeDetector
# from annotator.midas import MidasDetector
# import sys
# sys.path.insert(0, ".")
from huggingface_hub import hf_hub_download
import controlnet_aux
from controlnet_aux import OpenposeDetector, CannyDetector, MidasDetector
from controlnet_aux.open_pose.body import Body
from models.pipeline_controlvideo import ControlVideoPipeline
from models.util import save_videos_grid, read_video, get_annotation
from models.unet import UNet3DConditionModel
from models.controlnet import ControlNetModel3D
from models.RIFE.IFNet_HDv3 import IFNet
device = "cuda"
sd_path = "runwayml/stable-diffusion-v1-5"
inter_path = "checkpoints/flownet.pkl"
controlnet_dict = {
"pose": "lllyasviel/control_v11p_sd15_openpose",
"depth": "lllyasviel/control_v11f1p_sd15_depth",
"canny": "lllyasviel/control_v11p_sd15_canny",
}
controlnet_parser_dict = {
"pose": OpenposeDetector,
"depth": MidasDetector,
"canny": CannyDetector,
}
POS_PROMPT = " ,best quality, extremely detailed, HD, ultra-realistic, 8K, HQ, masterpiece, trending on artstation, art, smooth"
NEG_PROMPT = "longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer difits, cropped, worst quality, low quality, deformed body, bloated, ugly, unrealistic"
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument("--prompt", type=str, required=True, help="Text description of target video")
parser.add_argument("--video_path", type=str, required=True, help="Path to a source video")
parser.add_argument("--output_path", type=str, default="./outputs", help="Directory of output")
parser.add_argument("--condition", type=str, default="depth", help="Condition of structure sequence")
parser.add_argument("--video_length", type=int, default=15, help="Length of synthesized video")
parser.add_argument("--height", type=int, default=512, help="Height of synthesized video, and should be a multiple of 32")
parser.add_argument("--width", type=int, default=512, help="Width of synthesized video, and should be a multiple of 32")
parser.add_argument("--smoother_steps", nargs='+', default=[19, 20], type=int, help="Timesteps at which using interleaved-frame smoother")
parser.add_argument("--is_long_video", action='store_true', help="Whether to use hierarchical sampler to produce long video")
parser.add_argument("--seed", type=int, default=42, help="Random seed of generator")
args = parser.parse_args()
return args
def infer(prompt, video_path, condition, video_length, is_long_video):
#args = get_args()
#os.makedirs(args.output_path, exist_ok=True)
# Height and width should be a multiple of 32
output_path = ""
height = 512
width = 512
height = (height // 32) * 32
width = (width // 32) * 32
smoother_steps = [19, 20]
is_long_video = False
seed = 42
if condition == "pose":
pretrained_model_or_path = "lllyasviel/ControlNet"
body_model_path = hf_hub_download(pretrained_model_or_path, "annotator/ckpts/body_pose_model.pth", cache_dir="checkpoints")
body_estimation = Body(body_model_path)
annotator = controlnet_parser_dict[condition](body_estimation)
else:
annotator = controlnet_parser_dict[condition]()
tokenizer = CLIPTokenizer.from_pretrained(sd_path, subfolder="tokenizer")
text_encoder = CLIPTextModel.from_pretrained(sd_path, subfolder="text_encoder").to(dtype=torch.float16)
vae = AutoencoderKL.from_pretrained(sd_path, subfolder="vae").to(dtype=torch.float16)
unet = UNet3DConditionModel.from_pretrained_2d(sd_path, subfolder="unet").to(dtype=torch.float16)
controlnet = ControlNetModel3D.from_pretrained_2d(controlnet_dict[condition]).to(dtype=torch.float16)
interpolater = IFNet(ckpt_path=inter_path).to(dtype=torch.float16)
scheduler=DDIMScheduler.from_pretrained(sd_path, subfolder="scheduler")
pipe = ControlVideoPipeline(
vae=vae, text_encoder=text_encoder, tokenizer=tokenizer, unet=unet,
controlnet=controlnet, interpolater=interpolater, scheduler=scheduler,
)
pipe.enable_vae_slicing()
pipe.enable_xformers_memory_efficient_attention()
pipe.to(device)
generator = torch.Generator(device="cuda")
generator.manual_seed(seed)
# Step 1. Read a video
video = read_video(video_path=video_path, video_length=video_length, width=width, height=height)
# Save source video
original_pixels = rearrange(video, "(b f) c h w -> b c f h w", b=1)
save_videos_grid(original_pixels, os.path.join(output_path, "source_video.mp4"), rescale=True)
# Step 2. Parse a video to conditional frames
pil_annotation = get_annotation(video, annotator)
if condition == "depth" and controlnet_aux.__version__ == '0.0.1':
pil_annotation = [pil_annot[0] for pil_annot in pil_annotation]
# Save condition video
video_cond = [np.array(p).astype(np.uint8) for p in pil_annotation]
imageio.mimsave(os.path.join(output_path, f"{condition}_condition.mp4"), video_cond, fps=8)
# Reduce memory (optional)
del annotator; torch.cuda.empty_cache()
# Step 3. inference
if is_long_video:
window_size = int(np.sqrt(video_length))
sample = pipe.generate_long_video(prompt + POS_PROMPT, video_length=video_length, frames=pil_annotation,
num_inference_steps=50, smooth_steps=args.smoother_steps, window_size=window_size,
generator=generator, guidance_scale=12.5, negative_prompt=NEG_PROMPT,
width=width, height=height
).videos
else:
sample = pipe(prompt + POS_PROMPT, video_length=video_length, frames=pil_annotation,
num_inference_steps=50, smooth_steps=args.smoother_steps,
generator=generator, guidance_scale=12.5, negative_prompt=NEG_PROMPT,
width=width, height=height
).videos
save_videos_grid(sample, f"{output_path}/{prompt}.mp4")
return f"{output_path}/{prompt}.mp4"
with gr.Blocks() as demo:
with gr.Column():
prompt = gr.Textbox(label="prompt")
video_path = gr.Video(source="upload", type="filepath")
condition = gr.Textbox(label="Condition", value="depth")
video_length = gr.Slider(label="video length", minimum=1, maximum=15, step=1, value=2)
seed = gr.Number(label="seed", valie=42)
submit_btn = gr.Button("Submit")
video_res = gr.Video(label="result")
submit_btn.click(fn=infer,
inputs=[prompt,
video_path,
condition,
video_length,
seed,
],
outputs=[video_res])
demo.queue(max_size=12).launch() |