Spaces:
Running
on
A10G
Running
on
A10G
Upload 1014 files
#80
by
artdan2023
- opened
This view is limited to 50 files because it contains too many changes.
See the raw diff here.
- .gitattributes +28 -0
- ControlNet-v1-1-nightly-main/.gitignore +140 -0
- ControlNet-v1-1-nightly-main/README.md +620 -0
- ControlNet-v1-1-nightly-main/annotator/canny/__init__.py +6 -0
- ControlNet-v1-1-nightly-main/annotator/ckpts/ckpts.txt +1 -0
- ControlNet-v1-1-nightly-main/annotator/hed/__init__.py +80 -0
- ControlNet-v1-1-nightly-main/annotator/lineart/LICENSE +21 -0
- ControlNet-v1-1-nightly-main/annotator/lineart/__init__.py +124 -0
- ControlNet-v1-1-nightly-main/annotator/lineart_anime/LICENSE +21 -0
- ControlNet-v1-1-nightly-main/annotator/lineart_anime/__init__.py +150 -0
- ControlNet-v1-1-nightly-main/annotator/midas/LICENSE +21 -0
- ControlNet-v1-1-nightly-main/annotator/midas/__init__.py +31 -0
- ControlNet-v1-1-nightly-main/annotator/midas/api.py +169 -0
- ControlNet-v1-1-nightly-main/annotator/midas/midas/__init__.py +0 -0
- ControlNet-v1-1-nightly-main/annotator/midas/midas/base_model.py +16 -0
- ControlNet-v1-1-nightly-main/annotator/midas/midas/blocks.py +342 -0
- ControlNet-v1-1-nightly-main/annotator/midas/midas/dpt_depth.py +109 -0
- ControlNet-v1-1-nightly-main/annotator/midas/midas/midas_net.py +76 -0
- ControlNet-v1-1-nightly-main/annotator/midas/midas/midas_net_custom.py +128 -0
- ControlNet-v1-1-nightly-main/annotator/midas/midas/transforms.py +234 -0
- ControlNet-v1-1-nightly-main/annotator/midas/midas/vit.py +491 -0
- ControlNet-v1-1-nightly-main/annotator/midas/utils.py +189 -0
- ControlNet-v1-1-nightly-main/annotator/mlsd/LICENSE +201 -0
- ControlNet-v1-1-nightly-main/annotator/mlsd/__init__.py +43 -0
- ControlNet-v1-1-nightly-main/annotator/mlsd/models/mbv2_mlsd_large.py +292 -0
- ControlNet-v1-1-nightly-main/annotator/mlsd/models/mbv2_mlsd_tiny.py +275 -0
- ControlNet-v1-1-nightly-main/annotator/mlsd/utils.py +580 -0
- ControlNet-v1-1-nightly-main/annotator/normalbae/LICENSE +21 -0
- ControlNet-v1-1-nightly-main/annotator/normalbae/__init__.py +55 -0
- ControlNet-v1-1-nightly-main/annotator/normalbae/models/NNET.py +22 -0
- ControlNet-v1-1-nightly-main/annotator/normalbae/models/baseline.py +85 -0
- ControlNet-v1-1-nightly-main/annotator/normalbae/models/submodules/decoder.py +202 -0
- ControlNet-v1-1-nightly-main/annotator/normalbae/models/submodules/efficientnet_repo/.gitignore +109 -0
- ControlNet-v1-1-nightly-main/annotator/normalbae/models/submodules/efficientnet_repo/BENCHMARK.md +555 -0
- ControlNet-v1-1-nightly-main/annotator/normalbae/models/submodules/efficientnet_repo/LICENSE +201 -0
- ControlNet-v1-1-nightly-main/annotator/normalbae/models/submodules/efficientnet_repo/README.md +323 -0
- ControlNet-v1-1-nightly-main/annotator/normalbae/models/submodules/efficientnet_repo/caffe2_benchmark.py +65 -0
- ControlNet-v1-1-nightly-main/annotator/normalbae/models/submodules/efficientnet_repo/caffe2_validate.py +138 -0
- ControlNet-v1-1-nightly-main/annotator/normalbae/models/submodules/efficientnet_repo/data/__init__.py +3 -0
- ControlNet-v1-1-nightly-main/annotator/normalbae/models/submodules/efficientnet_repo/data/dataset.py +91 -0
- ControlNet-v1-1-nightly-main/annotator/normalbae/models/submodules/efficientnet_repo/data/loader.py +108 -0
- ControlNet-v1-1-nightly-main/annotator/normalbae/models/submodules/efficientnet_repo/data/tf_preprocessing.py +234 -0
- ControlNet-v1-1-nightly-main/annotator/normalbae/models/submodules/efficientnet_repo/data/transforms.py +150 -0
- ControlNet-v1-1-nightly-main/annotator/normalbae/models/submodules/efficientnet_repo/geffnet/__init__.py +5 -0
- ControlNet-v1-1-nightly-main/annotator/normalbae/models/submodules/efficientnet_repo/geffnet/activations/__init__.py +137 -0
- ControlNet-v1-1-nightly-main/annotator/normalbae/models/submodules/efficientnet_repo/geffnet/activations/activations.py +102 -0
- ControlNet-v1-1-nightly-main/annotator/normalbae/models/submodules/efficientnet_repo/geffnet/activations/activations_jit.py +79 -0
- ControlNet-v1-1-nightly-main/annotator/normalbae/models/submodules/efficientnet_repo/geffnet/activations/activations_me.py +174 -0
- ControlNet-v1-1-nightly-main/annotator/normalbae/models/submodules/efficientnet_repo/geffnet/config.py +123 -0
- ControlNet-v1-1-nightly-main/annotator/normalbae/models/submodules/efficientnet_repo/geffnet/conv2d_layers.py +304 -0
.gitattributes
CHANGED
@@ -34,3 +34,31 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
35 |
Ocean_Pexels_[[:space:]]8953474_512x512.mp4 filter=lfs diff=lfs merge=lfs -text
|
36 |
pexels-jill-burrow-7665249_512x512.mp4 filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
35 |
Ocean_Pexels_[[:space:]]8953474_512x512.mp4 filter=lfs diff=lfs merge=lfs -text
|
36 |
pexels-jill-burrow-7665249_512x512.mp4 filter=lfs diff=lfs merge=lfs -text
|
37 |
+
ControlNet-v1-1-nightly-main/github_docs/imgs/anime_3.png filter=lfs diff=lfs merge=lfs -text
|
38 |
+
ControlNet-v1-1-nightly-main/github_docs/imgs/anime_4.png filter=lfs diff=lfs merge=lfs -text
|
39 |
+
ControlNet-v1-1-nightly-main/github_docs/imgs/canny_1.png filter=lfs diff=lfs merge=lfs -text
|
40 |
+
ControlNet-v1-1-nightly-main/github_docs/imgs/inpaint_before_fix.png filter=lfs diff=lfs merge=lfs -text
|
41 |
+
ControlNet-v1-1-nightly-main/github_docs/imgs/ip2p_1.png filter=lfs diff=lfs merge=lfs -text
|
42 |
+
ControlNet-v1-1-nightly-main/github_docs/imgs/ip2p_2.png filter=lfs diff=lfs merge=lfs -text
|
43 |
+
ControlNet-v1-1-nightly-main/github_docs/imgs/ip2p_3.png filter=lfs diff=lfs merge=lfs -text
|
44 |
+
ControlNet-v1-1-nightly-main/github_docs/imgs/lineart_1.png filter=lfs diff=lfs merge=lfs -text
|
45 |
+
ControlNet-v1-1-nightly-main/github_docs/imgs/lineart_2.png filter=lfs diff=lfs merge=lfs -text
|
46 |
+
ControlNet-v1-1-nightly-main/github_docs/imgs/lineart_3.png filter=lfs diff=lfs merge=lfs -text
|
47 |
+
ControlNet-v1-1-nightly-main/github_docs/imgs/mlsd_1.png filter=lfs diff=lfs merge=lfs -text
|
48 |
+
ControlNet-v1-1-nightly-main/github_docs/imgs/normal_1.png filter=lfs diff=lfs merge=lfs -text
|
49 |
+
ControlNet-v1-1-nightly-main/github_docs/imgs/normal_2.png filter=lfs diff=lfs merge=lfs -text
|
50 |
+
ControlNet-v1-1-nightly-main/github_docs/imgs/scribble_2.png filter=lfs diff=lfs merge=lfs -text
|
51 |
+
ControlNet-v1-1-nightly-main/github_docs/imgs/seg_2.png filter=lfs diff=lfs merge=lfs -text
|
52 |
+
ControlNet-v1-1-nightly-main/github_docs/imgs/shuffle_1.png filter=lfs diff=lfs merge=lfs -text
|
53 |
+
ControlNet-v1-1-nightly-main/github_docs/imgs/shuffle_2.png filter=lfs diff=lfs merge=lfs -text
|
54 |
+
ControlNet-v1-1-nightly-main/github_docs/imgs/softedge_1.png filter=lfs diff=lfs merge=lfs -text
|
55 |
+
ControlNet-v1-1-nightly-main/github_docs/imgs/tile_new_1.png filter=lfs diff=lfs merge=lfs -text
|
56 |
+
ControlNet-v1-1-nightly-main/github_docs/imgs/tile_new_2.png filter=lfs diff=lfs merge=lfs -text
|
57 |
+
ControlNet-v1-1-nightly-main/github_docs/imgs/tile_new_3.png filter=lfs diff=lfs merge=lfs -text
|
58 |
+
ControlNet-v1-1-nightly-main/github_docs/imgs/tile_new_4.png filter=lfs diff=lfs merge=lfs -text
|
59 |
+
ControlNet-v1-1-nightly-main/test_imgs/bird.png filter=lfs diff=lfs merge=lfs -text
|
60 |
+
ControlNet-v1-1-nightly-main/test_imgs/building.png filter=lfs diff=lfs merge=lfs -text
|
61 |
+
ControlNet-v1-1-nightly-main/test_imgs/building2.png filter=lfs diff=lfs merge=lfs -text
|
62 |
+
ControlNet-v1-1-nightly-main/test_imgs/girls.jpg filter=lfs diff=lfs merge=lfs -text
|
63 |
+
ControlNet-v1-1-nightly-main/test_imgs/person-leaves.png filter=lfs diff=lfs merge=lfs -text
|
64 |
+
ControlNet-v1-1-nightly-main/test_imgs/sn.jpg filter=lfs diff=lfs merge=lfs -text
|
ControlNet-v1-1-nightly-main/.gitignore
ADDED
@@ -0,0 +1,140 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
.idea/
|
2 |
+
|
3 |
+
training/
|
4 |
+
lightning_logs/
|
5 |
+
image_log/
|
6 |
+
|
7 |
+
*.pth
|
8 |
+
*.pt
|
9 |
+
*.ckpt
|
10 |
+
*.safetensors
|
11 |
+
|
12 |
+
# Byte-compiled / optimized / DLL files
|
13 |
+
__pycache__/
|
14 |
+
*.py[cod]
|
15 |
+
*$py.class
|
16 |
+
|
17 |
+
# C extensions
|
18 |
+
*.so
|
19 |
+
|
20 |
+
# Distribution / packaging
|
21 |
+
.Python
|
22 |
+
build/
|
23 |
+
develop-eggs/
|
24 |
+
dist/
|
25 |
+
downloads/
|
26 |
+
eggs/
|
27 |
+
.eggs/
|
28 |
+
lib/
|
29 |
+
lib64/
|
30 |
+
parts/
|
31 |
+
sdist/
|
32 |
+
var/
|
33 |
+
wheels/
|
34 |
+
pip-wheel-metadata/
|
35 |
+
share/python-wheels/
|
36 |
+
*.egg-info/
|
37 |
+
.installed.cfg
|
38 |
+
*.egg
|
39 |
+
MANIFEST
|
40 |
+
|
41 |
+
# PyInstaller
|
42 |
+
# Usually these files are written by a python script from a template
|
43 |
+
# before PyInstaller builds the exe, so as to inject date/other infos into it.
|
44 |
+
*.manifest
|
45 |
+
*.spec
|
46 |
+
|
47 |
+
# Installer logs
|
48 |
+
pip-log.txt
|
49 |
+
pip-delete-this-directory.txt
|
50 |
+
|
51 |
+
# Unit test / coverage reports
|
52 |
+
htmlcov/
|
53 |
+
.tox/
|
54 |
+
.nox/
|
55 |
+
.coverage
|
56 |
+
.coverage.*
|
57 |
+
.cache
|
58 |
+
nosetests.xml
|
59 |
+
coverage.xml
|
60 |
+
*.cover
|
61 |
+
*.py,cover
|
62 |
+
.hypothesis/
|
63 |
+
.pytest_cache/
|
64 |
+
|
65 |
+
# Translations
|
66 |
+
*.mo
|
67 |
+
*.pot
|
68 |
+
|
69 |
+
# Django stuff:
|
70 |
+
*.log
|
71 |
+
local_settings.py
|
72 |
+
db.sqlite3
|
73 |
+
db.sqlite3-journal
|
74 |
+
|
75 |
+
# Flask stuff:
|
76 |
+
instance/
|
77 |
+
.webassets-cache
|
78 |
+
|
79 |
+
# Scrapy stuff:
|
80 |
+
.scrapy
|
81 |
+
|
82 |
+
# Sphinx documentation
|
83 |
+
docs/_build/
|
84 |
+
|
85 |
+
# PyBuilder
|
86 |
+
target/
|
87 |
+
|
88 |
+
# Jupyter Notebook
|
89 |
+
.ipynb_checkpoints
|
90 |
+
|
91 |
+
# IPython
|
92 |
+
profile_default/
|
93 |
+
ipython_config.py
|
94 |
+
|
95 |
+
# pyenv
|
96 |
+
.python-version
|
97 |
+
|
98 |
+
# pipenv
|
99 |
+
# According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
|
100 |
+
# However, in case of collaboration, if having platform-specific dependencies or dependencies
|
101 |
+
# having no cross-platform support, pipenv may install dependencies that don't work, or not
|
102 |
+
# install all needed dependencies.
|
103 |
+
#Pipfile.lock
|
104 |
+
|
105 |
+
# PEP 582; used by e.g. github.com/David-OConnor/pyflow
|
106 |
+
__pypackages__/
|
107 |
+
|
108 |
+
# Celery stuff
|
109 |
+
celerybeat-schedule
|
110 |
+
celerybeat.pid
|
111 |
+
|
112 |
+
# SageMath parsed files
|
113 |
+
*.sage.py
|
114 |
+
|
115 |
+
# Environments
|
116 |
+
.env
|
117 |
+
.venv
|
118 |
+
env/
|
119 |
+
venv/
|
120 |
+
ENV/
|
121 |
+
env.bak/
|
122 |
+
venv.bak/
|
123 |
+
|
124 |
+
# Spyder project settings
|
125 |
+
.spyderproject
|
126 |
+
.spyproject
|
127 |
+
|
128 |
+
# Rope project settings
|
129 |
+
.ropeproject
|
130 |
+
|
131 |
+
# mkdocs documentation
|
132 |
+
/site
|
133 |
+
|
134 |
+
# mypy
|
135 |
+
.mypy_cache/
|
136 |
+
.dmypy.json
|
137 |
+
dmypy.json
|
138 |
+
|
139 |
+
# Pyre type checker
|
140 |
+
.pyre/
|
ControlNet-v1-1-nightly-main/README.md
ADDED
@@ -0,0 +1,620 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# ControlNet 1.1
|
2 |
+
|
3 |
+
This is the official release of ControlNet 1.1.
|
4 |
+
|
5 |
+
ControlNet 1.1 has the exactly same architecture with ControlNet 1.0.
|
6 |
+
|
7 |
+
We promise that we will not change the neural network architecture before ControlNet 1.5 (at least, and hopefully we will never change the network architecture). Perhaps this is the best news in ControlNet 1.1.
|
8 |
+
|
9 |
+
ControlNet 1.1 includes all previous models with improved robustness and result quality. Several new models are added.
|
10 |
+
|
11 |
+
Note that we are still working on [updating this to A1111](https://github.com/Mikubill/sd-webui-controlnet/issues/736).
|
12 |
+
|
13 |
+
This repo will be merged to [ControlNet](https://github.com/lllyasviel/ControlNet) after we make sure that everything is OK.
|
14 |
+
|
15 |
+
**Note that we are actively editing this page now. The information in this page will be more detailed and finalized when ControlNet 1.1 is ready.**
|
16 |
+
|
17 |
+
# This Github Repo is NOT an A1111 Extension
|
18 |
+
|
19 |
+
Please do not copy the URL of this repo into your A1111.
|
20 |
+
|
21 |
+
If you want to use ControlNet 1.1 in A1111, you only need to install https://github.com/Mikubill/sd-webui-controlnet , and only follow the instructions in that page.
|
22 |
+
|
23 |
+
This project is for research use and academic experiments. Again, do NOT install "ControlNet-v1-1-nightly" into your A1111.
|
24 |
+
|
25 |
+
# How to use ControlNet 1.1 in A1111?
|
26 |
+
|
27 |
+
The Beta Test for A1111 Is Started.
|
28 |
+
|
29 |
+
The A1111 plugin is: https://github.com/Mikubill/sd-webui-controlnet
|
30 |
+
|
31 |
+
Note that if you use A1111, you only need to follow the instructions in the above link. (You can ignore all installation steps in this page if you use A1111.)
|
32 |
+
|
33 |
+
**For researchers who are not familiar with A1111:** The A1111 plugin supports arbitrary combination of arbitrary number of ControlNets, arbitrary community models, arbitrary LoRAs, and arbitrary sampling methods! We should definitely try it!
|
34 |
+
|
35 |
+
Note that our official support for “Multi-ControlNet” is A1111-only. Please use [Automatic1111 with Multi-ControlNet](https://github.com/Mikubill/sd-webui-controlnet#Multi-ControlNet) if you want to use multiple ControlNets at the same time. The ControlNet project perfectly supports combining multiple ControlNets, and all production-ready ControlNets are extensively tested with multiple ControlNets combined.
|
36 |
+
|
37 |
+
# Model Specification
|
38 |
+
|
39 |
+
Starting from ControlNet 1.1, we begin to use the Standard ControlNet Naming Rules (SCNNRs) to name all models. We hope that this naming rule can improve the user experience.
|
40 |
+
|
41 |
+
![img](github_docs/imgs/spec.png)
|
42 |
+
|
43 |
+
ControlNet 1.1 include 14 models (11 production-ready models and 3 experimental models):
|
44 |
+
|
45 |
+
control_v11p_sd15_canny
|
46 |
+
control_v11p_sd15_mlsd
|
47 |
+
control_v11f1p_sd15_depth
|
48 |
+
control_v11p_sd15_normalbae
|
49 |
+
control_v11p_sd15_seg
|
50 |
+
control_v11p_sd15_inpaint
|
51 |
+
control_v11p_sd15_lineart
|
52 |
+
control_v11p_sd15s2_lineart_anime
|
53 |
+
control_v11p_sd15_openpose
|
54 |
+
control_v11p_sd15_scribble
|
55 |
+
control_v11p_sd15_softedge
|
56 |
+
control_v11e_sd15_shuffle
|
57 |
+
control_v11e_sd15_ip2p
|
58 |
+
control_v11f1e_sd15_tile
|
59 |
+
|
60 |
+
You can download all those models from our [HuggingFace Model Page](https://huggingface.co/lllyasviel/ControlNet-v1-1/tree/main). All these models should be put in the folder "models".
|
61 |
+
|
62 |
+
You need to download Stable Diffusion 1.5 model ["v1-5-pruned.ckpt"](https://huggingface.co/runwayml/stable-diffusion-v1-5/tree/main) and put it in the folder "models".
|
63 |
+
|
64 |
+
Our python codes will automatically download other annotator models like HED and OpenPose. Nevertheless, if you want to manually download these, you can download all other annotator models from [here](https://huggingface.co/lllyasviel/Annotators/tree/main). All these models should be put in folder "annotator/ckpts".
|
65 |
+
|
66 |
+
To install:
|
67 |
+
|
68 |
+
conda env create -f environment.yaml
|
69 |
+
conda activate control-v11
|
70 |
+
|
71 |
+
Note that if you use 8GB GPU, you need to set "save_memory = True" in "config.py".
|
72 |
+
|
73 |
+
## ControlNet 1.1 Depth
|
74 |
+
|
75 |
+
Control Stable Diffusion with Depth Maps.
|
76 |
+
|
77 |
+
Model file: control_v11f1p_sd15_depth.pth
|
78 |
+
|
79 |
+
Config file: control_v11f1p_sd15_depth.yaml
|
80 |
+
|
81 |
+
Training data: Midas depth (resolution 256/384/512) + Leres Depth (resolution 256/384/512) + Zoe Depth (resolution 256/384/512). Multiple depth map generator at multiple resolution as data augmentation.
|
82 |
+
|
83 |
+
Acceptable Preprocessors: Depth_Midas, Depth_Leres, Depth_Zoe. This model is highly robust and can work on real depth map from rendering engines.
|
84 |
+
|
85 |
+
python gradio_depth.py
|
86 |
+
|
87 |
+
Non-cherry-picked batch test with random seed 12345 ("a handsome man"):
|
88 |
+
|
89 |
+
![img](github_docs/imgs/depth_1.png)
|
90 |
+
|
91 |
+
**Update**
|
92 |
+
|
93 |
+
2023/04/14: 72 hours ago we uploaded a wrong model "control_v11p_sd15_depth" by mistake. That model is an intermediate checkpoint during the training. That model is not converged and may cause distortion in results. We uploaded the correct depth model as "control_v11f1p_sd15_depth". The "f1" means bug fix 1. The incorrect model is removed. Sorry for the inconvenience.
|
94 |
+
|
95 |
+
**Improvements in Depth 1.1:**
|
96 |
+
|
97 |
+
1. The training dataset of previous cnet 1.0 has several problems including (1) a small group of greyscale human images are duplicated thousands of times (!!), causing the previous model somewhat likely to generate grayscale human images; (2) some images has low quality, very blurry, or significant JPEG artifacts; (3) a small group of images has wrong paired prompts caused by a mistake in our data processing scripts. The new model fixed all problems of the training dataset and should be more reasonable in many cases.
|
98 |
+
2. The new depth model is a relatively unbiased model. It is not trained with some specific type of depth by some specific depth estimation method. It is not over-fitted to one preprocessor. This means this model will work better with different depth estimation, different preprocessor resolutions, or even with real depth created by 3D engines.
|
99 |
+
3. Some reasonable data augmentations are applied to training, like random left-right flipping.
|
100 |
+
4. The model is resumed from depth 1.0, and it should work well in all cases where depth 1.0 works well. If not, please open an issue with image, and we will take a look at your case. Depth 1.1 works well in many failure cases of depth 1.0.
|
101 |
+
5. If you use Midas depth (the "depth" in webui plugin) with 384 preprocessor resolution, the difference between depth 1.0 and 1.1 should be minimal. However, if you try other preprocessor resolutions or other preprocessors (like leres and zoe), the depth 1.1 is expected to be a bit better than 1.0.
|
102 |
+
|
103 |
+
## ControlNet 1.1 Normal
|
104 |
+
|
105 |
+
Control Stable Diffusion with Normal Maps.
|
106 |
+
|
107 |
+
Model file: control_v11p_sd15_normalbae.pth
|
108 |
+
|
109 |
+
Config file: control_v11p_sd15_normalbae.yaml
|
110 |
+
|
111 |
+
Training data: [Bae's](https://github.com/baegwangbin/surface_normal_uncertainty) normalmap estimation method.
|
112 |
+
|
113 |
+
Acceptable Preprocessors: Normal BAE. This model can accept normal maps from rendering engines as long as the normal map follows [ScanNet's](http://www.scan-net.org/) protocol. That is to say, the color of your normal map should look like [the second column of this image](https://raw.githubusercontent.com/baegwangbin/surface_normal_uncertainty/main/figs/readme_scannet.png).
|
114 |
+
|
115 |
+
Note that this method is much more reasonable than the normal-from-midas method in ControlNet 1.0. The previous method will be abandoned.
|
116 |
+
|
117 |
+
python gradio_normalbae.py
|
118 |
+
|
119 |
+
Non-cherry-picked batch test with random seed 12345 ("a man made of flowers"):
|
120 |
+
|
121 |
+
![img](github_docs/imgs/normal_1.png)
|
122 |
+
|
123 |
+
Non-cherry-picked batch test with random seed 12345 ("room"):
|
124 |
+
|
125 |
+
![img](github_docs/imgs/normal_2.png)
|
126 |
+
|
127 |
+
**Improvements in Normal 1.1:**
|
128 |
+
|
129 |
+
1. The normal-from-midas method in Normal 1.0 is neither reasonable nor physically correct. That method does not work very well in many images. The normal 1.0 model cannot interpret real normal maps created by rendering engines.
|
130 |
+
2. This Normal 1.1 is much more reasonable because the preprocessor is trained to estimate normal maps with a relatively correct protocol (NYU-V2's visualization method). This means the Normal 1.1 can interpret real normal maps from rendering engines as long as the colors are correct (blue is front, red is left, green is top).
|
131 |
+
3. In our test, this model is robust and can achieve similar performance to the depth model. In previous CNET 1.0, the Normal 1.0 is not very frequently used. But this Normal 2.0 is much improved and has potential to be used much more frequently.
|
132 |
+
|
133 |
+
## ControlNet 1.1 Canny
|
134 |
+
|
135 |
+
Control Stable Diffusion with Canny Maps.
|
136 |
+
|
137 |
+
Model file: control_v11p_sd15_canny.pth
|
138 |
+
|
139 |
+
Config file: control_v11p_sd15_canny.yaml
|
140 |
+
|
141 |
+
Training data: Canny with random thresholds.
|
142 |
+
|
143 |
+
Acceptable Preprocessors: Canny.
|
144 |
+
|
145 |
+
We fixed several problems in previous training datasets.
|
146 |
+
|
147 |
+
python gradio_canny.py
|
148 |
+
|
149 |
+
Non-cherry-picked batch test with random seed 12345 ("dog in a room"):
|
150 |
+
|
151 |
+
![img](github_docs/imgs/canny_1.png)
|
152 |
+
|
153 |
+
**Improvements in Canny 1.1:**
|
154 |
+
|
155 |
+
1. The training dataset of previous cnet 1.0 has several problems including (1) a small group of greyscale human images are duplicated thousands of times (!!), causing the previous model somewhat likely to generate grayscale human images; (2) some images has low quality, very blurry, or significant JPEG artifacts; (3) a small group of images has wrong paired prompts caused by a mistake in our data processing scripts. The new model fixed all problems of the training dataset and should be more reasonable in many cases.
|
156 |
+
2. Because the Canny model is one of the most important (perhaps the most frequently used) ControlNet, we used a fund to train it on a machine with 8 Nvidia A100 80G with batchsize 8×32=256 for 3 days, spending 72×30=2160 USD (8 A100 80G with 30 USD/hour). The model is resumed from Canny 1.0.
|
157 |
+
3. Some reasonable data augmentations are applied to training, like random left-right flipping.
|
158 |
+
4. Although it is difficult to evaluate a ControlNet, we find Canny 1.1 is a bit more robust and a bit higher visual quality than Canny 1.0.
|
159 |
+
|
160 |
+
## ControlNet 1.1 MLSD
|
161 |
+
|
162 |
+
Control Stable Diffusion with M-LSD straight lines.
|
163 |
+
|
164 |
+
Model file: control_v11p_sd15_mlsd.pth
|
165 |
+
|
166 |
+
Config file: control_v11p_sd15_mlsd.yaml
|
167 |
+
|
168 |
+
Training data: M-LSD Lines.
|
169 |
+
|
170 |
+
Acceptable Preprocessors: MLSD.
|
171 |
+
|
172 |
+
We fixed several problems in previous training datasets. The model is resumed from ControlNet 1.0 and trained with 200 GPU hours of A100 80G.
|
173 |
+
|
174 |
+
python gradio_mlsd.py
|
175 |
+
|
176 |
+
Non-cherry-picked batch test with random seed 12345 ("room"):
|
177 |
+
|
178 |
+
![img](github_docs/imgs/mlsd_1.png)
|
179 |
+
|
180 |
+
**Improvements in MLSD 1.1:**
|
181 |
+
|
182 |
+
1. The training dataset of previous cnet 1.0 has several problems including (1) a small group of greyscale human images are duplicated thousands of times (!!), causing the previous model somewhat likely to generate grayscale human images; (2) some images has low quality, very blurry, or significant JPEG artifacts; (3) a small group of images has wrong paired prompts caused by a mistake in our data processing scripts. The new model fixed all problems of the training dataset and should be more reasonable in many cases.
|
183 |
+
2. We enlarged the training dataset by adding 300K more images by using MLSD to find images with more than 16 straight lines in it.
|
184 |
+
3. Some reasonable data augmentations are applied to training, like random left-right flipping.
|
185 |
+
4. Resumed from MLSD 1.0 with continued training with 200 GPU hours of A100 80G.
|
186 |
+
|
187 |
+
## ControlNet 1.1 Scribble
|
188 |
+
|
189 |
+
Control Stable Diffusion with Scribbles.
|
190 |
+
|
191 |
+
Model file: control_v11p_sd15_scribble.pth
|
192 |
+
|
193 |
+
Config file: control_v11p_sd15_scribble.yaml
|
194 |
+
|
195 |
+
Training data: Synthesized scribbles.
|
196 |
+
|
197 |
+
Acceptable Preprocessors: Synthesized scribbles (Scribble_HED, Scribble_PIDI, etc.) or hand-drawn scribbles.
|
198 |
+
|
199 |
+
We fixed several problems in previous training datasets. The model is resumed from ControlNet 1.0 and trained with 200 GPU hours of A100 80G.
|
200 |
+
|
201 |
+
# To test synthesized scribbles
|
202 |
+
python gradio_scribble.py
|
203 |
+
# To test hand-drawn scribbles in an interactive demo
|
204 |
+
python gradio_interactive.py
|
205 |
+
|
206 |
+
Non-cherry-picked batch test with random seed 12345 ("man in library"):
|
207 |
+
|
208 |
+
![img](github_docs/imgs/scribble_1.png)
|
209 |
+
|
210 |
+
Non-cherry-picked batch test with random seed 12345 (interactive, "the beautiful landscape"):
|
211 |
+
|
212 |
+
![img](github_docs/imgs/scribble_2.png)
|
213 |
+
|
214 |
+
**Improvements in Scribble 1.1:**
|
215 |
+
|
216 |
+
1. The training dataset of previous cnet 1.0 has several problems including (1) a small group of greyscale human images are duplicated thousands of times (!!), causing the previous model somewhat likely to generate grayscale human images; (2) some images has low quality, very blurry, or significant JPEG artifacts; (3) a small group of images has wrong paired prompts caused by a mistake in our data processing scripts. The new model fixed all problems of the training dataset and should be more reasonable in many cases.
|
217 |
+
2. We find out that users sometimes like to draw very thick scribbles. Because of that, we used more aggressive random morphological transforms to synthesize scribbles. This model should work well even when the scribbles are relatively thick (the maximum width of training data is 24-pixel-width scribble in a 512 canvas, but it seems to work well even for a bit wider scribbles; the minimum width is 1 pixel).
|
218 |
+
3. Resumed from Scribble 1.0, continued with 200 GPU hours of A100 80G.
|
219 |
+
|
220 |
+
## ControlNet 1.1 Soft Edge
|
221 |
+
|
222 |
+
Control Stable Diffusion with Soft Edges.
|
223 |
+
|
224 |
+
Model file: control_v11p_sd15_softedge.pth
|
225 |
+
|
226 |
+
Config file: control_v11p_sd15_softedge.yaml
|
227 |
+
|
228 |
+
Training data: SoftEdge_PIDI, SoftEdge_PIDI_safe, SoftEdge_HED, SoftEdge_HED_safe.
|
229 |
+
|
230 |
+
Acceptable Preprocessors: SoftEdge_PIDI, SoftEdge_PIDI_safe, SoftEdge_HED, SoftEdge_HED_safe.
|
231 |
+
|
232 |
+
This model is significantly improved compared to previous model. All users should update as soon as possible.
|
233 |
+
|
234 |
+
New in ControlNet 1.1: now we added a new type of soft edge called "SoftEdge_safe". This is motivated by the fact that HED or PIDI tends to hide a corrupted greyscale version of the original image inside the soft estimation, and such hidden patterns can distract ControlNet, leading to bad results. The solution is to use a pre-processing to quantize the edge maps into several levels so that the hidden patterns can be completely removed. The implementation is [in the 78-th line of annotator/util.py](https://github.com/lllyasviel/ControlNet-v1-1-nightly/blob/4c9560ebe7679daac53a0599a11b9b7cd984ac55/annotator/util.py#L78).
|
235 |
+
|
236 |
+
The perforamce can be roughly noted as:
|
237 |
+
|
238 |
+
Robustness: SoftEdge_PIDI_safe > SoftEdge_HED_safe >> SoftEdge_PIDI > SoftEdge_HED
|
239 |
+
|
240 |
+
Maximum result quality: SoftEdge_HED > SoftEdge_PIDI > SoftEdge_HED_safe > SoftEdge_PIDI_safe
|
241 |
+
|
242 |
+
Considering the trade-off, we recommend to use SoftEdge_PIDI by default. In most cases it works very well.
|
243 |
+
|
244 |
+
python gradio_softedge.py
|
245 |
+
|
246 |
+
Non-cherry-picked batch test with random seed 12345 ("a handsome man"):
|
247 |
+
|
248 |
+
![img](github_docs/imgs/softedge_1.png)
|
249 |
+
|
250 |
+
**Improvements in Soft Edge 1.1:**
|
251 |
+
|
252 |
+
1. Soft Edge 1.1 was called HED 1.0 in previous ControlNet.
|
253 |
+
2. The training dataset of previous cnet 1.0 has several problems including (1) a small group of greyscale human images are duplicated thousands of times (!!), causing the previous model somewhat likely to generate grayscale human images; (2) some images has low quality, very blurry, or significant JPEG artifacts; (3) a small group of images has wrong paired prompts caused by a mistake in our data processing scripts. The new model fixed all problems of the training dataset and should be more reasonable in many cases.
|
254 |
+
3. The Soft Edge 1.1 is significantly (in nealy 100\% cases) better than HED 1.0. This is mainly because HED or PIDI estimator tend to hide a corrupted greyscale version of original image inside the soft edge map and the previous model HED 1.0 is over-fitted to restore that hidden corrupted image rather than perform boundary-aware diffusion. The training of Soft Edge 1.1 used 75\% "safe" filtering to remove such hidden corrupted greyscale images insider control maps. This makes the Soft Edge 1.1 very robust. In out test, Soft Edge 1.1 is as usable as the depth model and has potential to be more frequently used.
|
255 |
+
|
256 |
+
## ControlNet 1.1 Segmentation
|
257 |
+
|
258 |
+
Control Stable Diffusion with Semantic Segmentation.
|
259 |
+
|
260 |
+
Model file: control_v11p_sd15_seg.pth
|
261 |
+
|
262 |
+
Config file: control_v11p_sd15_seg.yaml
|
263 |
+
|
264 |
+
Training data: COCO + ADE20K.
|
265 |
+
|
266 |
+
Acceptable Preprocessors: Seg_OFADE20K (Oneformer ADE20K), Seg_OFCOCO (Oneformer COCO), Seg_UFADE20K (Uniformer ADE20K), or manually created masks.
|
267 |
+
|
268 |
+
Now the model can receive both type of ADE20K or COCO annotations. We find that recognizing the segmentation protocol is trivial for the ControlNet encoder and training the model of multiple segmentation protocols lead to better performance.
|
269 |
+
|
270 |
+
python gradio_seg.py
|
271 |
+
|
272 |
+
Non-cherry-picked batch test with random seed 12345 (ADE20k protocol, "house"):
|
273 |
+
|
274 |
+
![img](github_docs/imgs/seg_1.png)
|
275 |
+
|
276 |
+
Non-cherry-picked batch test with random seed 12345 (COCO protocol, "house"):
|
277 |
+
|
278 |
+
![img](github_docs/imgs/seg_2.png)
|
279 |
+
|
280 |
+
**Improvements in Segmentation 1.1:**
|
281 |
+
|
282 |
+
1. COCO protocol is supported. The previous Segmentation 1.0 supports about 150 colors, but Segmentation 1.1 supports another 182 colors from coco.
|
283 |
+
2. Resumed from Segmentation 1.0. All previous inputs should still work.
|
284 |
+
|
285 |
+
## ControlNet 1.1 Openpose
|
286 |
+
|
287 |
+
Control Stable Diffusion with Openpose.
|
288 |
+
|
289 |
+
Model file: control_v11p_sd15_openpose.pth
|
290 |
+
|
291 |
+
Config file: control_v11p_sd15_openpose.yaml
|
292 |
+
|
293 |
+
The model is trained and can accept the following combinations:
|
294 |
+
|
295 |
+
* Openpose body
|
296 |
+
* Openpose hand
|
297 |
+
* Openpose face
|
298 |
+
* Openpose body + Openpose hand
|
299 |
+
* Openpose body + Openpose face
|
300 |
+
* Openpose hand + Openpose face
|
301 |
+
* Openpose body + Openpose hand + Openpose face
|
302 |
+
|
303 |
+
However, providing all those combinations is too complicated. We recommend to provide the users with only two choices:
|
304 |
+
|
305 |
+
* "Openpose" = Openpose body
|
306 |
+
* "Openpose Full" = Openpose body + Openpose hand + Openpose face
|
307 |
+
|
308 |
+
You can try with the demo:
|
309 |
+
|
310 |
+
python gradio_openpose.py
|
311 |
+
|
312 |
+
Non-cherry-picked batch test with random seed 12345 ("man in suit"):
|
313 |
+
|
314 |
+
![img](github_docs/imgs/openpose_1.png)
|
315 |
+
|
316 |
+
Non-cherry-picked batch test with random seed 12345 (multiple people in the wild, "handsome boys in the party"):
|
317 |
+
|
318 |
+
![img](github_docs/imgs/openpose_2.png)
|
319 |
+
|
320 |
+
**Improvements in Openpose 1.1:**
|
321 |
+
|
322 |
+
1. The improvement of this model is mainly based on our improved implementation of OpenPose. We carefully reviewed the difference between the pytorch OpenPose and CMU's c++ openpose. Now the processor should be more accurate, especially for hands. The improvement of processor leads to the improvement of Openpose 1.1.
|
323 |
+
2. More inputs are supported (hand and face).
|
324 |
+
3. The training dataset of previous cnet 1.0 has several problems including (1) a small group of greyscale human images are duplicated thousands of times (!!), causing the previous model somewhat likely to generate grayscale human images; (2) some images has low quality, very blurry, or significant JPEG artifacts; (3) a small group of images has wrong paired prompts caused by a mistake in our data processing scripts. The new model fixed all problems of the training dataset and should be more reasonable in many cases.
|
325 |
+
|
326 |
+
## ControlNet 1.1 Lineart
|
327 |
+
|
328 |
+
Control Stable Diffusion with Linearts.
|
329 |
+
|
330 |
+
Model file: control_v11p_sd15_lineart.pth
|
331 |
+
|
332 |
+
Config file: control_v11p_sd15_lineart.yaml
|
333 |
+
|
334 |
+
This model is trained on awacke1/Image-to-Line-Drawings. The preprocessor can generate detailed or coarse linearts from images (Lineart and Lineart_Coarse). The model is trained with sufficient data augmentation and can receive manually drawn linearts.
|
335 |
+
|
336 |
+
python gradio_lineart.py
|
337 |
+
|
338 |
+
Non-cherry-picked batch test with random seed 12345 (detailed lineart extractor, "bag"):
|
339 |
+
|
340 |
+
![img](github_docs/imgs/lineart_1.png)
|
341 |
+
|
342 |
+
Non-cherry-picked batch test with random seed 12345 (coarse lineart extractor, "Michael Jackson's concert"):
|
343 |
+
|
344 |
+
![img](github_docs/imgs/lineart_2.png)
|
345 |
+
|
346 |
+
Non-cherry-picked batch test with random seed 12345 (use manually drawn linearts, "wolf"):
|
347 |
+
|
348 |
+
![img](github_docs/imgs/lineart_3.png)
|
349 |
+
|
350 |
+
|
351 |
+
## ControlNet 1.1 Anime Lineart
|
352 |
+
|
353 |
+
Control Stable Diffusion with Anime Linearts.
|
354 |
+
|
355 |
+
Model file: control_v11p_sd15s2_lineart_anime.pth
|
356 |
+
|
357 |
+
Config file: control_v11p_sd15s2_lineart_anime.yaml
|
358 |
+
|
359 |
+
Training data and implementation details: (description removed).
|
360 |
+
|
361 |
+
This model can take real anime line drawings or extracted line drawings as inputs.
|
362 |
+
|
363 |
+
Some important notice:
|
364 |
+
|
365 |
+
1. You need a file "anything-v3-full.safetensors" to run the demo. We will not provide the file. Please find that file on the Internet on your own.
|
366 |
+
2. This model is trained with 3x token length and clip skip 2.
|
367 |
+
3. This is a long prompt model. Unless you use LoRAs, results are better with long prompts.
|
368 |
+
4. This model does not support Guess Mode.
|
369 |
+
|
370 |
+
Demo:
|
371 |
+
|
372 |
+
python gradio_lineart_anime.py
|
373 |
+
|
374 |
+
|
375 |
+
Non-cherry-picked batch test with random seed 12345 ("1girl, in classroom, skirt, uniform, red hair, bag, green eyes"):
|
376 |
+
|
377 |
+
![img](github_docs/imgs/anime_3.png)
|
378 |
+
|
379 |
+
Non-cherry-picked batch test with random seed 12345 ("1girl, saber, at night, sword, green eyes, golden hair, stocking"):
|
380 |
+
|
381 |
+
![img](github_docs/imgs/anime_4.png)
|
382 |
+
|
383 |
+
Non-cherry-picked batch test with random seed 12345 (extracted line drawing, "1girl, Castle, silver hair, dress, Gemstone, cinematic lighting, mechanical hand, 4k, 8k, extremely detailed, Gothic, green eye"):
|
384 |
+
|
385 |
+
![img](github_docs/imgs/anime_6.png)
|
386 |
+
|
387 |
+
## ControlNet 1.1 Shuffle
|
388 |
+
|
389 |
+
Control Stable Diffusion with Content Shuffle.
|
390 |
+
|
391 |
+
Model file: control_v11e_sd15_shuffle.pth
|
392 |
+
|
393 |
+
Config file: control_v11e_sd15_shuffle.yaml
|
394 |
+
|
395 |
+
Demo:
|
396 |
+
|
397 |
+
python gradio_shuffle.py
|
398 |
+
|
399 |
+
The model is trained to reorganize images. [We use a random flow to shuffle the image and control Stable Diffusion to recompose the image.](github_docs/annotator.md#content-reshuffle)
|
400 |
+
|
401 |
+
Non-cherry-picked batch test with random seed 12345 ("hong kong"):
|
402 |
+
|
403 |
+
![img](github_docs/imgs/shuffle_1.png)
|
404 |
+
|
405 |
+
In the 6 images on the right, the left-top one is the "shuffled" image. All others are outputs.
|
406 |
+
|
407 |
+
In fact, since the ControlNet is trained to recompose images, we do not even need to shuffle the input - sometimes we can just use the original image as input.
|
408 |
+
|
409 |
+
In this way, this ControlNet can be guided by prompts or other ControlNets to change the image style.
|
410 |
+
|
411 |
+
Note that this method has nothing to do with CLIP vision or some other models.
|
412 |
+
|
413 |
+
This is a pure ControlNet.
|
414 |
+
|
415 |
+
Non-cherry-picked batch test with random seed 12345 ("iron man"):
|
416 |
+
|
417 |
+
![img](github_docs/imgs/shuffle_2.png)
|
418 |
+
|
419 |
+
Non-cherry-picked batch test with random seed 12345 ("spider man"):
|
420 |
+
|
421 |
+
![img](github_docs/imgs/shuffle_3.png)
|
422 |
+
|
423 |
+
**Multi-ControlNets** (A1111-only)
|
424 |
+
|
425 |
+
Source Image (not used):
|
426 |
+
|
427 |
+
<img src="https://github.com/lllyasviel/ControlNet-v1-1-nightly/assets/19834515/56050654-6a82-495c-8bdc-d63847053e54" width="200">
|
428 |
+
|
429 |
+
Canny Image (Input):
|
430 |
+
|
431 |
+
<img src="https://github.com/lllyasviel/ControlNet-v1-1-nightly/assets/19834515/5dcb3d28-b845-4752-948d-6357224ca2ef" width="200">
|
432 |
+
|
433 |
+
Shuffle Image (Input):
|
434 |
+
|
435 |
+
<img src="https://github.com/lllyasviel/ControlNet-v1-1-nightly/assets/19834515/c0d98c17-d79b-49d8-96af-89b87c532820" width="200">
|
436 |
+
|
437 |
+
Outputs:
|
438 |
+
|
439 |
+
![image](https://github.com/lllyasviel/ControlNet-v1-1-nightly/assets/19834515/a4b30709-8393-43d1-9da2-5c6c5ea70e9c)
|
440 |
+
|
441 |
+
(From: https://github.com/Mikubill/sd-webui-controlnet/issues/736#issuecomment-1509986321)
|
442 |
+
|
443 |
+
**Important If You Implement Your Own Inference:**
|
444 |
+
|
445 |
+
Note that this ControlNet requires to add a global average pooling " x = torch.mean(x, dim=(2, 3), keepdim=True) " between the ControlNet Encoder outputs and SD Unet layers. And the ControlNet must be put only on the conditional side of cfg scale. We recommend to use the "global_average_pooling" item in the yaml file to control such behaviors.
|
446 |
+
|
447 |
+
~Note that this ControlNet Shuffle will be the one and only one image stylization method that we will maintain for the robustness in a long term support. We have tested other CLIP image encoder, Unclip, image tokenization, and image-based prompts but it seems that those methods do not work very well with user prompts or additional/multiple U-Net injections. See also the evidence [here](https://github.com/lllyasviel/ControlNet/issues/255), [here](https://github.com/Mikubill/sd-webui-controlnet/issues/547), and some other related issues.~ After some more recent researches/experiments, we plan to support more types of stylization methods in the future.
|
448 |
+
|
449 |
+
## ControlNet 1.1 Instruct Pix2Pix
|
450 |
+
|
451 |
+
Control Stable Diffusion with Instruct Pix2Pix.
|
452 |
+
|
453 |
+
Model file: control_v11e_sd15_ip2p.pth
|
454 |
+
|
455 |
+
Config file: control_v11e_sd15_ip2p.yaml
|
456 |
+
|
457 |
+
Demo:
|
458 |
+
|
459 |
+
python gradio_ip2p.py
|
460 |
+
|
461 |
+
This is a controlnet trained on the [Instruct Pix2Pix dataset](https://github.com/timothybrooks/instruct-pix2pix).
|
462 |
+
|
463 |
+
Different from official Instruct Pix2Pix, this model is trained with 50\% instruction prompts and 50\% description prompts. For example, "a cute boy" is a description prompt, while "make the boy cute" is a instruction prompt.
|
464 |
+
|
465 |
+
Because this is a ControlNet, you do not need to trouble with original IP2P's double cfg tuning. And, this model can be applied to any base model.
|
466 |
+
|
467 |
+
Also, it seems that instructions like "make it into X" works better than "make Y into X".
|
468 |
+
|
469 |
+
Non-cherry-picked batch test with random seed 12345 ("make it on fire"):
|
470 |
+
|
471 |
+
![img](github_docs/imgs/ip2p_1.png)
|
472 |
+
|
473 |
+
Non-cherry-picked batch test with random seed 12345 ("make it winter"):
|
474 |
+
|
475 |
+
![img](github_docs/imgs/ip2p_2.png)
|
476 |
+
|
477 |
+
We mark this model as "experimental" because it sometimes needs cherry-picking. For example, here is non-cherry-picked batch test with random seed 12345 ("make he iron man"):
|
478 |
+
|
479 |
+
![img](github_docs/imgs/ip2p_3.png)
|
480 |
+
|
481 |
+
|
482 |
+
## ControlNet 1.1 Inpaint
|
483 |
+
|
484 |
+
Control Stable Diffusion with Inpaint.
|
485 |
+
|
486 |
+
Model file: control_v11p_sd15_inpaint.pth
|
487 |
+
|
488 |
+
Config file: control_v11p_sd15_inpaint.yaml
|
489 |
+
|
490 |
+
Demo:
|
491 |
+
|
492 |
+
python gradio_inpaint.py
|
493 |
+
|
494 |
+
Some notices:
|
495 |
+
|
496 |
+
1. This inpainting ControlNet is trained with 50\% random masks and 50\% random optical flow occlusion masks. This means the model can not only support the inpainting application but also work on video optical flow warping. Perhaps we will provide some example in the future (depending on our workloads).
|
497 |
+
2. We updated the gradio (2023/5/11) so that the standalone gradio codes in main ControlNet repo also do not change unmasked areas. Automatic 1111 users are not influenced.
|
498 |
+
|
499 |
+
Non-cherry-picked batch test with random seed 12345 ("a handsome man"):
|
500 |
+
|
501 |
+
![img](github_docs/imgs/inpaint_after_fix.png)
|
502 |
+
|
503 |
+
See also the Guidelines for [Using ControlNet Inpaint in Automatic 1111](https://github.com/Mikubill/sd-webui-controlnet/discussions/1143).
|
504 |
+
|
505 |
+
## ControlNet 1.1 Tile
|
506 |
+
|
507 |
+
Update 2023 April 25: The previously unfinished tile model is finished now. The new name is "control_v11f1e_sd15_tile". The "f1e" means 1st bug fix ("f1"), experimental ("e"). The previous "control_v11u_sd15_tile" is removed. Please update if your model name is "v11u".
|
508 |
+
|
509 |
+
Control Stable Diffusion with Tiles.
|
510 |
+
|
511 |
+
Model file: control_v11f1e_sd15_tile.pth
|
512 |
+
|
513 |
+
Config file: control_v11f1e_sd15_tile.yaml
|
514 |
+
|
515 |
+
Demo:
|
516 |
+
|
517 |
+
python gradio_tile.py
|
518 |
+
|
519 |
+
The model can be used in many ways. Overall, the model has two behaviors:
|
520 |
+
|
521 |
+
* Ignore the details in an image and generate new details.
|
522 |
+
* Ignore global prompts if local tile semantics and prompts mismatch, and guide diffusion with local context.
|
523 |
+
|
524 |
+
Because the model can generate new details and ignore existing image details, we can use this model to remove bad details and add refined details. For example, remove blurring caused by image resizing.
|
525 |
+
|
526 |
+
Below is an example of 8x super resolution. This is a 64x64 dog image.
|
527 |
+
|
528 |
+
![p](test_imgs/dog64.png)
|
529 |
+
|
530 |
+
Non-cherry-picked batch test with random seed 12345 ("dog on grassland"):
|
531 |
+
|
532 |
+
![img](github_docs/imgs/tile_new_1.png)
|
533 |
+
|
534 |
+
Note that this model is not a super resolution model. It ignores the details in an image and generate new details. This means you can use it to fix bad details in an image.
|
535 |
+
|
536 |
+
For example, below is a dog image corrupted by Real-ESRGAN. This is a typical example that sometimes super resolution methds fail to upscale images when source context is too small.
|
537 |
+
|
538 |
+
![p](test_imgs/dog_bad_sr.png)
|
539 |
+
|
540 |
+
Non-cherry-picked batch test with random seed 12345 ("dog on grassland"):
|
541 |
+
|
542 |
+
![img](github_docs/imgs/tile_new_2.png)
|
543 |
+
|
544 |
+
If your image already have good details, you can still use this model to replace image details. Note that Stable Diffusion's I2I can achieve similar effects but this model make it much easier for you to maintain the overall structure and only change details even with denoising strength 1.0 .
|
545 |
+
|
546 |
+
Non-cherry-picked batch test with random seed 12345 ("Silver Armor"):
|
547 |
+
|
548 |
+
![img](github_docs/imgs/tile_new_3.png)
|
549 |
+
|
550 |
+
More and more people begin to think about different methods to diffuse at tiles so that images can be very big (at 4k or 8k).
|
551 |
+
|
552 |
+
The problem is that, in Stable Diffusion, your prompts will always influent each tile.
|
553 |
+
|
554 |
+
For example, if your prompts are "a beautiful girl" and you split an image into 4×4=16 blocks and do diffusion in each block, then you are will get 16 "beautiful girls" rather than "a beautiful girl". This is a well-known problem.
|
555 |
+
|
556 |
+
Right now people's solution is to use some meaningless prompts like "clear, clear, super clear" to diffuse blocks. But you can expect that the results will be bad if the denonising strength is high. And because the prompts are bad, the contents are pretty random.
|
557 |
+
|
558 |
+
ControlNet Tile can solve this problem. For a given tile, it recognizes what is inside the tile and increase the influence of that recognized semantics, and it also decreases the influence of global prompts if contents do not match.
|
559 |
+
|
560 |
+
Non-cherry-picked batch test with random seed 12345 ("a handsome man"):
|
561 |
+
|
562 |
+
![img](github_docs/imgs/tile_new_4.png)
|
563 |
+
|
564 |
+
You can see that the prompt is "a handsome man" but the model does not paint "a handsome man" on that tree leaves. Instead, it recognizes the tree leaves paint accordingly.
|
565 |
+
|
566 |
+
In this way, ControlNet is able to change the behavior of any Stable Diffusion model to perform diffusion in tiles.
|
567 |
+
|
568 |
+
**Gallery of ControlNet Tile**
|
569 |
+
|
570 |
+
*Note:* Our official support for tiled image upscaling is A1111-only. The gradio example in this repo does not include tiled upscaling scripts. Please use the A1111 extension to perform tiled upscaling (with other tiling scripts like Ultimate SD Upscale or Tiled Diffusion/VAE).
|
571 |
+
|
572 |
+
From https://github.com/Mikubill/sd-webui-controlnet/discussions/1142#discussioncomment-5788601
|
573 |
+
|
574 |
+
(Output, **Click image to see full resolution**)
|
575 |
+
|
576 |
+
![grannie-comp](https://user-images.githubusercontent.com/54312595/235352555-846982dc-eba2-4e6a-8dfa-076a5e9ee4fd.jpg)
|
577 |
+
|
578 |
+
(Zooming-in of outputs)
|
579 |
+
|
580 |
+
![grannie-Comp_face](https://user-images.githubusercontent.com/54312595/235352557-8f90e59d-8d03-4909-b805-8643940973d0.jpg)
|
581 |
+
|
582 |
+
![grannie-Comp_torso](https://user-images.githubusercontent.com/54312595/235352562-ad0a5618-a1dd-40d0-9bfe-65e9786b496f.jpg)
|
583 |
+
|
584 |
+
![grannie-Comp_torso2](https://user-images.githubusercontent.com/54312595/235352567-4e9a887f-142f-4f65-8084-d4c7f602985b.jpg)
|
585 |
+
|
586 |
+
From https://github.com/Mikubill/sd-webui-controlnet/discussions/1142#discussioncomment-5788617
|
587 |
+
|
588 |
+
(Input)
|
589 |
+
|
590 |
+
![image](https://user-images.githubusercontent.com/34932866/235639514-31df5838-e251-4a17-b6ad-a678cdb8a58d.png)
|
591 |
+
|
592 |
+
(Output, **Click image to see full resolution**)
|
593 |
+
![image](https://user-images.githubusercontent.com/34932866/235639422-1f95d228-f902-4d94-b57b-e67460a719ef.png)
|
594 |
+
|
595 |
+
From: https://github.com/lllyasviel/ControlNet-v1-1-nightly/issues/50#issuecomment-1541914890
|
596 |
+
|
597 |
+
(Input)
|
598 |
+
|
599 |
+
![image](https://github.com/lllyasviel/ControlNet-v1-1-nightly/assets/19834515/9132700e-b2f9-4a33-a589-611ba234d325)
|
600 |
+
|
601 |
+
(Output, **Click image to see full resolution**, note that this example is extremely challenging)
|
602 |
+
|
603 |
+
![image](https://github.com/lllyasviel/ControlNet-v1-1-nightly/assets/19834515/609acf87-1e51-4c03-85dc-37e486566158)
|
604 |
+
|
605 |
+
From https://github.com/Mikubill/sd-webui-controlnet/discussions/1142#discussioncomment-5796326:
|
606 |
+
|
607 |
+
(before)
|
608 |
+
|
609 |
+
![2600914554720735184649534855329348215514636378-166329422](https://user-images.githubusercontent.com/31148570/236037445-f91a060b-698a-4cae-bf18-93796351da66.png)
|
610 |
+
|
611 |
+
(after, **Click image to see full resolution**)
|
612 |
+
![2600914554720735184649534855329348215514636383-1549088886](https://user-images.githubusercontent.com/31148570/236037509-ce24c816-f50f-4fe0-8c19-423bf30dad26.png)
|
613 |
+
|
614 |
+
**Comparison to Midjourney V5/V5.1 coming soon.**
|
615 |
+
|
616 |
+
# Annotate Your Own Data
|
617 |
+
|
618 |
+
We provide simple python scripts to process images.
|
619 |
+
|
620 |
+
[See a gradio example here](github_docs/annotator.md).
|
ControlNet-v1-1-nightly-main/annotator/canny/__init__.py
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import cv2
|
2 |
+
|
3 |
+
|
4 |
+
class CannyDetector:
|
5 |
+
def __call__(self, img, low_threshold, high_threshold):
|
6 |
+
return cv2.Canny(img, low_threshold, high_threshold)
|
ControlNet-v1-1-nightly-main/annotator/ckpts/ckpts.txt
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
Weights here.
|
ControlNet-v1-1-nightly-main/annotator/hed/__init__.py
ADDED
@@ -0,0 +1,80 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# This is an improved version and model of HED edge detection with Apache License, Version 2.0.
|
2 |
+
# Please use this implementation in your products
|
3 |
+
# This implementation may produce slightly different results from Saining Xie's official implementations,
|
4 |
+
# but it generates smoother edges and is more suitable for ControlNet as well as other image-to-image translations.
|
5 |
+
# Different from official models and other implementations, this is an RGB-input model (rather than BGR)
|
6 |
+
# and in this way it works better for gradio's RGB protocol
|
7 |
+
|
8 |
+
import os
|
9 |
+
import cv2
|
10 |
+
import torch
|
11 |
+
import numpy as np
|
12 |
+
|
13 |
+
from einops import rearrange
|
14 |
+
from annotator.util import annotator_ckpts_path, safe_step
|
15 |
+
|
16 |
+
|
17 |
+
class DoubleConvBlock(torch.nn.Module):
|
18 |
+
def __init__(self, input_channel, output_channel, layer_number):
|
19 |
+
super().__init__()
|
20 |
+
self.convs = torch.nn.Sequential()
|
21 |
+
self.convs.append(torch.nn.Conv2d(in_channels=input_channel, out_channels=output_channel, kernel_size=(3, 3), stride=(1, 1), padding=1))
|
22 |
+
for i in range(1, layer_number):
|
23 |
+
self.convs.append(torch.nn.Conv2d(in_channels=output_channel, out_channels=output_channel, kernel_size=(3, 3), stride=(1, 1), padding=1))
|
24 |
+
self.projection = torch.nn.Conv2d(in_channels=output_channel, out_channels=1, kernel_size=(1, 1), stride=(1, 1), padding=0)
|
25 |
+
|
26 |
+
def __call__(self, x, down_sampling=False):
|
27 |
+
h = x
|
28 |
+
if down_sampling:
|
29 |
+
h = torch.nn.functional.max_pool2d(h, kernel_size=(2, 2), stride=(2, 2))
|
30 |
+
for conv in self.convs:
|
31 |
+
h = conv(h)
|
32 |
+
h = torch.nn.functional.relu(h)
|
33 |
+
return h, self.projection(h)
|
34 |
+
|
35 |
+
|
36 |
+
class ControlNetHED_Apache2(torch.nn.Module):
|
37 |
+
def __init__(self):
|
38 |
+
super().__init__()
|
39 |
+
self.norm = torch.nn.Parameter(torch.zeros(size=(1, 3, 1, 1)))
|
40 |
+
self.block1 = DoubleConvBlock(input_channel=3, output_channel=64, layer_number=2)
|
41 |
+
self.block2 = DoubleConvBlock(input_channel=64, output_channel=128, layer_number=2)
|
42 |
+
self.block3 = DoubleConvBlock(input_channel=128, output_channel=256, layer_number=3)
|
43 |
+
self.block4 = DoubleConvBlock(input_channel=256, output_channel=512, layer_number=3)
|
44 |
+
self.block5 = DoubleConvBlock(input_channel=512, output_channel=512, layer_number=3)
|
45 |
+
|
46 |
+
def __call__(self, x):
|
47 |
+
h = x - self.norm
|
48 |
+
h, projection1 = self.block1(h)
|
49 |
+
h, projection2 = self.block2(h, down_sampling=True)
|
50 |
+
h, projection3 = self.block3(h, down_sampling=True)
|
51 |
+
h, projection4 = self.block4(h, down_sampling=True)
|
52 |
+
h, projection5 = self.block5(h, down_sampling=True)
|
53 |
+
return projection1, projection2, projection3, projection4, projection5
|
54 |
+
|
55 |
+
|
56 |
+
class HEDdetector:
|
57 |
+
def __init__(self):
|
58 |
+
remote_model_path = "https://huggingface.co/lllyasviel/Annotators/resolve/main/ControlNetHED.pth"
|
59 |
+
modelpath = os.path.join(annotator_ckpts_path, "ControlNetHED.pth")
|
60 |
+
if not os.path.exists(modelpath):
|
61 |
+
from basicsr.utils.download_util import load_file_from_url
|
62 |
+
load_file_from_url(remote_model_path, model_dir=annotator_ckpts_path)
|
63 |
+
self.netNetwork = ControlNetHED_Apache2().float().cuda().eval()
|
64 |
+
self.netNetwork.load_state_dict(torch.load(modelpath))
|
65 |
+
|
66 |
+
def __call__(self, input_image, safe=False):
|
67 |
+
assert input_image.ndim == 3
|
68 |
+
H, W, C = input_image.shape
|
69 |
+
with torch.no_grad():
|
70 |
+
image_hed = torch.from_numpy(input_image.copy()).float().cuda()
|
71 |
+
image_hed = rearrange(image_hed, 'h w c -> 1 c h w')
|
72 |
+
edges = self.netNetwork(image_hed)
|
73 |
+
edges = [e.detach().cpu().numpy().astype(np.float32)[0, 0] for e in edges]
|
74 |
+
edges = [cv2.resize(e, (W, H), interpolation=cv2.INTER_LINEAR) for e in edges]
|
75 |
+
edges = np.stack(edges, axis=2)
|
76 |
+
edge = 1 / (1 + np.exp(-np.mean(edges, axis=2).astype(np.float64)))
|
77 |
+
if safe:
|
78 |
+
edge = safe_step(edge)
|
79 |
+
edge = (edge * 255.0).clip(0, 255).astype(np.uint8)
|
80 |
+
return edge
|
ControlNet-v1-1-nightly-main/annotator/lineart/LICENSE
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
MIT License
|
2 |
+
|
3 |
+
Copyright (c) 2022 Caroline Chan
|
4 |
+
|
5 |
+
Permission is hereby granted, free of charge, to any person obtaining a copy
|
6 |
+
of this software and associated documentation files (the "Software"), to deal
|
7 |
+
in the Software without restriction, including without limitation the rights
|
8 |
+
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
9 |
+
copies of the Software, and to permit persons to whom the Software is
|
10 |
+
furnished to do so, subject to the following conditions:
|
11 |
+
|
12 |
+
The above copyright notice and this permission notice shall be included in all
|
13 |
+
copies or substantial portions of the Software.
|
14 |
+
|
15 |
+
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
16 |
+
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
17 |
+
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
18 |
+
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
19 |
+
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
20 |
+
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
21 |
+
SOFTWARE.
|
ControlNet-v1-1-nightly-main/annotator/lineart/__init__.py
ADDED
@@ -0,0 +1,124 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# From https://github.com/carolineec/informative-drawings
|
2 |
+
# MIT License
|
3 |
+
|
4 |
+
import os
|
5 |
+
import cv2
|
6 |
+
import torch
|
7 |
+
import numpy as np
|
8 |
+
|
9 |
+
import torch.nn as nn
|
10 |
+
from einops import rearrange
|
11 |
+
from annotator.util import annotator_ckpts_path
|
12 |
+
|
13 |
+
|
14 |
+
norm_layer = nn.InstanceNorm2d
|
15 |
+
|
16 |
+
|
17 |
+
class ResidualBlock(nn.Module):
|
18 |
+
def __init__(self, in_features):
|
19 |
+
super(ResidualBlock, self).__init__()
|
20 |
+
|
21 |
+
conv_block = [ nn.ReflectionPad2d(1),
|
22 |
+
nn.Conv2d(in_features, in_features, 3),
|
23 |
+
norm_layer(in_features),
|
24 |
+
nn.ReLU(inplace=True),
|
25 |
+
nn.ReflectionPad2d(1),
|
26 |
+
nn.Conv2d(in_features, in_features, 3),
|
27 |
+
norm_layer(in_features)
|
28 |
+
]
|
29 |
+
|
30 |
+
self.conv_block = nn.Sequential(*conv_block)
|
31 |
+
|
32 |
+
def forward(self, x):
|
33 |
+
return x + self.conv_block(x)
|
34 |
+
|
35 |
+
|
36 |
+
class Generator(nn.Module):
|
37 |
+
def __init__(self, input_nc, output_nc, n_residual_blocks=9, sigmoid=True):
|
38 |
+
super(Generator, self).__init__()
|
39 |
+
|
40 |
+
# Initial convolution block
|
41 |
+
model0 = [ nn.ReflectionPad2d(3),
|
42 |
+
nn.Conv2d(input_nc, 64, 7),
|
43 |
+
norm_layer(64),
|
44 |
+
nn.ReLU(inplace=True) ]
|
45 |
+
self.model0 = nn.Sequential(*model0)
|
46 |
+
|
47 |
+
# Downsampling
|
48 |
+
model1 = []
|
49 |
+
in_features = 64
|
50 |
+
out_features = in_features*2
|
51 |
+
for _ in range(2):
|
52 |
+
model1 += [ nn.Conv2d(in_features, out_features, 3, stride=2, padding=1),
|
53 |
+
norm_layer(out_features),
|
54 |
+
nn.ReLU(inplace=True) ]
|
55 |
+
in_features = out_features
|
56 |
+
out_features = in_features*2
|
57 |
+
self.model1 = nn.Sequential(*model1)
|
58 |
+
|
59 |
+
model2 = []
|
60 |
+
# Residual blocks
|
61 |
+
for _ in range(n_residual_blocks):
|
62 |
+
model2 += [ResidualBlock(in_features)]
|
63 |
+
self.model2 = nn.Sequential(*model2)
|
64 |
+
|
65 |
+
# Upsampling
|
66 |
+
model3 = []
|
67 |
+
out_features = in_features//2
|
68 |
+
for _ in range(2):
|
69 |
+
model3 += [ nn.ConvTranspose2d(in_features, out_features, 3, stride=2, padding=1, output_padding=1),
|
70 |
+
norm_layer(out_features),
|
71 |
+
nn.ReLU(inplace=True) ]
|
72 |
+
in_features = out_features
|
73 |
+
out_features = in_features//2
|
74 |
+
self.model3 = nn.Sequential(*model3)
|
75 |
+
|
76 |
+
# Output layer
|
77 |
+
model4 = [ nn.ReflectionPad2d(3),
|
78 |
+
nn.Conv2d(64, output_nc, 7)]
|
79 |
+
if sigmoid:
|
80 |
+
model4 += [nn.Sigmoid()]
|
81 |
+
|
82 |
+
self.model4 = nn.Sequential(*model4)
|
83 |
+
|
84 |
+
def forward(self, x, cond=None):
|
85 |
+
out = self.model0(x)
|
86 |
+
out = self.model1(out)
|
87 |
+
out = self.model2(out)
|
88 |
+
out = self.model3(out)
|
89 |
+
out = self.model4(out)
|
90 |
+
|
91 |
+
return out
|
92 |
+
|
93 |
+
|
94 |
+
class LineartDetector:
|
95 |
+
def __init__(self):
|
96 |
+
self.model = self.load_model('sk_model.pth')
|
97 |
+
self.model_coarse = self.load_model('sk_model2.pth')
|
98 |
+
|
99 |
+
def load_model(self, name):
|
100 |
+
remote_model_path = "https://huggingface.co/lllyasviel/Annotators/resolve/main/" + name
|
101 |
+
modelpath = os.path.join(annotator_ckpts_path, name)
|
102 |
+
if not os.path.exists(modelpath):
|
103 |
+
from basicsr.utils.download_util import load_file_from_url
|
104 |
+
load_file_from_url(remote_model_path, model_dir=annotator_ckpts_path)
|
105 |
+
model = Generator(3, 1, 3)
|
106 |
+
model.load_state_dict(torch.load(modelpath, map_location=torch.device('cpu')))
|
107 |
+
model.eval()
|
108 |
+
model = model.cuda()
|
109 |
+
return model
|
110 |
+
|
111 |
+
def __call__(self, input_image, coarse):
|
112 |
+
model = self.model_coarse if coarse else self.model
|
113 |
+
assert input_image.ndim == 3
|
114 |
+
image = input_image
|
115 |
+
with torch.no_grad():
|
116 |
+
image = torch.from_numpy(image).float().cuda()
|
117 |
+
image = image / 255.0
|
118 |
+
image = rearrange(image, 'h w c -> 1 c h w')
|
119 |
+
line = model(image)[0][0]
|
120 |
+
|
121 |
+
line = line.cpu().numpy()
|
122 |
+
line = (line * 255.0).clip(0, 255).astype(np.uint8)
|
123 |
+
|
124 |
+
return line
|
ControlNet-v1-1-nightly-main/annotator/lineart_anime/LICENSE
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
MIT License
|
2 |
+
|
3 |
+
Copyright (c) 2022 Caroline Chan
|
4 |
+
|
5 |
+
Permission is hereby granted, free of charge, to any person obtaining a copy
|
6 |
+
of this software and associated documentation files (the "Software"), to deal
|
7 |
+
in the Software without restriction, including without limitation the rights
|
8 |
+
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
9 |
+
copies of the Software, and to permit persons to whom the Software is
|
10 |
+
furnished to do so, subject to the following conditions:
|
11 |
+
|
12 |
+
The above copyright notice and this permission notice shall be included in all
|
13 |
+
copies or substantial portions of the Software.
|
14 |
+
|
15 |
+
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
16 |
+
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
17 |
+
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
18 |
+
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
19 |
+
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
20 |
+
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
21 |
+
SOFTWARE.
|
ControlNet-v1-1-nightly-main/annotator/lineart_anime/__init__.py
ADDED
@@ -0,0 +1,150 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Anime2sketch
|
2 |
+
# https://github.com/Mukosame/Anime2Sketch
|
3 |
+
|
4 |
+
import numpy as np
|
5 |
+
import torch
|
6 |
+
import torch.nn as nn
|
7 |
+
import functools
|
8 |
+
|
9 |
+
import os
|
10 |
+
import cv2
|
11 |
+
from einops import rearrange
|
12 |
+
from annotator.util import annotator_ckpts_path
|
13 |
+
|
14 |
+
|
15 |
+
class UnetGenerator(nn.Module):
|
16 |
+
"""Create a Unet-based generator"""
|
17 |
+
|
18 |
+
def __init__(self, input_nc, output_nc, num_downs, ngf=64, norm_layer=nn.BatchNorm2d, use_dropout=False):
|
19 |
+
"""Construct a Unet generator
|
20 |
+
Parameters:
|
21 |
+
input_nc (int) -- the number of channels in input images
|
22 |
+
output_nc (int) -- the number of channels in output images
|
23 |
+
num_downs (int) -- the number of downsamplings in UNet. For example, # if |num_downs| == 7,
|
24 |
+
image of size 128x128 will become of size 1x1 # at the bottleneck
|
25 |
+
ngf (int) -- the number of filters in the last conv layer
|
26 |
+
norm_layer -- normalization layer
|
27 |
+
We construct the U-Net from the innermost layer to the outermost layer.
|
28 |
+
It is a recursive process.
|
29 |
+
"""
|
30 |
+
super(UnetGenerator, self).__init__()
|
31 |
+
# construct unet structure
|
32 |
+
unet_block = UnetSkipConnectionBlock(ngf * 8, ngf * 8, input_nc=None, submodule=None, norm_layer=norm_layer, innermost=True) # add the innermost layer
|
33 |
+
for _ in range(num_downs - 5): # add intermediate layers with ngf * 8 filters
|
34 |
+
unet_block = UnetSkipConnectionBlock(ngf * 8, ngf * 8, input_nc=None, submodule=unet_block, norm_layer=norm_layer, use_dropout=use_dropout)
|
35 |
+
# gradually reduce the number of filters from ngf * 8 to ngf
|
36 |
+
unet_block = UnetSkipConnectionBlock(ngf * 4, ngf * 8, input_nc=None, submodule=unet_block, norm_layer=norm_layer)
|
37 |
+
unet_block = UnetSkipConnectionBlock(ngf * 2, ngf * 4, input_nc=None, submodule=unet_block, norm_layer=norm_layer)
|
38 |
+
unet_block = UnetSkipConnectionBlock(ngf, ngf * 2, input_nc=None, submodule=unet_block, norm_layer=norm_layer)
|
39 |
+
self.model = UnetSkipConnectionBlock(output_nc, ngf, input_nc=input_nc, submodule=unet_block, outermost=True, norm_layer=norm_layer) # add the outermost layer
|
40 |
+
|
41 |
+
def forward(self, input):
|
42 |
+
"""Standard forward"""
|
43 |
+
return self.model(input)
|
44 |
+
|
45 |
+
|
46 |
+
class UnetSkipConnectionBlock(nn.Module):
|
47 |
+
"""Defines the Unet submodule with skip connection.
|
48 |
+
X -------------------identity----------------------
|
49 |
+
|-- downsampling -- |submodule| -- upsampling --|
|
50 |
+
"""
|
51 |
+
|
52 |
+
def __init__(self, outer_nc, inner_nc, input_nc=None,
|
53 |
+
submodule=None, outermost=False, innermost=False, norm_layer=nn.BatchNorm2d, use_dropout=False):
|
54 |
+
"""Construct a Unet submodule with skip connections.
|
55 |
+
Parameters:
|
56 |
+
outer_nc (int) -- the number of filters in the outer conv layer
|
57 |
+
inner_nc (int) -- the number of filters in the inner conv layer
|
58 |
+
input_nc (int) -- the number of channels in input images/features
|
59 |
+
submodule (UnetSkipConnectionBlock) -- previously defined submodules
|
60 |
+
outermost (bool) -- if this module is the outermost module
|
61 |
+
innermost (bool) -- if this module is the innermost module
|
62 |
+
norm_layer -- normalization layer
|
63 |
+
use_dropout (bool) -- if use dropout layers.
|
64 |
+
"""
|
65 |
+
super(UnetSkipConnectionBlock, self).__init__()
|
66 |
+
self.outermost = outermost
|
67 |
+
if type(norm_layer) == functools.partial:
|
68 |
+
use_bias = norm_layer.func == nn.InstanceNorm2d
|
69 |
+
else:
|
70 |
+
use_bias = norm_layer == nn.InstanceNorm2d
|
71 |
+
if input_nc is None:
|
72 |
+
input_nc = outer_nc
|
73 |
+
downconv = nn.Conv2d(input_nc, inner_nc, kernel_size=4,
|
74 |
+
stride=2, padding=1, bias=use_bias)
|
75 |
+
downrelu = nn.LeakyReLU(0.2, True)
|
76 |
+
downnorm = norm_layer(inner_nc)
|
77 |
+
uprelu = nn.ReLU(True)
|
78 |
+
upnorm = norm_layer(outer_nc)
|
79 |
+
|
80 |
+
if outermost:
|
81 |
+
upconv = nn.ConvTranspose2d(inner_nc * 2, outer_nc,
|
82 |
+
kernel_size=4, stride=2,
|
83 |
+
padding=1)
|
84 |
+
down = [downconv]
|
85 |
+
up = [uprelu, upconv, nn.Tanh()]
|
86 |
+
model = down + [submodule] + up
|
87 |
+
elif innermost:
|
88 |
+
upconv = nn.ConvTranspose2d(inner_nc, outer_nc,
|
89 |
+
kernel_size=4, stride=2,
|
90 |
+
padding=1, bias=use_bias)
|
91 |
+
down = [downrelu, downconv]
|
92 |
+
up = [uprelu, upconv, upnorm]
|
93 |
+
model = down + up
|
94 |
+
else:
|
95 |
+
upconv = nn.ConvTranspose2d(inner_nc * 2, outer_nc,
|
96 |
+
kernel_size=4, stride=2,
|
97 |
+
padding=1, bias=use_bias)
|
98 |
+
down = [downrelu, downconv, downnorm]
|
99 |
+
up = [uprelu, upconv, upnorm]
|
100 |
+
|
101 |
+
if use_dropout:
|
102 |
+
model = down + [submodule] + up + [nn.Dropout(0.5)]
|
103 |
+
else:
|
104 |
+
model = down + [submodule] + up
|
105 |
+
|
106 |
+
self.model = nn.Sequential(*model)
|
107 |
+
|
108 |
+
def forward(self, x):
|
109 |
+
if self.outermost:
|
110 |
+
return self.model(x)
|
111 |
+
else: # add skip connections
|
112 |
+
return torch.cat([x, self.model(x)], 1)
|
113 |
+
|
114 |
+
|
115 |
+
class LineartAnimeDetector:
|
116 |
+
def __init__(self):
|
117 |
+
remote_model_path = "https://huggingface.co/lllyasviel/Annotators/resolve/main/netG.pth"
|
118 |
+
modelpath = os.path.join(annotator_ckpts_path, "netG.pth")
|
119 |
+
if not os.path.exists(modelpath):
|
120 |
+
from basicsr.utils.download_util import load_file_from_url
|
121 |
+
load_file_from_url(remote_model_path, model_dir=annotator_ckpts_path)
|
122 |
+
norm_layer = functools.partial(nn.InstanceNorm2d, affine=False, track_running_stats=False)
|
123 |
+
net = UnetGenerator(3, 1, 8, 64, norm_layer=norm_layer, use_dropout=False)
|
124 |
+
ckpt = torch.load(modelpath)
|
125 |
+
for key in list(ckpt.keys()):
|
126 |
+
if 'module.' in key:
|
127 |
+
ckpt[key.replace('module.', '')] = ckpt[key]
|
128 |
+
del ckpt[key]
|
129 |
+
net.load_state_dict(ckpt)
|
130 |
+
net = net.cuda()
|
131 |
+
net.eval()
|
132 |
+
self.model = net
|
133 |
+
|
134 |
+
def __call__(self, input_image):
|
135 |
+
H, W, C = input_image.shape
|
136 |
+
Hn = 256 * int(np.ceil(float(H) / 256.0))
|
137 |
+
Wn = 256 * int(np.ceil(float(W) / 256.0))
|
138 |
+
img = cv2.resize(input_image, (Wn, Hn), interpolation=cv2.INTER_CUBIC)
|
139 |
+
with torch.no_grad():
|
140 |
+
image_feed = torch.from_numpy(img).float().cuda()
|
141 |
+
image_feed = image_feed / 127.5 - 1.0
|
142 |
+
image_feed = rearrange(image_feed, 'h w c -> 1 c h w')
|
143 |
+
|
144 |
+
line = self.model(image_feed)[0, 0] * 127.5 + 127.5
|
145 |
+
line = line.cpu().numpy()
|
146 |
+
|
147 |
+
line = cv2.resize(line, (W, H), interpolation=cv2.INTER_CUBIC)
|
148 |
+
line = line.clip(0, 255).astype(np.uint8)
|
149 |
+
return line
|
150 |
+
|
ControlNet-v1-1-nightly-main/annotator/midas/LICENSE
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
MIT License
|
2 |
+
|
3 |
+
Copyright (c) 2019 Intel ISL (Intel Intelligent Systems Lab)
|
4 |
+
|
5 |
+
Permission is hereby granted, free of charge, to any person obtaining a copy
|
6 |
+
of this software and associated documentation files (the "Software"), to deal
|
7 |
+
in the Software without restriction, including without limitation the rights
|
8 |
+
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
9 |
+
copies of the Software, and to permit persons to whom the Software is
|
10 |
+
furnished to do so, subject to the following conditions:
|
11 |
+
|
12 |
+
The above copyright notice and this permission notice shall be included in all
|
13 |
+
copies or substantial portions of the Software.
|
14 |
+
|
15 |
+
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
16 |
+
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
17 |
+
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
18 |
+
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
19 |
+
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
20 |
+
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
21 |
+
SOFTWARE.
|
ControlNet-v1-1-nightly-main/annotator/midas/__init__.py
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Midas Depth Estimation
|
2 |
+
# From https://github.com/isl-org/MiDaS
|
3 |
+
# MIT LICENSE
|
4 |
+
|
5 |
+
import cv2
|
6 |
+
import numpy as np
|
7 |
+
import torch
|
8 |
+
|
9 |
+
from einops import rearrange
|
10 |
+
from .api import MiDaSInference
|
11 |
+
|
12 |
+
|
13 |
+
class MidasDetector:
|
14 |
+
def __init__(self):
|
15 |
+
self.model = MiDaSInference(model_type="dpt_hybrid").cuda()
|
16 |
+
|
17 |
+
def __call__(self, input_image):
|
18 |
+
assert input_image.ndim == 3
|
19 |
+
image_depth = input_image
|
20 |
+
with torch.no_grad():
|
21 |
+
image_depth = torch.from_numpy(image_depth).float().cuda()
|
22 |
+
image_depth = image_depth / 127.5 - 1.0
|
23 |
+
image_depth = rearrange(image_depth, 'h w c -> 1 c h w')
|
24 |
+
depth = self.model(image_depth)[0]
|
25 |
+
|
26 |
+
depth -= torch.min(depth)
|
27 |
+
depth /= torch.max(depth)
|
28 |
+
depth = depth.cpu().numpy()
|
29 |
+
depth_image = (depth * 255.0).clip(0, 255).astype(np.uint8)
|
30 |
+
|
31 |
+
return depth_image
|
ControlNet-v1-1-nightly-main/annotator/midas/api.py
ADDED
@@ -0,0 +1,169 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# based on https://github.com/isl-org/MiDaS
|
2 |
+
|
3 |
+
import cv2
|
4 |
+
import os
|
5 |
+
import torch
|
6 |
+
import torch.nn as nn
|
7 |
+
from torchvision.transforms import Compose
|
8 |
+
|
9 |
+
from .midas.dpt_depth import DPTDepthModel
|
10 |
+
from .midas.midas_net import MidasNet
|
11 |
+
from .midas.midas_net_custom import MidasNet_small
|
12 |
+
from .midas.transforms import Resize, NormalizeImage, PrepareForNet
|
13 |
+
from annotator.util import annotator_ckpts_path
|
14 |
+
|
15 |
+
|
16 |
+
ISL_PATHS = {
|
17 |
+
"dpt_large": os.path.join(annotator_ckpts_path, "dpt_large-midas-2f21e586.pt"),
|
18 |
+
"dpt_hybrid": os.path.join(annotator_ckpts_path, "dpt_hybrid-midas-501f0c75.pt"),
|
19 |
+
"midas_v21": "",
|
20 |
+
"midas_v21_small": "",
|
21 |
+
}
|
22 |
+
|
23 |
+
remote_model_path = "https://huggingface.co/lllyasviel/Annotators/resolve/main/dpt_hybrid-midas-501f0c75.pt"
|
24 |
+
|
25 |
+
|
26 |
+
def disabled_train(self, mode=True):
|
27 |
+
"""Overwrite model.train with this function to make sure train/eval mode
|
28 |
+
does not change anymore."""
|
29 |
+
return self
|
30 |
+
|
31 |
+
|
32 |
+
def load_midas_transform(model_type):
|
33 |
+
# https://github.com/isl-org/MiDaS/blob/master/run.py
|
34 |
+
# load transform only
|
35 |
+
if model_type == "dpt_large": # DPT-Large
|
36 |
+
net_w, net_h = 384, 384
|
37 |
+
resize_mode = "minimal"
|
38 |
+
normalization = NormalizeImage(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
|
39 |
+
|
40 |
+
elif model_type == "dpt_hybrid": # DPT-Hybrid
|
41 |
+
net_w, net_h = 384, 384
|
42 |
+
resize_mode = "minimal"
|
43 |
+
normalization = NormalizeImage(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
|
44 |
+
|
45 |
+
elif model_type == "midas_v21":
|
46 |
+
net_w, net_h = 384, 384
|
47 |
+
resize_mode = "upper_bound"
|
48 |
+
normalization = NormalizeImage(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
|
49 |
+
|
50 |
+
elif model_type == "midas_v21_small":
|
51 |
+
net_w, net_h = 256, 256
|
52 |
+
resize_mode = "upper_bound"
|
53 |
+
normalization = NormalizeImage(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
|
54 |
+
|
55 |
+
else:
|
56 |
+
assert False, f"model_type '{model_type}' not implemented, use: --model_type large"
|
57 |
+
|
58 |
+
transform = Compose(
|
59 |
+
[
|
60 |
+
Resize(
|
61 |
+
net_w,
|
62 |
+
net_h,
|
63 |
+
resize_target=None,
|
64 |
+
keep_aspect_ratio=True,
|
65 |
+
ensure_multiple_of=32,
|
66 |
+
resize_method=resize_mode,
|
67 |
+
image_interpolation_method=cv2.INTER_CUBIC,
|
68 |
+
),
|
69 |
+
normalization,
|
70 |
+
PrepareForNet(),
|
71 |
+
]
|
72 |
+
)
|
73 |
+
|
74 |
+
return transform
|
75 |
+
|
76 |
+
|
77 |
+
def load_model(model_type):
|
78 |
+
# https://github.com/isl-org/MiDaS/blob/master/run.py
|
79 |
+
# load network
|
80 |
+
model_path = ISL_PATHS[model_type]
|
81 |
+
if model_type == "dpt_large": # DPT-Large
|
82 |
+
model = DPTDepthModel(
|
83 |
+
path=model_path,
|
84 |
+
backbone="vitl16_384",
|
85 |
+
non_negative=True,
|
86 |
+
)
|
87 |
+
net_w, net_h = 384, 384
|
88 |
+
resize_mode = "minimal"
|
89 |
+
normalization = NormalizeImage(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
|
90 |
+
|
91 |
+
elif model_type == "dpt_hybrid": # DPT-Hybrid
|
92 |
+
if not os.path.exists(model_path):
|
93 |
+
from basicsr.utils.download_util import load_file_from_url
|
94 |
+
load_file_from_url(remote_model_path, model_dir=annotator_ckpts_path)
|
95 |
+
|
96 |
+
model = DPTDepthModel(
|
97 |
+
path=model_path,
|
98 |
+
backbone="vitb_rn50_384",
|
99 |
+
non_negative=True,
|
100 |
+
)
|
101 |
+
net_w, net_h = 384, 384
|
102 |
+
resize_mode = "minimal"
|
103 |
+
normalization = NormalizeImage(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
|
104 |
+
|
105 |
+
elif model_type == "midas_v21":
|
106 |
+
model = MidasNet(model_path, non_negative=True)
|
107 |
+
net_w, net_h = 384, 384
|
108 |
+
resize_mode = "upper_bound"
|
109 |
+
normalization = NormalizeImage(
|
110 |
+
mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]
|
111 |
+
)
|
112 |
+
|
113 |
+
elif model_type == "midas_v21_small":
|
114 |
+
model = MidasNet_small(model_path, features=64, backbone="efficientnet_lite3", exportable=True,
|
115 |
+
non_negative=True, blocks={'expand': True})
|
116 |
+
net_w, net_h = 256, 256
|
117 |
+
resize_mode = "upper_bound"
|
118 |
+
normalization = NormalizeImage(
|
119 |
+
mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]
|
120 |
+
)
|
121 |
+
|
122 |
+
else:
|
123 |
+
print(f"model_type '{model_type}' not implemented, use: --model_type large")
|
124 |
+
assert False
|
125 |
+
|
126 |
+
transform = Compose(
|
127 |
+
[
|
128 |
+
Resize(
|
129 |
+
net_w,
|
130 |
+
net_h,
|
131 |
+
resize_target=None,
|
132 |
+
keep_aspect_ratio=True,
|
133 |
+
ensure_multiple_of=32,
|
134 |
+
resize_method=resize_mode,
|
135 |
+
image_interpolation_method=cv2.INTER_CUBIC,
|
136 |
+
),
|
137 |
+
normalization,
|
138 |
+
PrepareForNet(),
|
139 |
+
]
|
140 |
+
)
|
141 |
+
|
142 |
+
return model.eval(), transform
|
143 |
+
|
144 |
+
|
145 |
+
class MiDaSInference(nn.Module):
|
146 |
+
MODEL_TYPES_TORCH_HUB = [
|
147 |
+
"DPT_Large",
|
148 |
+
"DPT_Hybrid",
|
149 |
+
"MiDaS_small"
|
150 |
+
]
|
151 |
+
MODEL_TYPES_ISL = [
|
152 |
+
"dpt_large",
|
153 |
+
"dpt_hybrid",
|
154 |
+
"midas_v21",
|
155 |
+
"midas_v21_small",
|
156 |
+
]
|
157 |
+
|
158 |
+
def __init__(self, model_type):
|
159 |
+
super().__init__()
|
160 |
+
assert (model_type in self.MODEL_TYPES_ISL)
|
161 |
+
model, _ = load_model(model_type)
|
162 |
+
self.model = model
|
163 |
+
self.model.train = disabled_train
|
164 |
+
|
165 |
+
def forward(self, x):
|
166 |
+
with torch.no_grad():
|
167 |
+
prediction = self.model(x)
|
168 |
+
return prediction
|
169 |
+
|
ControlNet-v1-1-nightly-main/annotator/midas/midas/__init__.py
ADDED
File without changes
|
ControlNet-v1-1-nightly-main/annotator/midas/midas/base_model.py
ADDED
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
|
3 |
+
|
4 |
+
class BaseModel(torch.nn.Module):
|
5 |
+
def load(self, path):
|
6 |
+
"""Load model from file.
|
7 |
+
|
8 |
+
Args:
|
9 |
+
path (str): file path
|
10 |
+
"""
|
11 |
+
parameters = torch.load(path, map_location=torch.device('cpu'))
|
12 |
+
|
13 |
+
if "optimizer" in parameters:
|
14 |
+
parameters = parameters["model"]
|
15 |
+
|
16 |
+
self.load_state_dict(parameters)
|
ControlNet-v1-1-nightly-main/annotator/midas/midas/blocks.py
ADDED
@@ -0,0 +1,342 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
|
4 |
+
from .vit import (
|
5 |
+
_make_pretrained_vitb_rn50_384,
|
6 |
+
_make_pretrained_vitl16_384,
|
7 |
+
_make_pretrained_vitb16_384,
|
8 |
+
forward_vit,
|
9 |
+
)
|
10 |
+
|
11 |
+
def _make_encoder(backbone, features, use_pretrained, groups=1, expand=False, exportable=True, hooks=None, use_vit_only=False, use_readout="ignore",):
|
12 |
+
if backbone == "vitl16_384":
|
13 |
+
pretrained = _make_pretrained_vitl16_384(
|
14 |
+
use_pretrained, hooks=hooks, use_readout=use_readout
|
15 |
+
)
|
16 |
+
scratch = _make_scratch(
|
17 |
+
[256, 512, 1024, 1024], features, groups=groups, expand=expand
|
18 |
+
) # ViT-L/16 - 85.0% Top1 (backbone)
|
19 |
+
elif backbone == "vitb_rn50_384":
|
20 |
+
pretrained = _make_pretrained_vitb_rn50_384(
|
21 |
+
use_pretrained,
|
22 |
+
hooks=hooks,
|
23 |
+
use_vit_only=use_vit_only,
|
24 |
+
use_readout=use_readout,
|
25 |
+
)
|
26 |
+
scratch = _make_scratch(
|
27 |
+
[256, 512, 768, 768], features, groups=groups, expand=expand
|
28 |
+
) # ViT-H/16 - 85.0% Top1 (backbone)
|
29 |
+
elif backbone == "vitb16_384":
|
30 |
+
pretrained = _make_pretrained_vitb16_384(
|
31 |
+
use_pretrained, hooks=hooks, use_readout=use_readout
|
32 |
+
)
|
33 |
+
scratch = _make_scratch(
|
34 |
+
[96, 192, 384, 768], features, groups=groups, expand=expand
|
35 |
+
) # ViT-B/16 - 84.6% Top1 (backbone)
|
36 |
+
elif backbone == "resnext101_wsl":
|
37 |
+
pretrained = _make_pretrained_resnext101_wsl(use_pretrained)
|
38 |
+
scratch = _make_scratch([256, 512, 1024, 2048], features, groups=groups, expand=expand) # efficientnet_lite3
|
39 |
+
elif backbone == "efficientnet_lite3":
|
40 |
+
pretrained = _make_pretrained_efficientnet_lite3(use_pretrained, exportable=exportable)
|
41 |
+
scratch = _make_scratch([32, 48, 136, 384], features, groups=groups, expand=expand) # efficientnet_lite3
|
42 |
+
else:
|
43 |
+
print(f"Backbone '{backbone}' not implemented")
|
44 |
+
assert False
|
45 |
+
|
46 |
+
return pretrained, scratch
|
47 |
+
|
48 |
+
|
49 |
+
def _make_scratch(in_shape, out_shape, groups=1, expand=False):
|
50 |
+
scratch = nn.Module()
|
51 |
+
|
52 |
+
out_shape1 = out_shape
|
53 |
+
out_shape2 = out_shape
|
54 |
+
out_shape3 = out_shape
|
55 |
+
out_shape4 = out_shape
|
56 |
+
if expand==True:
|
57 |
+
out_shape1 = out_shape
|
58 |
+
out_shape2 = out_shape*2
|
59 |
+
out_shape3 = out_shape*4
|
60 |
+
out_shape4 = out_shape*8
|
61 |
+
|
62 |
+
scratch.layer1_rn = nn.Conv2d(
|
63 |
+
in_shape[0], out_shape1, kernel_size=3, stride=1, padding=1, bias=False, groups=groups
|
64 |
+
)
|
65 |
+
scratch.layer2_rn = nn.Conv2d(
|
66 |
+
in_shape[1], out_shape2, kernel_size=3, stride=1, padding=1, bias=False, groups=groups
|
67 |
+
)
|
68 |
+
scratch.layer3_rn = nn.Conv2d(
|
69 |
+
in_shape[2], out_shape3, kernel_size=3, stride=1, padding=1, bias=False, groups=groups
|
70 |
+
)
|
71 |
+
scratch.layer4_rn = nn.Conv2d(
|
72 |
+
in_shape[3], out_shape4, kernel_size=3, stride=1, padding=1, bias=False, groups=groups
|
73 |
+
)
|
74 |
+
|
75 |
+
return scratch
|
76 |
+
|
77 |
+
|
78 |
+
def _make_pretrained_efficientnet_lite3(use_pretrained, exportable=False):
|
79 |
+
efficientnet = torch.hub.load(
|
80 |
+
"rwightman/gen-efficientnet-pytorch",
|
81 |
+
"tf_efficientnet_lite3",
|
82 |
+
pretrained=use_pretrained,
|
83 |
+
exportable=exportable
|
84 |
+
)
|
85 |
+
return _make_efficientnet_backbone(efficientnet)
|
86 |
+
|
87 |
+
|
88 |
+
def _make_efficientnet_backbone(effnet):
|
89 |
+
pretrained = nn.Module()
|
90 |
+
|
91 |
+
pretrained.layer1 = nn.Sequential(
|
92 |
+
effnet.conv_stem, effnet.bn1, effnet.act1, *effnet.blocks[0:2]
|
93 |
+
)
|
94 |
+
pretrained.layer2 = nn.Sequential(*effnet.blocks[2:3])
|
95 |
+
pretrained.layer3 = nn.Sequential(*effnet.blocks[3:5])
|
96 |
+
pretrained.layer4 = nn.Sequential(*effnet.blocks[5:9])
|
97 |
+
|
98 |
+
return pretrained
|
99 |
+
|
100 |
+
|
101 |
+
def _make_resnet_backbone(resnet):
|
102 |
+
pretrained = nn.Module()
|
103 |
+
pretrained.layer1 = nn.Sequential(
|
104 |
+
resnet.conv1, resnet.bn1, resnet.relu, resnet.maxpool, resnet.layer1
|
105 |
+
)
|
106 |
+
|
107 |
+
pretrained.layer2 = resnet.layer2
|
108 |
+
pretrained.layer3 = resnet.layer3
|
109 |
+
pretrained.layer4 = resnet.layer4
|
110 |
+
|
111 |
+
return pretrained
|
112 |
+
|
113 |
+
|
114 |
+
def _make_pretrained_resnext101_wsl(use_pretrained):
|
115 |
+
resnet = torch.hub.load("facebookresearch/WSL-Images", "resnext101_32x8d_wsl")
|
116 |
+
return _make_resnet_backbone(resnet)
|
117 |
+
|
118 |
+
|
119 |
+
|
120 |
+
class Interpolate(nn.Module):
|
121 |
+
"""Interpolation module.
|
122 |
+
"""
|
123 |
+
|
124 |
+
def __init__(self, scale_factor, mode, align_corners=False):
|
125 |
+
"""Init.
|
126 |
+
|
127 |
+
Args:
|
128 |
+
scale_factor (float): scaling
|
129 |
+
mode (str): interpolation mode
|
130 |
+
"""
|
131 |
+
super(Interpolate, self).__init__()
|
132 |
+
|
133 |
+
self.interp = nn.functional.interpolate
|
134 |
+
self.scale_factor = scale_factor
|
135 |
+
self.mode = mode
|
136 |
+
self.align_corners = align_corners
|
137 |
+
|
138 |
+
def forward(self, x):
|
139 |
+
"""Forward pass.
|
140 |
+
|
141 |
+
Args:
|
142 |
+
x (tensor): input
|
143 |
+
|
144 |
+
Returns:
|
145 |
+
tensor: interpolated data
|
146 |
+
"""
|
147 |
+
|
148 |
+
x = self.interp(
|
149 |
+
x, scale_factor=self.scale_factor, mode=self.mode, align_corners=self.align_corners
|
150 |
+
)
|
151 |
+
|
152 |
+
return x
|
153 |
+
|
154 |
+
|
155 |
+
class ResidualConvUnit(nn.Module):
|
156 |
+
"""Residual convolution module.
|
157 |
+
"""
|
158 |
+
|
159 |
+
def __init__(self, features):
|
160 |
+
"""Init.
|
161 |
+
|
162 |
+
Args:
|
163 |
+
features (int): number of features
|
164 |
+
"""
|
165 |
+
super().__init__()
|
166 |
+
|
167 |
+
self.conv1 = nn.Conv2d(
|
168 |
+
features, features, kernel_size=3, stride=1, padding=1, bias=True
|
169 |
+
)
|
170 |
+
|
171 |
+
self.conv2 = nn.Conv2d(
|
172 |
+
features, features, kernel_size=3, stride=1, padding=1, bias=True
|
173 |
+
)
|
174 |
+
|
175 |
+
self.relu = nn.ReLU(inplace=True)
|
176 |
+
|
177 |
+
def forward(self, x):
|
178 |
+
"""Forward pass.
|
179 |
+
|
180 |
+
Args:
|
181 |
+
x (tensor): input
|
182 |
+
|
183 |
+
Returns:
|
184 |
+
tensor: output
|
185 |
+
"""
|
186 |
+
out = self.relu(x)
|
187 |
+
out = self.conv1(out)
|
188 |
+
out = self.relu(out)
|
189 |
+
out = self.conv2(out)
|
190 |
+
|
191 |
+
return out + x
|
192 |
+
|
193 |
+
|
194 |
+
class FeatureFusionBlock(nn.Module):
|
195 |
+
"""Feature fusion block.
|
196 |
+
"""
|
197 |
+
|
198 |
+
def __init__(self, features):
|
199 |
+
"""Init.
|
200 |
+
|
201 |
+
Args:
|
202 |
+
features (int): number of features
|
203 |
+
"""
|
204 |
+
super(FeatureFusionBlock, self).__init__()
|
205 |
+
|
206 |
+
self.resConfUnit1 = ResidualConvUnit(features)
|
207 |
+
self.resConfUnit2 = ResidualConvUnit(features)
|
208 |
+
|
209 |
+
def forward(self, *xs):
|
210 |
+
"""Forward pass.
|
211 |
+
|
212 |
+
Returns:
|
213 |
+
tensor: output
|
214 |
+
"""
|
215 |
+
output = xs[0]
|
216 |
+
|
217 |
+
if len(xs) == 2:
|
218 |
+
output += self.resConfUnit1(xs[1])
|
219 |
+
|
220 |
+
output = self.resConfUnit2(output)
|
221 |
+
|
222 |
+
output = nn.functional.interpolate(
|
223 |
+
output, scale_factor=2, mode="bilinear", align_corners=True
|
224 |
+
)
|
225 |
+
|
226 |
+
return output
|
227 |
+
|
228 |
+
|
229 |
+
|
230 |
+
|
231 |
+
class ResidualConvUnit_custom(nn.Module):
|
232 |
+
"""Residual convolution module.
|
233 |
+
"""
|
234 |
+
|
235 |
+
def __init__(self, features, activation, bn):
|
236 |
+
"""Init.
|
237 |
+
|
238 |
+
Args:
|
239 |
+
features (int): number of features
|
240 |
+
"""
|
241 |
+
super().__init__()
|
242 |
+
|
243 |
+
self.bn = bn
|
244 |
+
|
245 |
+
self.groups=1
|
246 |
+
|
247 |
+
self.conv1 = nn.Conv2d(
|
248 |
+
features, features, kernel_size=3, stride=1, padding=1, bias=True, groups=self.groups
|
249 |
+
)
|
250 |
+
|
251 |
+
self.conv2 = nn.Conv2d(
|
252 |
+
features, features, kernel_size=3, stride=1, padding=1, bias=True, groups=self.groups
|
253 |
+
)
|
254 |
+
|
255 |
+
if self.bn==True:
|
256 |
+
self.bn1 = nn.BatchNorm2d(features)
|
257 |
+
self.bn2 = nn.BatchNorm2d(features)
|
258 |
+
|
259 |
+
self.activation = activation
|
260 |
+
|
261 |
+
self.skip_add = nn.quantized.FloatFunctional()
|
262 |
+
|
263 |
+
def forward(self, x):
|
264 |
+
"""Forward pass.
|
265 |
+
|
266 |
+
Args:
|
267 |
+
x (tensor): input
|
268 |
+
|
269 |
+
Returns:
|
270 |
+
tensor: output
|
271 |
+
"""
|
272 |
+
|
273 |
+
out = self.activation(x)
|
274 |
+
out = self.conv1(out)
|
275 |
+
if self.bn==True:
|
276 |
+
out = self.bn1(out)
|
277 |
+
|
278 |
+
out = self.activation(out)
|
279 |
+
out = self.conv2(out)
|
280 |
+
if self.bn==True:
|
281 |
+
out = self.bn2(out)
|
282 |
+
|
283 |
+
if self.groups > 1:
|
284 |
+
out = self.conv_merge(out)
|
285 |
+
|
286 |
+
return self.skip_add.add(out, x)
|
287 |
+
|
288 |
+
# return out + x
|
289 |
+
|
290 |
+
|
291 |
+
class FeatureFusionBlock_custom(nn.Module):
|
292 |
+
"""Feature fusion block.
|
293 |
+
"""
|
294 |
+
|
295 |
+
def __init__(self, features, activation, deconv=False, bn=False, expand=False, align_corners=True):
|
296 |
+
"""Init.
|
297 |
+
|
298 |
+
Args:
|
299 |
+
features (int): number of features
|
300 |
+
"""
|
301 |
+
super(FeatureFusionBlock_custom, self).__init__()
|
302 |
+
|
303 |
+
self.deconv = deconv
|
304 |
+
self.align_corners = align_corners
|
305 |
+
|
306 |
+
self.groups=1
|
307 |
+
|
308 |
+
self.expand = expand
|
309 |
+
out_features = features
|
310 |
+
if self.expand==True:
|
311 |
+
out_features = features//2
|
312 |
+
|
313 |
+
self.out_conv = nn.Conv2d(features, out_features, kernel_size=1, stride=1, padding=0, bias=True, groups=1)
|
314 |
+
|
315 |
+
self.resConfUnit1 = ResidualConvUnit_custom(features, activation, bn)
|
316 |
+
self.resConfUnit2 = ResidualConvUnit_custom(features, activation, bn)
|
317 |
+
|
318 |
+
self.skip_add = nn.quantized.FloatFunctional()
|
319 |
+
|
320 |
+
def forward(self, *xs):
|
321 |
+
"""Forward pass.
|
322 |
+
|
323 |
+
Returns:
|
324 |
+
tensor: output
|
325 |
+
"""
|
326 |
+
output = xs[0]
|
327 |
+
|
328 |
+
if len(xs) == 2:
|
329 |
+
res = self.resConfUnit1(xs[1])
|
330 |
+
output = self.skip_add.add(output, res)
|
331 |
+
# output += res
|
332 |
+
|
333 |
+
output = self.resConfUnit2(output)
|
334 |
+
|
335 |
+
output = nn.functional.interpolate(
|
336 |
+
output, scale_factor=2, mode="bilinear", align_corners=self.align_corners
|
337 |
+
)
|
338 |
+
|
339 |
+
output = self.out_conv(output)
|
340 |
+
|
341 |
+
return output
|
342 |
+
|
ControlNet-v1-1-nightly-main/annotator/midas/midas/dpt_depth.py
ADDED
@@ -0,0 +1,109 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
import torch.nn.functional as F
|
4 |
+
|
5 |
+
from .base_model import BaseModel
|
6 |
+
from .blocks import (
|
7 |
+
FeatureFusionBlock,
|
8 |
+
FeatureFusionBlock_custom,
|
9 |
+
Interpolate,
|
10 |
+
_make_encoder,
|
11 |
+
forward_vit,
|
12 |
+
)
|
13 |
+
|
14 |
+
|
15 |
+
def _make_fusion_block(features, use_bn):
|
16 |
+
return FeatureFusionBlock_custom(
|
17 |
+
features,
|
18 |
+
nn.ReLU(False),
|
19 |
+
deconv=False,
|
20 |
+
bn=use_bn,
|
21 |
+
expand=False,
|
22 |
+
align_corners=True,
|
23 |
+
)
|
24 |
+
|
25 |
+
|
26 |
+
class DPT(BaseModel):
|
27 |
+
def __init__(
|
28 |
+
self,
|
29 |
+
head,
|
30 |
+
features=256,
|
31 |
+
backbone="vitb_rn50_384",
|
32 |
+
readout="project",
|
33 |
+
channels_last=False,
|
34 |
+
use_bn=False,
|
35 |
+
):
|
36 |
+
|
37 |
+
super(DPT, self).__init__()
|
38 |
+
|
39 |
+
self.channels_last = channels_last
|
40 |
+
|
41 |
+
hooks = {
|
42 |
+
"vitb_rn50_384": [0, 1, 8, 11],
|
43 |
+
"vitb16_384": [2, 5, 8, 11],
|
44 |
+
"vitl16_384": [5, 11, 17, 23],
|
45 |
+
}
|
46 |
+
|
47 |
+
# Instantiate backbone and reassemble blocks
|
48 |
+
self.pretrained, self.scratch = _make_encoder(
|
49 |
+
backbone,
|
50 |
+
features,
|
51 |
+
False, # Set to true of you want to train from scratch, uses ImageNet weights
|
52 |
+
groups=1,
|
53 |
+
expand=False,
|
54 |
+
exportable=False,
|
55 |
+
hooks=hooks[backbone],
|
56 |
+
use_readout=readout,
|
57 |
+
)
|
58 |
+
|
59 |
+
self.scratch.refinenet1 = _make_fusion_block(features, use_bn)
|
60 |
+
self.scratch.refinenet2 = _make_fusion_block(features, use_bn)
|
61 |
+
self.scratch.refinenet3 = _make_fusion_block(features, use_bn)
|
62 |
+
self.scratch.refinenet4 = _make_fusion_block(features, use_bn)
|
63 |
+
|
64 |
+
self.scratch.output_conv = head
|
65 |
+
|
66 |
+
|
67 |
+
def forward(self, x):
|
68 |
+
if self.channels_last == True:
|
69 |
+
x.contiguous(memory_format=torch.channels_last)
|
70 |
+
|
71 |
+
layer_1, layer_2, layer_3, layer_4 = forward_vit(self.pretrained, x)
|
72 |
+
|
73 |
+
layer_1_rn = self.scratch.layer1_rn(layer_1)
|
74 |
+
layer_2_rn = self.scratch.layer2_rn(layer_2)
|
75 |
+
layer_3_rn = self.scratch.layer3_rn(layer_3)
|
76 |
+
layer_4_rn = self.scratch.layer4_rn(layer_4)
|
77 |
+
|
78 |
+
path_4 = self.scratch.refinenet4(layer_4_rn)
|
79 |
+
path_3 = self.scratch.refinenet3(path_4, layer_3_rn)
|
80 |
+
path_2 = self.scratch.refinenet2(path_3, layer_2_rn)
|
81 |
+
path_1 = self.scratch.refinenet1(path_2, layer_1_rn)
|
82 |
+
|
83 |
+
out = self.scratch.output_conv(path_1)
|
84 |
+
|
85 |
+
return out
|
86 |
+
|
87 |
+
|
88 |
+
class DPTDepthModel(DPT):
|
89 |
+
def __init__(self, path=None, non_negative=True, **kwargs):
|
90 |
+
features = kwargs["features"] if "features" in kwargs else 256
|
91 |
+
|
92 |
+
head = nn.Sequential(
|
93 |
+
nn.Conv2d(features, features // 2, kernel_size=3, stride=1, padding=1),
|
94 |
+
Interpolate(scale_factor=2, mode="bilinear", align_corners=True),
|
95 |
+
nn.Conv2d(features // 2, 32, kernel_size=3, stride=1, padding=1),
|
96 |
+
nn.ReLU(True),
|
97 |
+
nn.Conv2d(32, 1, kernel_size=1, stride=1, padding=0),
|
98 |
+
nn.ReLU(True) if non_negative else nn.Identity(),
|
99 |
+
nn.Identity(),
|
100 |
+
)
|
101 |
+
|
102 |
+
super().__init__(head, **kwargs)
|
103 |
+
|
104 |
+
if path is not None:
|
105 |
+
self.load(path)
|
106 |
+
|
107 |
+
def forward(self, x):
|
108 |
+
return super().forward(x).squeeze(dim=1)
|
109 |
+
|
ControlNet-v1-1-nightly-main/annotator/midas/midas/midas_net.py
ADDED
@@ -0,0 +1,76 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""MidashNet: Network for monocular depth estimation trained by mixing several datasets.
|
2 |
+
This file contains code that is adapted from
|
3 |
+
https://github.com/thomasjpfan/pytorch_refinenet/blob/master/pytorch_refinenet/refinenet/refinenet_4cascade.py
|
4 |
+
"""
|
5 |
+
import torch
|
6 |
+
import torch.nn as nn
|
7 |
+
|
8 |
+
from .base_model import BaseModel
|
9 |
+
from .blocks import FeatureFusionBlock, Interpolate, _make_encoder
|
10 |
+
|
11 |
+
|
12 |
+
class MidasNet(BaseModel):
|
13 |
+
"""Network for monocular depth estimation.
|
14 |
+
"""
|
15 |
+
|
16 |
+
def __init__(self, path=None, features=256, non_negative=True):
|
17 |
+
"""Init.
|
18 |
+
|
19 |
+
Args:
|
20 |
+
path (str, optional): Path to saved model. Defaults to None.
|
21 |
+
features (int, optional): Number of features. Defaults to 256.
|
22 |
+
backbone (str, optional): Backbone network for encoder. Defaults to resnet50
|
23 |
+
"""
|
24 |
+
print("Loading weights: ", path)
|
25 |
+
|
26 |
+
super(MidasNet, self).__init__()
|
27 |
+
|
28 |
+
use_pretrained = False if path is None else True
|
29 |
+
|
30 |
+
self.pretrained, self.scratch = _make_encoder(backbone="resnext101_wsl", features=features, use_pretrained=use_pretrained)
|
31 |
+
|
32 |
+
self.scratch.refinenet4 = FeatureFusionBlock(features)
|
33 |
+
self.scratch.refinenet3 = FeatureFusionBlock(features)
|
34 |
+
self.scratch.refinenet2 = FeatureFusionBlock(features)
|
35 |
+
self.scratch.refinenet1 = FeatureFusionBlock(features)
|
36 |
+
|
37 |
+
self.scratch.output_conv = nn.Sequential(
|
38 |
+
nn.Conv2d(features, 128, kernel_size=3, stride=1, padding=1),
|
39 |
+
Interpolate(scale_factor=2, mode="bilinear"),
|
40 |
+
nn.Conv2d(128, 32, kernel_size=3, stride=1, padding=1),
|
41 |
+
nn.ReLU(True),
|
42 |
+
nn.Conv2d(32, 1, kernel_size=1, stride=1, padding=0),
|
43 |
+
nn.ReLU(True) if non_negative else nn.Identity(),
|
44 |
+
)
|
45 |
+
|
46 |
+
if path:
|
47 |
+
self.load(path)
|
48 |
+
|
49 |
+
def forward(self, x):
|
50 |
+
"""Forward pass.
|
51 |
+
|
52 |
+
Args:
|
53 |
+
x (tensor): input data (image)
|
54 |
+
|
55 |
+
Returns:
|
56 |
+
tensor: depth
|
57 |
+
"""
|
58 |
+
|
59 |
+
layer_1 = self.pretrained.layer1(x)
|
60 |
+
layer_2 = self.pretrained.layer2(layer_1)
|
61 |
+
layer_3 = self.pretrained.layer3(layer_2)
|
62 |
+
layer_4 = self.pretrained.layer4(layer_3)
|
63 |
+
|
64 |
+
layer_1_rn = self.scratch.layer1_rn(layer_1)
|
65 |
+
layer_2_rn = self.scratch.layer2_rn(layer_2)
|
66 |
+
layer_3_rn = self.scratch.layer3_rn(layer_3)
|
67 |
+
layer_4_rn = self.scratch.layer4_rn(layer_4)
|
68 |
+
|
69 |
+
path_4 = self.scratch.refinenet4(layer_4_rn)
|
70 |
+
path_3 = self.scratch.refinenet3(path_4, layer_3_rn)
|
71 |
+
path_2 = self.scratch.refinenet2(path_3, layer_2_rn)
|
72 |
+
path_1 = self.scratch.refinenet1(path_2, layer_1_rn)
|
73 |
+
|
74 |
+
out = self.scratch.output_conv(path_1)
|
75 |
+
|
76 |
+
return torch.squeeze(out, dim=1)
|
ControlNet-v1-1-nightly-main/annotator/midas/midas/midas_net_custom.py
ADDED
@@ -0,0 +1,128 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""MidashNet: Network for monocular depth estimation trained by mixing several datasets.
|
2 |
+
This file contains code that is adapted from
|
3 |
+
https://github.com/thomasjpfan/pytorch_refinenet/blob/master/pytorch_refinenet/refinenet/refinenet_4cascade.py
|
4 |
+
"""
|
5 |
+
import torch
|
6 |
+
import torch.nn as nn
|
7 |
+
|
8 |
+
from .base_model import BaseModel
|
9 |
+
from .blocks import FeatureFusionBlock, FeatureFusionBlock_custom, Interpolate, _make_encoder
|
10 |
+
|
11 |
+
|
12 |
+
class MidasNet_small(BaseModel):
|
13 |
+
"""Network for monocular depth estimation.
|
14 |
+
"""
|
15 |
+
|
16 |
+
def __init__(self, path=None, features=64, backbone="efficientnet_lite3", non_negative=True, exportable=True, channels_last=False, align_corners=True,
|
17 |
+
blocks={'expand': True}):
|
18 |
+
"""Init.
|
19 |
+
|
20 |
+
Args:
|
21 |
+
path (str, optional): Path to saved model. Defaults to None.
|
22 |
+
features (int, optional): Number of features. Defaults to 256.
|
23 |
+
backbone (str, optional): Backbone network for encoder. Defaults to resnet50
|
24 |
+
"""
|
25 |
+
print("Loading weights: ", path)
|
26 |
+
|
27 |
+
super(MidasNet_small, self).__init__()
|
28 |
+
|
29 |
+
use_pretrained = False if path else True
|
30 |
+
|
31 |
+
self.channels_last = channels_last
|
32 |
+
self.blocks = blocks
|
33 |
+
self.backbone = backbone
|
34 |
+
|
35 |
+
self.groups = 1
|
36 |
+
|
37 |
+
features1=features
|
38 |
+
features2=features
|
39 |
+
features3=features
|
40 |
+
features4=features
|
41 |
+
self.expand = False
|
42 |
+
if "expand" in self.blocks and self.blocks['expand'] == True:
|
43 |
+
self.expand = True
|
44 |
+
features1=features
|
45 |
+
features2=features*2
|
46 |
+
features3=features*4
|
47 |
+
features4=features*8
|
48 |
+
|
49 |
+
self.pretrained, self.scratch = _make_encoder(self.backbone, features, use_pretrained, groups=self.groups, expand=self.expand, exportable=exportable)
|
50 |
+
|
51 |
+
self.scratch.activation = nn.ReLU(False)
|
52 |
+
|
53 |
+
self.scratch.refinenet4 = FeatureFusionBlock_custom(features4, self.scratch.activation, deconv=False, bn=False, expand=self.expand, align_corners=align_corners)
|
54 |
+
self.scratch.refinenet3 = FeatureFusionBlock_custom(features3, self.scratch.activation, deconv=False, bn=False, expand=self.expand, align_corners=align_corners)
|
55 |
+
self.scratch.refinenet2 = FeatureFusionBlock_custom(features2, self.scratch.activation, deconv=False, bn=False, expand=self.expand, align_corners=align_corners)
|
56 |
+
self.scratch.refinenet1 = FeatureFusionBlock_custom(features1, self.scratch.activation, deconv=False, bn=False, align_corners=align_corners)
|
57 |
+
|
58 |
+
|
59 |
+
self.scratch.output_conv = nn.Sequential(
|
60 |
+
nn.Conv2d(features, features//2, kernel_size=3, stride=1, padding=1, groups=self.groups),
|
61 |
+
Interpolate(scale_factor=2, mode="bilinear"),
|
62 |
+
nn.Conv2d(features//2, 32, kernel_size=3, stride=1, padding=1),
|
63 |
+
self.scratch.activation,
|
64 |
+
nn.Conv2d(32, 1, kernel_size=1, stride=1, padding=0),
|
65 |
+
nn.ReLU(True) if non_negative else nn.Identity(),
|
66 |
+
nn.Identity(),
|
67 |
+
)
|
68 |
+
|
69 |
+
if path:
|
70 |
+
self.load(path)
|
71 |
+
|
72 |
+
|
73 |
+
def forward(self, x):
|
74 |
+
"""Forward pass.
|
75 |
+
|
76 |
+
Args:
|
77 |
+
x (tensor): input data (image)
|
78 |
+
|
79 |
+
Returns:
|
80 |
+
tensor: depth
|
81 |
+
"""
|
82 |
+
if self.channels_last==True:
|
83 |
+
print("self.channels_last = ", self.channels_last)
|
84 |
+
x.contiguous(memory_format=torch.channels_last)
|
85 |
+
|
86 |
+
|
87 |
+
layer_1 = self.pretrained.layer1(x)
|
88 |
+
layer_2 = self.pretrained.layer2(layer_1)
|
89 |
+
layer_3 = self.pretrained.layer3(layer_2)
|
90 |
+
layer_4 = self.pretrained.layer4(layer_3)
|
91 |
+
|
92 |
+
layer_1_rn = self.scratch.layer1_rn(layer_1)
|
93 |
+
layer_2_rn = self.scratch.layer2_rn(layer_2)
|
94 |
+
layer_3_rn = self.scratch.layer3_rn(layer_3)
|
95 |
+
layer_4_rn = self.scratch.layer4_rn(layer_4)
|
96 |
+
|
97 |
+
|
98 |
+
path_4 = self.scratch.refinenet4(layer_4_rn)
|
99 |
+
path_3 = self.scratch.refinenet3(path_4, layer_3_rn)
|
100 |
+
path_2 = self.scratch.refinenet2(path_3, layer_2_rn)
|
101 |
+
path_1 = self.scratch.refinenet1(path_2, layer_1_rn)
|
102 |
+
|
103 |
+
out = self.scratch.output_conv(path_1)
|
104 |
+
|
105 |
+
return torch.squeeze(out, dim=1)
|
106 |
+
|
107 |
+
|
108 |
+
|
109 |
+
def fuse_model(m):
|
110 |
+
prev_previous_type = nn.Identity()
|
111 |
+
prev_previous_name = ''
|
112 |
+
previous_type = nn.Identity()
|
113 |
+
previous_name = ''
|
114 |
+
for name, module in m.named_modules():
|
115 |
+
if prev_previous_type == nn.Conv2d and previous_type == nn.BatchNorm2d and type(module) == nn.ReLU:
|
116 |
+
# print("FUSED ", prev_previous_name, previous_name, name)
|
117 |
+
torch.quantization.fuse_modules(m, [prev_previous_name, previous_name, name], inplace=True)
|
118 |
+
elif prev_previous_type == nn.Conv2d and previous_type == nn.BatchNorm2d:
|
119 |
+
# print("FUSED ", prev_previous_name, previous_name)
|
120 |
+
torch.quantization.fuse_modules(m, [prev_previous_name, previous_name], inplace=True)
|
121 |
+
# elif previous_type == nn.Conv2d and type(module) == nn.ReLU:
|
122 |
+
# print("FUSED ", previous_name, name)
|
123 |
+
# torch.quantization.fuse_modules(m, [previous_name, name], inplace=True)
|
124 |
+
|
125 |
+
prev_previous_type = previous_type
|
126 |
+
prev_previous_name = previous_name
|
127 |
+
previous_type = type(module)
|
128 |
+
previous_name = name
|
ControlNet-v1-1-nightly-main/annotator/midas/midas/transforms.py
ADDED
@@ -0,0 +1,234 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import cv2
|
3 |
+
import math
|
4 |
+
|
5 |
+
|
6 |
+
def apply_min_size(sample, size, image_interpolation_method=cv2.INTER_AREA):
|
7 |
+
"""Rezise the sample to ensure the given size. Keeps aspect ratio.
|
8 |
+
|
9 |
+
Args:
|
10 |
+
sample (dict): sample
|
11 |
+
size (tuple): image size
|
12 |
+
|
13 |
+
Returns:
|
14 |
+
tuple: new size
|
15 |
+
"""
|
16 |
+
shape = list(sample["disparity"].shape)
|
17 |
+
|
18 |
+
if shape[0] >= size[0] and shape[1] >= size[1]:
|
19 |
+
return sample
|
20 |
+
|
21 |
+
scale = [0, 0]
|
22 |
+
scale[0] = size[0] / shape[0]
|
23 |
+
scale[1] = size[1] / shape[1]
|
24 |
+
|
25 |
+
scale = max(scale)
|
26 |
+
|
27 |
+
shape[0] = math.ceil(scale * shape[0])
|
28 |
+
shape[1] = math.ceil(scale * shape[1])
|
29 |
+
|
30 |
+
# resize
|
31 |
+
sample["image"] = cv2.resize(
|
32 |
+
sample["image"], tuple(shape[::-1]), interpolation=image_interpolation_method
|
33 |
+
)
|
34 |
+
|
35 |
+
sample["disparity"] = cv2.resize(
|
36 |
+
sample["disparity"], tuple(shape[::-1]), interpolation=cv2.INTER_NEAREST
|
37 |
+
)
|
38 |
+
sample["mask"] = cv2.resize(
|
39 |
+
sample["mask"].astype(np.float32),
|
40 |
+
tuple(shape[::-1]),
|
41 |
+
interpolation=cv2.INTER_NEAREST,
|
42 |
+
)
|
43 |
+
sample["mask"] = sample["mask"].astype(bool)
|
44 |
+
|
45 |
+
return tuple(shape)
|
46 |
+
|
47 |
+
|
48 |
+
class Resize(object):
|
49 |
+
"""Resize sample to given size (width, height).
|
50 |
+
"""
|
51 |
+
|
52 |
+
def __init__(
|
53 |
+
self,
|
54 |
+
width,
|
55 |
+
height,
|
56 |
+
resize_target=True,
|
57 |
+
keep_aspect_ratio=False,
|
58 |
+
ensure_multiple_of=1,
|
59 |
+
resize_method="lower_bound",
|
60 |
+
image_interpolation_method=cv2.INTER_AREA,
|
61 |
+
):
|
62 |
+
"""Init.
|
63 |
+
|
64 |
+
Args:
|
65 |
+
width (int): desired output width
|
66 |
+
height (int): desired output height
|
67 |
+
resize_target (bool, optional):
|
68 |
+
True: Resize the full sample (image, mask, target).
|
69 |
+
False: Resize image only.
|
70 |
+
Defaults to True.
|
71 |
+
keep_aspect_ratio (bool, optional):
|
72 |
+
True: Keep the aspect ratio of the input sample.
|
73 |
+
Output sample might not have the given width and height, and
|
74 |
+
resize behaviour depends on the parameter 'resize_method'.
|
75 |
+
Defaults to False.
|
76 |
+
ensure_multiple_of (int, optional):
|
77 |
+
Output width and height is constrained to be multiple of this parameter.
|
78 |
+
Defaults to 1.
|
79 |
+
resize_method (str, optional):
|
80 |
+
"lower_bound": Output will be at least as large as the given size.
|
81 |
+
"upper_bound": Output will be at max as large as the given size. (Output size might be smaller than given size.)
|
82 |
+
"minimal": Scale as least as possible. (Output size might be smaller than given size.)
|
83 |
+
Defaults to "lower_bound".
|
84 |
+
"""
|
85 |
+
self.__width = width
|
86 |
+
self.__height = height
|
87 |
+
|
88 |
+
self.__resize_target = resize_target
|
89 |
+
self.__keep_aspect_ratio = keep_aspect_ratio
|
90 |
+
self.__multiple_of = ensure_multiple_of
|
91 |
+
self.__resize_method = resize_method
|
92 |
+
self.__image_interpolation_method = image_interpolation_method
|
93 |
+
|
94 |
+
def constrain_to_multiple_of(self, x, min_val=0, max_val=None):
|
95 |
+
y = (np.round(x / self.__multiple_of) * self.__multiple_of).astype(int)
|
96 |
+
|
97 |
+
if max_val is not None and y > max_val:
|
98 |
+
y = (np.floor(x / self.__multiple_of) * self.__multiple_of).astype(int)
|
99 |
+
|
100 |
+
if y < min_val:
|
101 |
+
y = (np.ceil(x / self.__multiple_of) * self.__multiple_of).astype(int)
|
102 |
+
|
103 |
+
return y
|
104 |
+
|
105 |
+
def get_size(self, width, height):
|
106 |
+
# determine new height and width
|
107 |
+
scale_height = self.__height / height
|
108 |
+
scale_width = self.__width / width
|
109 |
+
|
110 |
+
if self.__keep_aspect_ratio:
|
111 |
+
if self.__resize_method == "lower_bound":
|
112 |
+
# scale such that output size is lower bound
|
113 |
+
if scale_width > scale_height:
|
114 |
+
# fit width
|
115 |
+
scale_height = scale_width
|
116 |
+
else:
|
117 |
+
# fit height
|
118 |
+
scale_width = scale_height
|
119 |
+
elif self.__resize_method == "upper_bound":
|
120 |
+
# scale such that output size is upper bound
|
121 |
+
if scale_width < scale_height:
|
122 |
+
# fit width
|
123 |
+
scale_height = scale_width
|
124 |
+
else:
|
125 |
+
# fit height
|
126 |
+
scale_width = scale_height
|
127 |
+
elif self.__resize_method == "minimal":
|
128 |
+
# scale as least as possbile
|
129 |
+
if abs(1 - scale_width) < abs(1 - scale_height):
|
130 |
+
# fit width
|
131 |
+
scale_height = scale_width
|
132 |
+
else:
|
133 |
+
# fit height
|
134 |
+
scale_width = scale_height
|
135 |
+
else:
|
136 |
+
raise ValueError(
|
137 |
+
f"resize_method {self.__resize_method} not implemented"
|
138 |
+
)
|
139 |
+
|
140 |
+
if self.__resize_method == "lower_bound":
|
141 |
+
new_height = self.constrain_to_multiple_of(
|
142 |
+
scale_height * height, min_val=self.__height
|
143 |
+
)
|
144 |
+
new_width = self.constrain_to_multiple_of(
|
145 |
+
scale_width * width, min_val=self.__width
|
146 |
+
)
|
147 |
+
elif self.__resize_method == "upper_bound":
|
148 |
+
new_height = self.constrain_to_multiple_of(
|
149 |
+
scale_height * height, max_val=self.__height
|
150 |
+
)
|
151 |
+
new_width = self.constrain_to_multiple_of(
|
152 |
+
scale_width * width, max_val=self.__width
|
153 |
+
)
|
154 |
+
elif self.__resize_method == "minimal":
|
155 |
+
new_height = self.constrain_to_multiple_of(scale_height * height)
|
156 |
+
new_width = self.constrain_to_multiple_of(scale_width * width)
|
157 |
+
else:
|
158 |
+
raise ValueError(f"resize_method {self.__resize_method} not implemented")
|
159 |
+
|
160 |
+
return (new_width, new_height)
|
161 |
+
|
162 |
+
def __call__(self, sample):
|
163 |
+
width, height = self.get_size(
|
164 |
+
sample["image"].shape[1], sample["image"].shape[0]
|
165 |
+
)
|
166 |
+
|
167 |
+
# resize sample
|
168 |
+
sample["image"] = cv2.resize(
|
169 |
+
sample["image"],
|
170 |
+
(width, height),
|
171 |
+
interpolation=self.__image_interpolation_method,
|
172 |
+
)
|
173 |
+
|
174 |
+
if self.__resize_target:
|
175 |
+
if "disparity" in sample:
|
176 |
+
sample["disparity"] = cv2.resize(
|
177 |
+
sample["disparity"],
|
178 |
+
(width, height),
|
179 |
+
interpolation=cv2.INTER_NEAREST,
|
180 |
+
)
|
181 |
+
|
182 |
+
if "depth" in sample:
|
183 |
+
sample["depth"] = cv2.resize(
|
184 |
+
sample["depth"], (width, height), interpolation=cv2.INTER_NEAREST
|
185 |
+
)
|
186 |
+
|
187 |
+
sample["mask"] = cv2.resize(
|
188 |
+
sample["mask"].astype(np.float32),
|
189 |
+
(width, height),
|
190 |
+
interpolation=cv2.INTER_NEAREST,
|
191 |
+
)
|
192 |
+
sample["mask"] = sample["mask"].astype(bool)
|
193 |
+
|
194 |
+
return sample
|
195 |
+
|
196 |
+
|
197 |
+
class NormalizeImage(object):
|
198 |
+
"""Normlize image by given mean and std.
|
199 |
+
"""
|
200 |
+
|
201 |
+
def __init__(self, mean, std):
|
202 |
+
self.__mean = mean
|
203 |
+
self.__std = std
|
204 |
+
|
205 |
+
def __call__(self, sample):
|
206 |
+
sample["image"] = (sample["image"] - self.__mean) / self.__std
|
207 |
+
|
208 |
+
return sample
|
209 |
+
|
210 |
+
|
211 |
+
class PrepareForNet(object):
|
212 |
+
"""Prepare sample for usage as network input.
|
213 |
+
"""
|
214 |
+
|
215 |
+
def __init__(self):
|
216 |
+
pass
|
217 |
+
|
218 |
+
def __call__(self, sample):
|
219 |
+
image = np.transpose(sample["image"], (2, 0, 1))
|
220 |
+
sample["image"] = np.ascontiguousarray(image).astype(np.float32)
|
221 |
+
|
222 |
+
if "mask" in sample:
|
223 |
+
sample["mask"] = sample["mask"].astype(np.float32)
|
224 |
+
sample["mask"] = np.ascontiguousarray(sample["mask"])
|
225 |
+
|
226 |
+
if "disparity" in sample:
|
227 |
+
disparity = sample["disparity"].astype(np.float32)
|
228 |
+
sample["disparity"] = np.ascontiguousarray(disparity)
|
229 |
+
|
230 |
+
if "depth" in sample:
|
231 |
+
depth = sample["depth"].astype(np.float32)
|
232 |
+
sample["depth"] = np.ascontiguousarray(depth)
|
233 |
+
|
234 |
+
return sample
|
ControlNet-v1-1-nightly-main/annotator/midas/midas/vit.py
ADDED
@@ -0,0 +1,491 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
import timm
|
4 |
+
import types
|
5 |
+
import math
|
6 |
+
import torch.nn.functional as F
|
7 |
+
|
8 |
+
|
9 |
+
class Slice(nn.Module):
|
10 |
+
def __init__(self, start_index=1):
|
11 |
+
super(Slice, self).__init__()
|
12 |
+
self.start_index = start_index
|
13 |
+
|
14 |
+
def forward(self, x):
|
15 |
+
return x[:, self.start_index :]
|
16 |
+
|
17 |
+
|
18 |
+
class AddReadout(nn.Module):
|
19 |
+
def __init__(self, start_index=1):
|
20 |
+
super(AddReadout, self).__init__()
|
21 |
+
self.start_index = start_index
|
22 |
+
|
23 |
+
def forward(self, x):
|
24 |
+
if self.start_index == 2:
|
25 |
+
readout = (x[:, 0] + x[:, 1]) / 2
|
26 |
+
else:
|
27 |
+
readout = x[:, 0]
|
28 |
+
return x[:, self.start_index :] + readout.unsqueeze(1)
|
29 |
+
|
30 |
+
|
31 |
+
class ProjectReadout(nn.Module):
|
32 |
+
def __init__(self, in_features, start_index=1):
|
33 |
+
super(ProjectReadout, self).__init__()
|
34 |
+
self.start_index = start_index
|
35 |
+
|
36 |
+
self.project = nn.Sequential(nn.Linear(2 * in_features, in_features), nn.GELU())
|
37 |
+
|
38 |
+
def forward(self, x):
|
39 |
+
readout = x[:, 0].unsqueeze(1).expand_as(x[:, self.start_index :])
|
40 |
+
features = torch.cat((x[:, self.start_index :], readout), -1)
|
41 |
+
|
42 |
+
return self.project(features)
|
43 |
+
|
44 |
+
|
45 |
+
class Transpose(nn.Module):
|
46 |
+
def __init__(self, dim0, dim1):
|
47 |
+
super(Transpose, self).__init__()
|
48 |
+
self.dim0 = dim0
|
49 |
+
self.dim1 = dim1
|
50 |
+
|
51 |
+
def forward(self, x):
|
52 |
+
x = x.transpose(self.dim0, self.dim1)
|
53 |
+
return x
|
54 |
+
|
55 |
+
|
56 |
+
def forward_vit(pretrained, x):
|
57 |
+
b, c, h, w = x.shape
|
58 |
+
|
59 |
+
glob = pretrained.model.forward_flex(x)
|
60 |
+
|
61 |
+
layer_1 = pretrained.activations["1"]
|
62 |
+
layer_2 = pretrained.activations["2"]
|
63 |
+
layer_3 = pretrained.activations["3"]
|
64 |
+
layer_4 = pretrained.activations["4"]
|
65 |
+
|
66 |
+
layer_1 = pretrained.act_postprocess1[0:2](layer_1)
|
67 |
+
layer_2 = pretrained.act_postprocess2[0:2](layer_2)
|
68 |
+
layer_3 = pretrained.act_postprocess3[0:2](layer_3)
|
69 |
+
layer_4 = pretrained.act_postprocess4[0:2](layer_4)
|
70 |
+
|
71 |
+
unflatten = nn.Sequential(
|
72 |
+
nn.Unflatten(
|
73 |
+
2,
|
74 |
+
torch.Size(
|
75 |
+
[
|
76 |
+
h // pretrained.model.patch_size[1],
|
77 |
+
w // pretrained.model.patch_size[0],
|
78 |
+
]
|
79 |
+
),
|
80 |
+
)
|
81 |
+
)
|
82 |
+
|
83 |
+
if layer_1.ndim == 3:
|
84 |
+
layer_1 = unflatten(layer_1)
|
85 |
+
if layer_2.ndim == 3:
|
86 |
+
layer_2 = unflatten(layer_2)
|
87 |
+
if layer_3.ndim == 3:
|
88 |
+
layer_3 = unflatten(layer_3)
|
89 |
+
if layer_4.ndim == 3:
|
90 |
+
layer_4 = unflatten(layer_4)
|
91 |
+
|
92 |
+
layer_1 = pretrained.act_postprocess1[3 : len(pretrained.act_postprocess1)](layer_1)
|
93 |
+
layer_2 = pretrained.act_postprocess2[3 : len(pretrained.act_postprocess2)](layer_2)
|
94 |
+
layer_3 = pretrained.act_postprocess3[3 : len(pretrained.act_postprocess3)](layer_3)
|
95 |
+
layer_4 = pretrained.act_postprocess4[3 : len(pretrained.act_postprocess4)](layer_4)
|
96 |
+
|
97 |
+
return layer_1, layer_2, layer_3, layer_4
|
98 |
+
|
99 |
+
|
100 |
+
def _resize_pos_embed(self, posemb, gs_h, gs_w):
|
101 |
+
posemb_tok, posemb_grid = (
|
102 |
+
posemb[:, : self.start_index],
|
103 |
+
posemb[0, self.start_index :],
|
104 |
+
)
|
105 |
+
|
106 |
+
gs_old = int(math.sqrt(len(posemb_grid)))
|
107 |
+
|
108 |
+
posemb_grid = posemb_grid.reshape(1, gs_old, gs_old, -1).permute(0, 3, 1, 2)
|
109 |
+
posemb_grid = F.interpolate(posemb_grid, size=(gs_h, gs_w), mode="bilinear")
|
110 |
+
posemb_grid = posemb_grid.permute(0, 2, 3, 1).reshape(1, gs_h * gs_w, -1)
|
111 |
+
|
112 |
+
posemb = torch.cat([posemb_tok, posemb_grid], dim=1)
|
113 |
+
|
114 |
+
return posemb
|
115 |
+
|
116 |
+
|
117 |
+
def forward_flex(self, x):
|
118 |
+
b, c, h, w = x.shape
|
119 |
+
|
120 |
+
pos_embed = self._resize_pos_embed(
|
121 |
+
self.pos_embed, h // self.patch_size[1], w // self.patch_size[0]
|
122 |
+
)
|
123 |
+
|
124 |
+
B = x.shape[0]
|
125 |
+
|
126 |
+
if hasattr(self.patch_embed, "backbone"):
|
127 |
+
x = self.patch_embed.backbone(x)
|
128 |
+
if isinstance(x, (list, tuple)):
|
129 |
+
x = x[-1] # last feature if backbone outputs list/tuple of features
|
130 |
+
|
131 |
+
x = self.patch_embed.proj(x).flatten(2).transpose(1, 2)
|
132 |
+
|
133 |
+
if getattr(self, "dist_token", None) is not None:
|
134 |
+
cls_tokens = self.cls_token.expand(
|
135 |
+
B, -1, -1
|
136 |
+
) # stole cls_tokens impl from Phil Wang, thanks
|
137 |
+
dist_token = self.dist_token.expand(B, -1, -1)
|
138 |
+
x = torch.cat((cls_tokens, dist_token, x), dim=1)
|
139 |
+
else:
|
140 |
+
cls_tokens = self.cls_token.expand(
|
141 |
+
B, -1, -1
|
142 |
+
) # stole cls_tokens impl from Phil Wang, thanks
|
143 |
+
x = torch.cat((cls_tokens, x), dim=1)
|
144 |
+
|
145 |
+
x = x + pos_embed
|
146 |
+
x = self.pos_drop(x)
|
147 |
+
|
148 |
+
for blk in self.blocks:
|
149 |
+
x = blk(x)
|
150 |
+
|
151 |
+
x = self.norm(x)
|
152 |
+
|
153 |
+
return x
|
154 |
+
|
155 |
+
|
156 |
+
activations = {}
|
157 |
+
|
158 |
+
|
159 |
+
def get_activation(name):
|
160 |
+
def hook(model, input, output):
|
161 |
+
activations[name] = output
|
162 |
+
|
163 |
+
return hook
|
164 |
+
|
165 |
+
|
166 |
+
def get_readout_oper(vit_features, features, use_readout, start_index=1):
|
167 |
+
if use_readout == "ignore":
|
168 |
+
readout_oper = [Slice(start_index)] * len(features)
|
169 |
+
elif use_readout == "add":
|
170 |
+
readout_oper = [AddReadout(start_index)] * len(features)
|
171 |
+
elif use_readout == "project":
|
172 |
+
readout_oper = [
|
173 |
+
ProjectReadout(vit_features, start_index) for out_feat in features
|
174 |
+
]
|
175 |
+
else:
|
176 |
+
assert (
|
177 |
+
False
|
178 |
+
), "wrong operation for readout token, use_readout can be 'ignore', 'add', or 'project'"
|
179 |
+
|
180 |
+
return readout_oper
|
181 |
+
|
182 |
+
|
183 |
+
def _make_vit_b16_backbone(
|
184 |
+
model,
|
185 |
+
features=[96, 192, 384, 768],
|
186 |
+
size=[384, 384],
|
187 |
+
hooks=[2, 5, 8, 11],
|
188 |
+
vit_features=768,
|
189 |
+
use_readout="ignore",
|
190 |
+
start_index=1,
|
191 |
+
):
|
192 |
+
pretrained = nn.Module()
|
193 |
+
|
194 |
+
pretrained.model = model
|
195 |
+
pretrained.model.blocks[hooks[0]].register_forward_hook(get_activation("1"))
|
196 |
+
pretrained.model.blocks[hooks[1]].register_forward_hook(get_activation("2"))
|
197 |
+
pretrained.model.blocks[hooks[2]].register_forward_hook(get_activation("3"))
|
198 |
+
pretrained.model.blocks[hooks[3]].register_forward_hook(get_activation("4"))
|
199 |
+
|
200 |
+
pretrained.activations = activations
|
201 |
+
|
202 |
+
readout_oper = get_readout_oper(vit_features, features, use_readout, start_index)
|
203 |
+
|
204 |
+
# 32, 48, 136, 384
|
205 |
+
pretrained.act_postprocess1 = nn.Sequential(
|
206 |
+
readout_oper[0],
|
207 |
+
Transpose(1, 2),
|
208 |
+
nn.Unflatten(2, torch.Size([size[0] // 16, size[1] // 16])),
|
209 |
+
nn.Conv2d(
|
210 |
+
in_channels=vit_features,
|
211 |
+
out_channels=features[0],
|
212 |
+
kernel_size=1,
|
213 |
+
stride=1,
|
214 |
+
padding=0,
|
215 |
+
),
|
216 |
+
nn.ConvTranspose2d(
|
217 |
+
in_channels=features[0],
|
218 |
+
out_channels=features[0],
|
219 |
+
kernel_size=4,
|
220 |
+
stride=4,
|
221 |
+
padding=0,
|
222 |
+
bias=True,
|
223 |
+
dilation=1,
|
224 |
+
groups=1,
|
225 |
+
),
|
226 |
+
)
|
227 |
+
|
228 |
+
pretrained.act_postprocess2 = nn.Sequential(
|
229 |
+
readout_oper[1],
|
230 |
+
Transpose(1, 2),
|
231 |
+
nn.Unflatten(2, torch.Size([size[0] // 16, size[1] // 16])),
|
232 |
+
nn.Conv2d(
|
233 |
+
in_channels=vit_features,
|
234 |
+
out_channels=features[1],
|
235 |
+
kernel_size=1,
|
236 |
+
stride=1,
|
237 |
+
padding=0,
|
238 |
+
),
|
239 |
+
nn.ConvTranspose2d(
|
240 |
+
in_channels=features[1],
|
241 |
+
out_channels=features[1],
|
242 |
+
kernel_size=2,
|
243 |
+
stride=2,
|
244 |
+
padding=0,
|
245 |
+
bias=True,
|
246 |
+
dilation=1,
|
247 |
+
groups=1,
|
248 |
+
),
|
249 |
+
)
|
250 |
+
|
251 |
+
pretrained.act_postprocess3 = nn.Sequential(
|
252 |
+
readout_oper[2],
|
253 |
+
Transpose(1, 2),
|
254 |
+
nn.Unflatten(2, torch.Size([size[0] // 16, size[1] // 16])),
|
255 |
+
nn.Conv2d(
|
256 |
+
in_channels=vit_features,
|
257 |
+
out_channels=features[2],
|
258 |
+
kernel_size=1,
|
259 |
+
stride=1,
|
260 |
+
padding=0,
|
261 |
+
),
|
262 |
+
)
|
263 |
+
|
264 |
+
pretrained.act_postprocess4 = nn.Sequential(
|
265 |
+
readout_oper[3],
|
266 |
+
Transpose(1, 2),
|
267 |
+
nn.Unflatten(2, torch.Size([size[0] // 16, size[1] // 16])),
|
268 |
+
nn.Conv2d(
|
269 |
+
in_channels=vit_features,
|
270 |
+
out_channels=features[3],
|
271 |
+
kernel_size=1,
|
272 |
+
stride=1,
|
273 |
+
padding=0,
|
274 |
+
),
|
275 |
+
nn.Conv2d(
|
276 |
+
in_channels=features[3],
|
277 |
+
out_channels=features[3],
|
278 |
+
kernel_size=3,
|
279 |
+
stride=2,
|
280 |
+
padding=1,
|
281 |
+
),
|
282 |
+
)
|
283 |
+
|
284 |
+
pretrained.model.start_index = start_index
|
285 |
+
pretrained.model.patch_size = [16, 16]
|
286 |
+
|
287 |
+
# We inject this function into the VisionTransformer instances so that
|
288 |
+
# we can use it with interpolated position embeddings without modifying the library source.
|
289 |
+
pretrained.model.forward_flex = types.MethodType(forward_flex, pretrained.model)
|
290 |
+
pretrained.model._resize_pos_embed = types.MethodType(
|
291 |
+
_resize_pos_embed, pretrained.model
|
292 |
+
)
|
293 |
+
|
294 |
+
return pretrained
|
295 |
+
|
296 |
+
|
297 |
+
def _make_pretrained_vitl16_384(pretrained, use_readout="ignore", hooks=None):
|
298 |
+
model = timm.create_model("vit_large_patch16_384", pretrained=pretrained)
|
299 |
+
|
300 |
+
hooks = [5, 11, 17, 23] if hooks == None else hooks
|
301 |
+
return _make_vit_b16_backbone(
|
302 |
+
model,
|
303 |
+
features=[256, 512, 1024, 1024],
|
304 |
+
hooks=hooks,
|
305 |
+
vit_features=1024,
|
306 |
+
use_readout=use_readout,
|
307 |
+
)
|
308 |
+
|
309 |
+
|
310 |
+
def _make_pretrained_vitb16_384(pretrained, use_readout="ignore", hooks=None):
|
311 |
+
model = timm.create_model("vit_base_patch16_384", pretrained=pretrained)
|
312 |
+
|
313 |
+
hooks = [2, 5, 8, 11] if hooks == None else hooks
|
314 |
+
return _make_vit_b16_backbone(
|
315 |
+
model, features=[96, 192, 384, 768], hooks=hooks, use_readout=use_readout
|
316 |
+
)
|
317 |
+
|
318 |
+
|
319 |
+
def _make_pretrained_deitb16_384(pretrained, use_readout="ignore", hooks=None):
|
320 |
+
model = timm.create_model("vit_deit_base_patch16_384", pretrained=pretrained)
|
321 |
+
|
322 |
+
hooks = [2, 5, 8, 11] if hooks == None else hooks
|
323 |
+
return _make_vit_b16_backbone(
|
324 |
+
model, features=[96, 192, 384, 768], hooks=hooks, use_readout=use_readout
|
325 |
+
)
|
326 |
+
|
327 |
+
|
328 |
+
def _make_pretrained_deitb16_distil_384(pretrained, use_readout="ignore", hooks=None):
|
329 |
+
model = timm.create_model(
|
330 |
+
"vit_deit_base_distilled_patch16_384", pretrained=pretrained
|
331 |
+
)
|
332 |
+
|
333 |
+
hooks = [2, 5, 8, 11] if hooks == None else hooks
|
334 |
+
return _make_vit_b16_backbone(
|
335 |
+
model,
|
336 |
+
features=[96, 192, 384, 768],
|
337 |
+
hooks=hooks,
|
338 |
+
use_readout=use_readout,
|
339 |
+
start_index=2,
|
340 |
+
)
|
341 |
+
|
342 |
+
|
343 |
+
def _make_vit_b_rn50_backbone(
|
344 |
+
model,
|
345 |
+
features=[256, 512, 768, 768],
|
346 |
+
size=[384, 384],
|
347 |
+
hooks=[0, 1, 8, 11],
|
348 |
+
vit_features=768,
|
349 |
+
use_vit_only=False,
|
350 |
+
use_readout="ignore",
|
351 |
+
start_index=1,
|
352 |
+
):
|
353 |
+
pretrained = nn.Module()
|
354 |
+
|
355 |
+
pretrained.model = model
|
356 |
+
|
357 |
+
if use_vit_only == True:
|
358 |
+
pretrained.model.blocks[hooks[0]].register_forward_hook(get_activation("1"))
|
359 |
+
pretrained.model.blocks[hooks[1]].register_forward_hook(get_activation("2"))
|
360 |
+
else:
|
361 |
+
pretrained.model.patch_embed.backbone.stages[0].register_forward_hook(
|
362 |
+
get_activation("1")
|
363 |
+
)
|
364 |
+
pretrained.model.patch_embed.backbone.stages[1].register_forward_hook(
|
365 |
+
get_activation("2")
|
366 |
+
)
|
367 |
+
|
368 |
+
pretrained.model.blocks[hooks[2]].register_forward_hook(get_activation("3"))
|
369 |
+
pretrained.model.blocks[hooks[3]].register_forward_hook(get_activation("4"))
|
370 |
+
|
371 |
+
pretrained.activations = activations
|
372 |
+
|
373 |
+
readout_oper = get_readout_oper(vit_features, features, use_readout, start_index)
|
374 |
+
|
375 |
+
if use_vit_only == True:
|
376 |
+
pretrained.act_postprocess1 = nn.Sequential(
|
377 |
+
readout_oper[0],
|
378 |
+
Transpose(1, 2),
|
379 |
+
nn.Unflatten(2, torch.Size([size[0] // 16, size[1] // 16])),
|
380 |
+
nn.Conv2d(
|
381 |
+
in_channels=vit_features,
|
382 |
+
out_channels=features[0],
|
383 |
+
kernel_size=1,
|
384 |
+
stride=1,
|
385 |
+
padding=0,
|
386 |
+
),
|
387 |
+
nn.ConvTranspose2d(
|
388 |
+
in_channels=features[0],
|
389 |
+
out_channels=features[0],
|
390 |
+
kernel_size=4,
|
391 |
+
stride=4,
|
392 |
+
padding=0,
|
393 |
+
bias=True,
|
394 |
+
dilation=1,
|
395 |
+
groups=1,
|
396 |
+
),
|
397 |
+
)
|
398 |
+
|
399 |
+
pretrained.act_postprocess2 = nn.Sequential(
|
400 |
+
readout_oper[1],
|
401 |
+
Transpose(1, 2),
|
402 |
+
nn.Unflatten(2, torch.Size([size[0] // 16, size[1] // 16])),
|
403 |
+
nn.Conv2d(
|
404 |
+
in_channels=vit_features,
|
405 |
+
out_channels=features[1],
|
406 |
+
kernel_size=1,
|
407 |
+
stride=1,
|
408 |
+
padding=0,
|
409 |
+
),
|
410 |
+
nn.ConvTranspose2d(
|
411 |
+
in_channels=features[1],
|
412 |
+
out_channels=features[1],
|
413 |
+
kernel_size=2,
|
414 |
+
stride=2,
|
415 |
+
padding=0,
|
416 |
+
bias=True,
|
417 |
+
dilation=1,
|
418 |
+
groups=1,
|
419 |
+
),
|
420 |
+
)
|
421 |
+
else:
|
422 |
+
pretrained.act_postprocess1 = nn.Sequential(
|
423 |
+
nn.Identity(), nn.Identity(), nn.Identity()
|
424 |
+
)
|
425 |
+
pretrained.act_postprocess2 = nn.Sequential(
|
426 |
+
nn.Identity(), nn.Identity(), nn.Identity()
|
427 |
+
)
|
428 |
+
|
429 |
+
pretrained.act_postprocess3 = nn.Sequential(
|
430 |
+
readout_oper[2],
|
431 |
+
Transpose(1, 2),
|
432 |
+
nn.Unflatten(2, torch.Size([size[0] // 16, size[1] // 16])),
|
433 |
+
nn.Conv2d(
|
434 |
+
in_channels=vit_features,
|
435 |
+
out_channels=features[2],
|
436 |
+
kernel_size=1,
|
437 |
+
stride=1,
|
438 |
+
padding=0,
|
439 |
+
),
|
440 |
+
)
|
441 |
+
|
442 |
+
pretrained.act_postprocess4 = nn.Sequential(
|
443 |
+
readout_oper[3],
|
444 |
+
Transpose(1, 2),
|
445 |
+
nn.Unflatten(2, torch.Size([size[0] // 16, size[1] // 16])),
|
446 |
+
nn.Conv2d(
|
447 |
+
in_channels=vit_features,
|
448 |
+
out_channels=features[3],
|
449 |
+
kernel_size=1,
|
450 |
+
stride=1,
|
451 |
+
padding=0,
|
452 |
+
),
|
453 |
+
nn.Conv2d(
|
454 |
+
in_channels=features[3],
|
455 |
+
out_channels=features[3],
|
456 |
+
kernel_size=3,
|
457 |
+
stride=2,
|
458 |
+
padding=1,
|
459 |
+
),
|
460 |
+
)
|
461 |
+
|
462 |
+
pretrained.model.start_index = start_index
|
463 |
+
pretrained.model.patch_size = [16, 16]
|
464 |
+
|
465 |
+
# We inject this function into the VisionTransformer instances so that
|
466 |
+
# we can use it with interpolated position embeddings without modifying the library source.
|
467 |
+
pretrained.model.forward_flex = types.MethodType(forward_flex, pretrained.model)
|
468 |
+
|
469 |
+
# We inject this function into the VisionTransformer instances so that
|
470 |
+
# we can use it with interpolated position embeddings without modifying the library source.
|
471 |
+
pretrained.model._resize_pos_embed = types.MethodType(
|
472 |
+
_resize_pos_embed, pretrained.model
|
473 |
+
)
|
474 |
+
|
475 |
+
return pretrained
|
476 |
+
|
477 |
+
|
478 |
+
def _make_pretrained_vitb_rn50_384(
|
479 |
+
pretrained, use_readout="ignore", hooks=None, use_vit_only=False
|
480 |
+
):
|
481 |
+
model = timm.create_model("vit_base_resnet50_384", pretrained=pretrained)
|
482 |
+
|
483 |
+
hooks = [0, 1, 8, 11] if hooks == None else hooks
|
484 |
+
return _make_vit_b_rn50_backbone(
|
485 |
+
model,
|
486 |
+
features=[256, 512, 768, 768],
|
487 |
+
size=[384, 384],
|
488 |
+
hooks=hooks,
|
489 |
+
use_vit_only=use_vit_only,
|
490 |
+
use_readout=use_readout,
|
491 |
+
)
|
ControlNet-v1-1-nightly-main/annotator/midas/utils.py
ADDED
@@ -0,0 +1,189 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Utils for monoDepth."""
|
2 |
+
import sys
|
3 |
+
import re
|
4 |
+
import numpy as np
|
5 |
+
import cv2
|
6 |
+
import torch
|
7 |
+
|
8 |
+
|
9 |
+
def read_pfm(path):
|
10 |
+
"""Read pfm file.
|
11 |
+
|
12 |
+
Args:
|
13 |
+
path (str): path to file
|
14 |
+
|
15 |
+
Returns:
|
16 |
+
tuple: (data, scale)
|
17 |
+
"""
|
18 |
+
with open(path, "rb") as file:
|
19 |
+
|
20 |
+
color = None
|
21 |
+
width = None
|
22 |
+
height = None
|
23 |
+
scale = None
|
24 |
+
endian = None
|
25 |
+
|
26 |
+
header = file.readline().rstrip()
|
27 |
+
if header.decode("ascii") == "PF":
|
28 |
+
color = True
|
29 |
+
elif header.decode("ascii") == "Pf":
|
30 |
+
color = False
|
31 |
+
else:
|
32 |
+
raise Exception("Not a PFM file: " + path)
|
33 |
+
|
34 |
+
dim_match = re.match(r"^(\d+)\s(\d+)\s$", file.readline().decode("ascii"))
|
35 |
+
if dim_match:
|
36 |
+
width, height = list(map(int, dim_match.groups()))
|
37 |
+
else:
|
38 |
+
raise Exception("Malformed PFM header.")
|
39 |
+
|
40 |
+
scale = float(file.readline().decode("ascii").rstrip())
|
41 |
+
if scale < 0:
|
42 |
+
# little-endian
|
43 |
+
endian = "<"
|
44 |
+
scale = -scale
|
45 |
+
else:
|
46 |
+
# big-endian
|
47 |
+
endian = ">"
|
48 |
+
|
49 |
+
data = np.fromfile(file, endian + "f")
|
50 |
+
shape = (height, width, 3) if color else (height, width)
|
51 |
+
|
52 |
+
data = np.reshape(data, shape)
|
53 |
+
data = np.flipud(data)
|
54 |
+
|
55 |
+
return data, scale
|
56 |
+
|
57 |
+
|
58 |
+
def write_pfm(path, image, scale=1):
|
59 |
+
"""Write pfm file.
|
60 |
+
|
61 |
+
Args:
|
62 |
+
path (str): pathto file
|
63 |
+
image (array): data
|
64 |
+
scale (int, optional): Scale. Defaults to 1.
|
65 |
+
"""
|
66 |
+
|
67 |
+
with open(path, "wb") as file:
|
68 |
+
color = None
|
69 |
+
|
70 |
+
if image.dtype.name != "float32":
|
71 |
+
raise Exception("Image dtype must be float32.")
|
72 |
+
|
73 |
+
image = np.flipud(image)
|
74 |
+
|
75 |
+
if len(image.shape) == 3 and image.shape[2] == 3: # color image
|
76 |
+
color = True
|
77 |
+
elif (
|
78 |
+
len(image.shape) == 2 or len(image.shape) == 3 and image.shape[2] == 1
|
79 |
+
): # greyscale
|
80 |
+
color = False
|
81 |
+
else:
|
82 |
+
raise Exception("Image must have H x W x 3, H x W x 1 or H x W dimensions.")
|
83 |
+
|
84 |
+
file.write("PF\n" if color else "Pf\n".encode())
|
85 |
+
file.write("%d %d\n".encode() % (image.shape[1], image.shape[0]))
|
86 |
+
|
87 |
+
endian = image.dtype.byteorder
|
88 |
+
|
89 |
+
if endian == "<" or endian == "=" and sys.byteorder == "little":
|
90 |
+
scale = -scale
|
91 |
+
|
92 |
+
file.write("%f\n".encode() % scale)
|
93 |
+
|
94 |
+
image.tofile(file)
|
95 |
+
|
96 |
+
|
97 |
+
def read_image(path):
|
98 |
+
"""Read image and output RGB image (0-1).
|
99 |
+
|
100 |
+
Args:
|
101 |
+
path (str): path to file
|
102 |
+
|
103 |
+
Returns:
|
104 |
+
array: RGB image (0-1)
|
105 |
+
"""
|
106 |
+
img = cv2.imread(path)
|
107 |
+
|
108 |
+
if img.ndim == 2:
|
109 |
+
img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)
|
110 |
+
|
111 |
+
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) / 255.0
|
112 |
+
|
113 |
+
return img
|
114 |
+
|
115 |
+
|
116 |
+
def resize_image(img):
|
117 |
+
"""Resize image and make it fit for network.
|
118 |
+
|
119 |
+
Args:
|
120 |
+
img (array): image
|
121 |
+
|
122 |
+
Returns:
|
123 |
+
tensor: data ready for network
|
124 |
+
"""
|
125 |
+
height_orig = img.shape[0]
|
126 |
+
width_orig = img.shape[1]
|
127 |
+
|
128 |
+
if width_orig > height_orig:
|
129 |
+
scale = width_orig / 384
|
130 |
+
else:
|
131 |
+
scale = height_orig / 384
|
132 |
+
|
133 |
+
height = (np.ceil(height_orig / scale / 32) * 32).astype(int)
|
134 |
+
width = (np.ceil(width_orig / scale / 32) * 32).astype(int)
|
135 |
+
|
136 |
+
img_resized = cv2.resize(img, (width, height), interpolation=cv2.INTER_AREA)
|
137 |
+
|
138 |
+
img_resized = (
|
139 |
+
torch.from_numpy(np.transpose(img_resized, (2, 0, 1))).contiguous().float()
|
140 |
+
)
|
141 |
+
img_resized = img_resized.unsqueeze(0)
|
142 |
+
|
143 |
+
return img_resized
|
144 |
+
|
145 |
+
|
146 |
+
def resize_depth(depth, width, height):
|
147 |
+
"""Resize depth map and bring to CPU (numpy).
|
148 |
+
|
149 |
+
Args:
|
150 |
+
depth (tensor): depth
|
151 |
+
width (int): image width
|
152 |
+
height (int): image height
|
153 |
+
|
154 |
+
Returns:
|
155 |
+
array: processed depth
|
156 |
+
"""
|
157 |
+
depth = torch.squeeze(depth[0, :, :, :]).to("cpu")
|
158 |
+
|
159 |
+
depth_resized = cv2.resize(
|
160 |
+
depth.numpy(), (width, height), interpolation=cv2.INTER_CUBIC
|
161 |
+
)
|
162 |
+
|
163 |
+
return depth_resized
|
164 |
+
|
165 |
+
def write_depth(path, depth, bits=1):
|
166 |
+
"""Write depth map to pfm and png file.
|
167 |
+
|
168 |
+
Args:
|
169 |
+
path (str): filepath without extension
|
170 |
+
depth (array): depth
|
171 |
+
"""
|
172 |
+
write_pfm(path + ".pfm", depth.astype(np.float32))
|
173 |
+
|
174 |
+
depth_min = depth.min()
|
175 |
+
depth_max = depth.max()
|
176 |
+
|
177 |
+
max_val = (2**(8*bits))-1
|
178 |
+
|
179 |
+
if depth_max - depth_min > np.finfo("float").eps:
|
180 |
+
out = max_val * (depth - depth_min) / (depth_max - depth_min)
|
181 |
+
else:
|
182 |
+
out = np.zeros(depth.shape, dtype=depth.type)
|
183 |
+
|
184 |
+
if bits == 1:
|
185 |
+
cv2.imwrite(path + ".png", out.astype("uint8"))
|
186 |
+
elif bits == 2:
|
187 |
+
cv2.imwrite(path + ".png", out.astype("uint16"))
|
188 |
+
|
189 |
+
return
|
ControlNet-v1-1-nightly-main/annotator/mlsd/LICENSE
ADDED
@@ -0,0 +1,201 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Apache License
|
2 |
+
Version 2.0, January 2004
|
3 |
+
http://www.apache.org/licenses/
|
4 |
+
|
5 |
+
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
|
6 |
+
|
7 |
+
1. Definitions.
|
8 |
+
|
9 |
+
"License" shall mean the terms and conditions for use, reproduction,
|
10 |
+
and distribution as defined by Sections 1 through 9 of this document.
|
11 |
+
|
12 |
+
"Licensor" shall mean the copyright owner or entity authorized by
|
13 |
+
the copyright owner that is granting the License.
|
14 |
+
|
15 |
+
"Legal Entity" shall mean the union of the acting entity and all
|
16 |
+
other entities that control, are controlled by, or are under common
|
17 |
+
control with that entity. For the purposes of this definition,
|
18 |
+
"control" means (i) the power, direct or indirect, to cause the
|
19 |
+
direction or management of such entity, whether by contract or
|
20 |
+
otherwise, or (ii) ownership of fifty percent (50%) or more of the
|
21 |
+
outstanding shares, or (iii) beneficial ownership of such entity.
|
22 |
+
|
23 |
+
"You" (or "Your") shall mean an individual or Legal Entity
|
24 |
+
exercising permissions granted by this License.
|
25 |
+
|
26 |
+
"Source" form shall mean the preferred form for making modifications,
|
27 |
+
including but not limited to software source code, documentation
|
28 |
+
source, and configuration files.
|
29 |
+
|
30 |
+
"Object" form shall mean any form resulting from mechanical
|
31 |
+
transformation or translation of a Source form, including but
|
32 |
+
not limited to compiled object code, generated documentation,
|
33 |
+
and conversions to other media types.
|
34 |
+
|
35 |
+
"Work" shall mean the work of authorship, whether in Source or
|
36 |
+
Object form, made available under the License, as indicated by a
|
37 |
+
copyright notice that is included in or attached to the work
|
38 |
+
(an example is provided in the Appendix below).
|
39 |
+
|
40 |
+
"Derivative Works" shall mean any work, whether in Source or Object
|
41 |
+
form, that is based on (or derived from) the Work and for which the
|
42 |
+
editorial revisions, annotations, elaborations, or other modifications
|
43 |
+
represent, as a whole, an original work of authorship. For the purposes
|
44 |
+
of this License, Derivative Works shall not include works that remain
|
45 |
+
separable from, or merely link (or bind by name) to the interfaces of,
|
46 |
+
the Work and Derivative Works thereof.
|
47 |
+
|
48 |
+
"Contribution" shall mean any work of authorship, including
|
49 |
+
the original version of the Work and any modifications or additions
|
50 |
+
to that Work or Derivative Works thereof, that is intentionally
|
51 |
+
submitted to Licensor for inclusion in the Work by the copyright owner
|
52 |
+
or by an individual or Legal Entity authorized to submit on behalf of
|
53 |
+
the copyright owner. For the purposes of this definition, "submitted"
|
54 |
+
means any form of electronic, verbal, or written communication sent
|
55 |
+
to the Licensor or its representatives, including but not limited to
|
56 |
+
communication on electronic mailing lists, source code control systems,
|
57 |
+
and issue tracking systems that are managed by, or on behalf of, the
|
58 |
+
Licensor for the purpose of discussing and improving the Work, but
|
59 |
+
excluding communication that is conspicuously marked or otherwise
|
60 |
+
designated in writing by the copyright owner as "Not a Contribution."
|
61 |
+
|
62 |
+
"Contributor" shall mean Licensor and any individual or Legal Entity
|
63 |
+
on behalf of whom a Contribution has been received by Licensor and
|
64 |
+
subsequently incorporated within the Work.
|
65 |
+
|
66 |
+
2. Grant of Copyright License. Subject to the terms and conditions of
|
67 |
+
this License, each Contributor hereby grants to You a perpetual,
|
68 |
+
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
69 |
+
copyright license to reproduce, prepare Derivative Works of,
|
70 |
+
publicly display, publicly perform, sublicense, and distribute the
|
71 |
+
Work and such Derivative Works in Source or Object form.
|
72 |
+
|
73 |
+
3. Grant of Patent License. Subject to the terms and conditions of
|
74 |
+
this License, each Contributor hereby grants to You a perpetual,
|
75 |
+
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
76 |
+
(except as stated in this section) patent license to make, have made,
|
77 |
+
use, offer to sell, sell, import, and otherwise transfer the Work,
|
78 |
+
where such license applies only to those patent claims licensable
|
79 |
+
by such Contributor that are necessarily infringed by their
|
80 |
+
Contribution(s) alone or by combination of their Contribution(s)
|
81 |
+
with the Work to which such Contribution(s) was submitted. If You
|
82 |
+
institute patent litigation against any entity (including a
|
83 |
+
cross-claim or counterclaim in a lawsuit) alleging that the Work
|
84 |
+
or a Contribution incorporated within the Work constitutes direct
|
85 |
+
or contributory patent infringement, then any patent licenses
|
86 |
+
granted to You under this License for that Work shall terminate
|
87 |
+
as of the date such litigation is filed.
|
88 |
+
|
89 |
+
4. Redistribution. You may reproduce and distribute copies of the
|
90 |
+
Work or Derivative Works thereof in any medium, with or without
|
91 |
+
modifications, and in Source or Object form, provided that You
|
92 |
+
meet the following conditions:
|
93 |
+
|
94 |
+
(a) You must give any other recipients of the Work or
|
95 |
+
Derivative Works a copy of this License; and
|
96 |
+
|
97 |
+
(b) You must cause any modified files to carry prominent notices
|
98 |
+
stating that You changed the files; and
|
99 |
+
|
100 |
+
(c) You must retain, in the Source form of any Derivative Works
|
101 |
+
that You distribute, all copyright, patent, trademark, and
|
102 |
+
attribution notices from the Source form of the Work,
|
103 |
+
excluding those notices that do not pertain to any part of
|
104 |
+
the Derivative Works; and
|
105 |
+
|
106 |
+
(d) If the Work includes a "NOTICE" text file as part of its
|
107 |
+
distribution, then any Derivative Works that You distribute must
|
108 |
+
include a readable copy of the attribution notices contained
|
109 |
+
within such NOTICE file, excluding those notices that do not
|
110 |
+
pertain to any part of the Derivative Works, in at least one
|
111 |
+
of the following places: within a NOTICE text file distributed
|
112 |
+
as part of the Derivative Works; within the Source form or
|
113 |
+
documentation, if provided along with the Derivative Works; or,
|
114 |
+
within a display generated by the Derivative Works, if and
|
115 |
+
wherever such third-party notices normally appear. The contents
|
116 |
+
of the NOTICE file are for informational purposes only and
|
117 |
+
do not modify the License. You may add Your own attribution
|
118 |
+
notices within Derivative Works that You distribute, alongside
|
119 |
+
or as an addendum to the NOTICE text from the Work, provided
|
120 |
+
that such additional attribution notices cannot be construed
|
121 |
+
as modifying the License.
|
122 |
+
|
123 |
+
You may add Your own copyright statement to Your modifications and
|
124 |
+
may provide additional or different license terms and conditions
|
125 |
+
for use, reproduction, or distribution of Your modifications, or
|
126 |
+
for any such Derivative Works as a whole, provided Your use,
|
127 |
+
reproduction, and distribution of the Work otherwise complies with
|
128 |
+
the conditions stated in this License.
|
129 |
+
|
130 |
+
5. Submission of Contributions. Unless You explicitly state otherwise,
|
131 |
+
any Contribution intentionally submitted for inclusion in the Work
|
132 |
+
by You to the Licensor shall be under the terms and conditions of
|
133 |
+
this License, without any additional terms or conditions.
|
134 |
+
Notwithstanding the above, nothing herein shall supersede or modify
|
135 |
+
the terms of any separate license agreement you may have executed
|
136 |
+
with Licensor regarding such Contributions.
|
137 |
+
|
138 |
+
6. Trademarks. This License does not grant permission to use the trade
|
139 |
+
names, trademarks, service marks, or product names of the Licensor,
|
140 |
+
except as required for reasonable and customary use in describing the
|
141 |
+
origin of the Work and reproducing the content of the NOTICE file.
|
142 |
+
|
143 |
+
7. Disclaimer of Warranty. Unless required by applicable law or
|
144 |
+
agreed to in writing, Licensor provides the Work (and each
|
145 |
+
Contributor provides its Contributions) on an "AS IS" BASIS,
|
146 |
+
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
|
147 |
+
implied, including, without limitation, any warranties or conditions
|
148 |
+
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
|
149 |
+
PARTICULAR PURPOSE. You are solely responsible for determining the
|
150 |
+
appropriateness of using or redistributing the Work and assume any
|
151 |
+
risks associated with Your exercise of permissions under this License.
|
152 |
+
|
153 |
+
8. Limitation of Liability. In no event and under no legal theory,
|
154 |
+
whether in tort (including negligence), contract, or otherwise,
|
155 |
+
unless required by applicable law (such as deliberate and grossly
|
156 |
+
negligent acts) or agreed to in writing, shall any Contributor be
|
157 |
+
liable to You for damages, including any direct, indirect, special,
|
158 |
+
incidental, or consequential damages of any character arising as a
|
159 |
+
result of this License or out of the use or inability to use the
|
160 |
+
Work (including but not limited to damages for loss of goodwill,
|
161 |
+
work stoppage, computer failure or malfunction, or any and all
|
162 |
+
other commercial damages or losses), even if such Contributor
|
163 |
+
has been advised of the possibility of such damages.
|
164 |
+
|
165 |
+
9. Accepting Warranty or Additional Liability. While redistributing
|
166 |
+
the Work or Derivative Works thereof, You may choose to offer,
|
167 |
+
and charge a fee for, acceptance of support, warranty, indemnity,
|
168 |
+
or other liability obligations and/or rights consistent with this
|
169 |
+
License. However, in accepting such obligations, You may act only
|
170 |
+
on Your own behalf and on Your sole responsibility, not on behalf
|
171 |
+
of any other Contributor, and only if You agree to indemnify,
|
172 |
+
defend, and hold each Contributor harmless for any liability
|
173 |
+
incurred by, or claims asserted against, such Contributor by reason
|
174 |
+
of your accepting any such warranty or additional liability.
|
175 |
+
|
176 |
+
END OF TERMS AND CONDITIONS
|
177 |
+
|
178 |
+
APPENDIX: How to apply the Apache License to your work.
|
179 |
+
|
180 |
+
To apply the Apache License to your work, attach the following
|
181 |
+
boilerplate notice, with the fields enclosed by brackets "{}"
|
182 |
+
replaced with your own identifying information. (Don't include
|
183 |
+
the brackets!) The text should be enclosed in the appropriate
|
184 |
+
comment syntax for the file format. We also recommend that a
|
185 |
+
file or class name and description of purpose be included on the
|
186 |
+
same "printed page" as the copyright notice for easier
|
187 |
+
identification within third-party archives.
|
188 |
+
|
189 |
+
Copyright 2021-present NAVER Corp.
|
190 |
+
|
191 |
+
Licensed under the Apache License, Version 2.0 (the "License");
|
192 |
+
you may not use this file except in compliance with the License.
|
193 |
+
You may obtain a copy of the License at
|
194 |
+
|
195 |
+
http://www.apache.org/licenses/LICENSE-2.0
|
196 |
+
|
197 |
+
Unless required by applicable law or agreed to in writing, software
|
198 |
+
distributed under the License is distributed on an "AS IS" BASIS,
|
199 |
+
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
200 |
+
See the License for the specific language governing permissions and
|
201 |
+
limitations under the License.
|
ControlNet-v1-1-nightly-main/annotator/mlsd/__init__.py
ADDED
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# MLSD Line Detection
|
2 |
+
# From https://github.com/navervision/mlsd
|
3 |
+
# Apache-2.0 license
|
4 |
+
|
5 |
+
import cv2
|
6 |
+
import numpy as np
|
7 |
+
import torch
|
8 |
+
import os
|
9 |
+
|
10 |
+
from einops import rearrange
|
11 |
+
from .models.mbv2_mlsd_tiny import MobileV2_MLSD_Tiny
|
12 |
+
from .models.mbv2_mlsd_large import MobileV2_MLSD_Large
|
13 |
+
from .utils import pred_lines
|
14 |
+
|
15 |
+
from annotator.util import annotator_ckpts_path
|
16 |
+
|
17 |
+
|
18 |
+
remote_model_path = "https://huggingface.co/lllyasviel/Annotators/resolve/main/mlsd_large_512_fp32.pth"
|
19 |
+
|
20 |
+
|
21 |
+
class MLSDdetector:
|
22 |
+
def __init__(self):
|
23 |
+
model_path = os.path.join(annotator_ckpts_path, "mlsd_large_512_fp32.pth")
|
24 |
+
if not os.path.exists(model_path):
|
25 |
+
from basicsr.utils.download_util import load_file_from_url
|
26 |
+
load_file_from_url(remote_model_path, model_dir=annotator_ckpts_path)
|
27 |
+
model = MobileV2_MLSD_Large()
|
28 |
+
model.load_state_dict(torch.load(model_path), strict=True)
|
29 |
+
self.model = model.cuda().eval()
|
30 |
+
|
31 |
+
def __call__(self, input_image, thr_v, thr_d):
|
32 |
+
assert input_image.ndim == 3
|
33 |
+
img = input_image
|
34 |
+
img_output = np.zeros_like(img)
|
35 |
+
try:
|
36 |
+
with torch.no_grad():
|
37 |
+
lines = pred_lines(img, self.model, [img.shape[0], img.shape[1]], thr_v, thr_d)
|
38 |
+
for line in lines:
|
39 |
+
x_start, y_start, x_end, y_end = [int(val) for val in line]
|
40 |
+
cv2.line(img_output, (x_start, y_start), (x_end, y_end), [255, 255, 255], 1)
|
41 |
+
except Exception as e:
|
42 |
+
pass
|
43 |
+
return img_output[:, :, 0]
|
ControlNet-v1-1-nightly-main/annotator/mlsd/models/mbv2_mlsd_large.py
ADDED
@@ -0,0 +1,292 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import sys
|
3 |
+
import torch
|
4 |
+
import torch.nn as nn
|
5 |
+
import torch.utils.model_zoo as model_zoo
|
6 |
+
from torch.nn import functional as F
|
7 |
+
|
8 |
+
|
9 |
+
class BlockTypeA(nn.Module):
|
10 |
+
def __init__(self, in_c1, in_c2, out_c1, out_c2, upscale = True):
|
11 |
+
super(BlockTypeA, self).__init__()
|
12 |
+
self.conv1 = nn.Sequential(
|
13 |
+
nn.Conv2d(in_c2, out_c2, kernel_size=1),
|
14 |
+
nn.BatchNorm2d(out_c2),
|
15 |
+
nn.ReLU(inplace=True)
|
16 |
+
)
|
17 |
+
self.conv2 = nn.Sequential(
|
18 |
+
nn.Conv2d(in_c1, out_c1, kernel_size=1),
|
19 |
+
nn.BatchNorm2d(out_c1),
|
20 |
+
nn.ReLU(inplace=True)
|
21 |
+
)
|
22 |
+
self.upscale = upscale
|
23 |
+
|
24 |
+
def forward(self, a, b):
|
25 |
+
b = self.conv1(b)
|
26 |
+
a = self.conv2(a)
|
27 |
+
if self.upscale:
|
28 |
+
b = F.interpolate(b, scale_factor=2.0, mode='bilinear', align_corners=True)
|
29 |
+
return torch.cat((a, b), dim=1)
|
30 |
+
|
31 |
+
|
32 |
+
class BlockTypeB(nn.Module):
|
33 |
+
def __init__(self, in_c, out_c):
|
34 |
+
super(BlockTypeB, self).__init__()
|
35 |
+
self.conv1 = nn.Sequential(
|
36 |
+
nn.Conv2d(in_c, in_c, kernel_size=3, padding=1),
|
37 |
+
nn.BatchNorm2d(in_c),
|
38 |
+
nn.ReLU()
|
39 |
+
)
|
40 |
+
self.conv2 = nn.Sequential(
|
41 |
+
nn.Conv2d(in_c, out_c, kernel_size=3, padding=1),
|
42 |
+
nn.BatchNorm2d(out_c),
|
43 |
+
nn.ReLU()
|
44 |
+
)
|
45 |
+
|
46 |
+
def forward(self, x):
|
47 |
+
x = self.conv1(x) + x
|
48 |
+
x = self.conv2(x)
|
49 |
+
return x
|
50 |
+
|
51 |
+
class BlockTypeC(nn.Module):
|
52 |
+
def __init__(self, in_c, out_c):
|
53 |
+
super(BlockTypeC, self).__init__()
|
54 |
+
self.conv1 = nn.Sequential(
|
55 |
+
nn.Conv2d(in_c, in_c, kernel_size=3, padding=5, dilation=5),
|
56 |
+
nn.BatchNorm2d(in_c),
|
57 |
+
nn.ReLU()
|
58 |
+
)
|
59 |
+
self.conv2 = nn.Sequential(
|
60 |
+
nn.Conv2d(in_c, in_c, kernel_size=3, padding=1),
|
61 |
+
nn.BatchNorm2d(in_c),
|
62 |
+
nn.ReLU()
|
63 |
+
)
|
64 |
+
self.conv3 = nn.Conv2d(in_c, out_c, kernel_size=1)
|
65 |
+
|
66 |
+
def forward(self, x):
|
67 |
+
x = self.conv1(x)
|
68 |
+
x = self.conv2(x)
|
69 |
+
x = self.conv3(x)
|
70 |
+
return x
|
71 |
+
|
72 |
+
def _make_divisible(v, divisor, min_value=None):
|
73 |
+
"""
|
74 |
+
This function is taken from the original tf repo.
|
75 |
+
It ensures that all layers have a channel number that is divisible by 8
|
76 |
+
It can be seen here:
|
77 |
+
https://github.com/tensorflow/models/blob/master/research/slim/nets/mobilenet/mobilenet.py
|
78 |
+
:param v:
|
79 |
+
:param divisor:
|
80 |
+
:param min_value:
|
81 |
+
:return:
|
82 |
+
"""
|
83 |
+
if min_value is None:
|
84 |
+
min_value = divisor
|
85 |
+
new_v = max(min_value, int(v + divisor / 2) // divisor * divisor)
|
86 |
+
# Make sure that round down does not go down by more than 10%.
|
87 |
+
if new_v < 0.9 * v:
|
88 |
+
new_v += divisor
|
89 |
+
return new_v
|
90 |
+
|
91 |
+
|
92 |
+
class ConvBNReLU(nn.Sequential):
|
93 |
+
def __init__(self, in_planes, out_planes, kernel_size=3, stride=1, groups=1):
|
94 |
+
self.channel_pad = out_planes - in_planes
|
95 |
+
self.stride = stride
|
96 |
+
#padding = (kernel_size - 1) // 2
|
97 |
+
|
98 |
+
# TFLite uses slightly different padding than PyTorch
|
99 |
+
if stride == 2:
|
100 |
+
padding = 0
|
101 |
+
else:
|
102 |
+
padding = (kernel_size - 1) // 2
|
103 |
+
|
104 |
+
super(ConvBNReLU, self).__init__(
|
105 |
+
nn.Conv2d(in_planes, out_planes, kernel_size, stride, padding, groups=groups, bias=False),
|
106 |
+
nn.BatchNorm2d(out_planes),
|
107 |
+
nn.ReLU6(inplace=True)
|
108 |
+
)
|
109 |
+
self.max_pool = nn.MaxPool2d(kernel_size=stride, stride=stride)
|
110 |
+
|
111 |
+
|
112 |
+
def forward(self, x):
|
113 |
+
# TFLite uses different padding
|
114 |
+
if self.stride == 2:
|
115 |
+
x = F.pad(x, (0, 1, 0, 1), "constant", 0)
|
116 |
+
#print(x.shape)
|
117 |
+
|
118 |
+
for module in self:
|
119 |
+
if not isinstance(module, nn.MaxPool2d):
|
120 |
+
x = module(x)
|
121 |
+
return x
|
122 |
+
|
123 |
+
|
124 |
+
class InvertedResidual(nn.Module):
|
125 |
+
def __init__(self, inp, oup, stride, expand_ratio):
|
126 |
+
super(InvertedResidual, self).__init__()
|
127 |
+
self.stride = stride
|
128 |
+
assert stride in [1, 2]
|
129 |
+
|
130 |
+
hidden_dim = int(round(inp * expand_ratio))
|
131 |
+
self.use_res_connect = self.stride == 1 and inp == oup
|
132 |
+
|
133 |
+
layers = []
|
134 |
+
if expand_ratio != 1:
|
135 |
+
# pw
|
136 |
+
layers.append(ConvBNReLU(inp, hidden_dim, kernel_size=1))
|
137 |
+
layers.extend([
|
138 |
+
# dw
|
139 |
+
ConvBNReLU(hidden_dim, hidden_dim, stride=stride, groups=hidden_dim),
|
140 |
+
# pw-linear
|
141 |
+
nn.Conv2d(hidden_dim, oup, 1, 1, 0, bias=False),
|
142 |
+
nn.BatchNorm2d(oup),
|
143 |
+
])
|
144 |
+
self.conv = nn.Sequential(*layers)
|
145 |
+
|
146 |
+
def forward(self, x):
|
147 |
+
if self.use_res_connect:
|
148 |
+
return x + self.conv(x)
|
149 |
+
else:
|
150 |
+
return self.conv(x)
|
151 |
+
|
152 |
+
|
153 |
+
class MobileNetV2(nn.Module):
|
154 |
+
def __init__(self, pretrained=True):
|
155 |
+
"""
|
156 |
+
MobileNet V2 main class
|
157 |
+
Args:
|
158 |
+
num_classes (int): Number of classes
|
159 |
+
width_mult (float): Width multiplier - adjusts number of channels in each layer by this amount
|
160 |
+
inverted_residual_setting: Network structure
|
161 |
+
round_nearest (int): Round the number of channels in each layer to be a multiple of this number
|
162 |
+
Set to 1 to turn off rounding
|
163 |
+
block: Module specifying inverted residual building block for mobilenet
|
164 |
+
"""
|
165 |
+
super(MobileNetV2, self).__init__()
|
166 |
+
|
167 |
+
block = InvertedResidual
|
168 |
+
input_channel = 32
|
169 |
+
last_channel = 1280
|
170 |
+
width_mult = 1.0
|
171 |
+
round_nearest = 8
|
172 |
+
|
173 |
+
inverted_residual_setting = [
|
174 |
+
# t, c, n, s
|
175 |
+
[1, 16, 1, 1],
|
176 |
+
[6, 24, 2, 2],
|
177 |
+
[6, 32, 3, 2],
|
178 |
+
[6, 64, 4, 2],
|
179 |
+
[6, 96, 3, 1],
|
180 |
+
#[6, 160, 3, 2],
|
181 |
+
#[6, 320, 1, 1],
|
182 |
+
]
|
183 |
+
|
184 |
+
# only check the first element, assuming user knows t,c,n,s are required
|
185 |
+
if len(inverted_residual_setting) == 0 or len(inverted_residual_setting[0]) != 4:
|
186 |
+
raise ValueError("inverted_residual_setting should be non-empty "
|
187 |
+
"or a 4-element list, got {}".format(inverted_residual_setting))
|
188 |
+
|
189 |
+
# building first layer
|
190 |
+
input_channel = _make_divisible(input_channel * width_mult, round_nearest)
|
191 |
+
self.last_channel = _make_divisible(last_channel * max(1.0, width_mult), round_nearest)
|
192 |
+
features = [ConvBNReLU(4, input_channel, stride=2)]
|
193 |
+
# building inverted residual blocks
|
194 |
+
for t, c, n, s in inverted_residual_setting:
|
195 |
+
output_channel = _make_divisible(c * width_mult, round_nearest)
|
196 |
+
for i in range(n):
|
197 |
+
stride = s if i == 0 else 1
|
198 |
+
features.append(block(input_channel, output_channel, stride, expand_ratio=t))
|
199 |
+
input_channel = output_channel
|
200 |
+
|
201 |
+
self.features = nn.Sequential(*features)
|
202 |
+
self.fpn_selected = [1, 3, 6, 10, 13]
|
203 |
+
# weight initialization
|
204 |
+
for m in self.modules():
|
205 |
+
if isinstance(m, nn.Conv2d):
|
206 |
+
nn.init.kaiming_normal_(m.weight, mode='fan_out')
|
207 |
+
if m.bias is not None:
|
208 |
+
nn.init.zeros_(m.bias)
|
209 |
+
elif isinstance(m, nn.BatchNorm2d):
|
210 |
+
nn.init.ones_(m.weight)
|
211 |
+
nn.init.zeros_(m.bias)
|
212 |
+
elif isinstance(m, nn.Linear):
|
213 |
+
nn.init.normal_(m.weight, 0, 0.01)
|
214 |
+
nn.init.zeros_(m.bias)
|
215 |
+
if pretrained:
|
216 |
+
self._load_pretrained_model()
|
217 |
+
|
218 |
+
def _forward_impl(self, x):
|
219 |
+
# This exists since TorchScript doesn't support inheritance, so the superclass method
|
220 |
+
# (this one) needs to have a name other than `forward` that can be accessed in a subclass
|
221 |
+
fpn_features = []
|
222 |
+
for i, f in enumerate(self.features):
|
223 |
+
if i > self.fpn_selected[-1]:
|
224 |
+
break
|
225 |
+
x = f(x)
|
226 |
+
if i in self.fpn_selected:
|
227 |
+
fpn_features.append(x)
|
228 |
+
|
229 |
+
c1, c2, c3, c4, c5 = fpn_features
|
230 |
+
return c1, c2, c3, c4, c5
|
231 |
+
|
232 |
+
|
233 |
+
def forward(self, x):
|
234 |
+
return self._forward_impl(x)
|
235 |
+
|
236 |
+
def _load_pretrained_model(self):
|
237 |
+
pretrain_dict = model_zoo.load_url('https://download.pytorch.org/models/mobilenet_v2-b0353104.pth')
|
238 |
+
model_dict = {}
|
239 |
+
state_dict = self.state_dict()
|
240 |
+
for k, v in pretrain_dict.items():
|
241 |
+
if k in state_dict:
|
242 |
+
model_dict[k] = v
|
243 |
+
state_dict.update(model_dict)
|
244 |
+
self.load_state_dict(state_dict)
|
245 |
+
|
246 |
+
|
247 |
+
class MobileV2_MLSD_Large(nn.Module):
|
248 |
+
def __init__(self):
|
249 |
+
super(MobileV2_MLSD_Large, self).__init__()
|
250 |
+
|
251 |
+
self.backbone = MobileNetV2(pretrained=False)
|
252 |
+
## A, B
|
253 |
+
self.block15 = BlockTypeA(in_c1= 64, in_c2= 96,
|
254 |
+
out_c1= 64, out_c2=64,
|
255 |
+
upscale=False)
|
256 |
+
self.block16 = BlockTypeB(128, 64)
|
257 |
+
|
258 |
+
## A, B
|
259 |
+
self.block17 = BlockTypeA(in_c1 = 32, in_c2 = 64,
|
260 |
+
out_c1= 64, out_c2= 64)
|
261 |
+
self.block18 = BlockTypeB(128, 64)
|
262 |
+
|
263 |
+
## A, B
|
264 |
+
self.block19 = BlockTypeA(in_c1=24, in_c2=64,
|
265 |
+
out_c1=64, out_c2=64)
|
266 |
+
self.block20 = BlockTypeB(128, 64)
|
267 |
+
|
268 |
+
## A, B, C
|
269 |
+
self.block21 = BlockTypeA(in_c1=16, in_c2=64,
|
270 |
+
out_c1=64, out_c2=64)
|
271 |
+
self.block22 = BlockTypeB(128, 64)
|
272 |
+
|
273 |
+
self.block23 = BlockTypeC(64, 16)
|
274 |
+
|
275 |
+
def forward(self, x):
|
276 |
+
c1, c2, c3, c4, c5 = self.backbone(x)
|
277 |
+
|
278 |
+
x = self.block15(c4, c5)
|
279 |
+
x = self.block16(x)
|
280 |
+
|
281 |
+
x = self.block17(c3, x)
|
282 |
+
x = self.block18(x)
|
283 |
+
|
284 |
+
x = self.block19(c2, x)
|
285 |
+
x = self.block20(x)
|
286 |
+
|
287 |
+
x = self.block21(c1, x)
|
288 |
+
x = self.block22(x)
|
289 |
+
x = self.block23(x)
|
290 |
+
x = x[:, 7:, :, :]
|
291 |
+
|
292 |
+
return x
|
ControlNet-v1-1-nightly-main/annotator/mlsd/models/mbv2_mlsd_tiny.py
ADDED
@@ -0,0 +1,275 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import sys
|
3 |
+
import torch
|
4 |
+
import torch.nn as nn
|
5 |
+
import torch.utils.model_zoo as model_zoo
|
6 |
+
from torch.nn import functional as F
|
7 |
+
|
8 |
+
|
9 |
+
class BlockTypeA(nn.Module):
|
10 |
+
def __init__(self, in_c1, in_c2, out_c1, out_c2, upscale = True):
|
11 |
+
super(BlockTypeA, self).__init__()
|
12 |
+
self.conv1 = nn.Sequential(
|
13 |
+
nn.Conv2d(in_c2, out_c2, kernel_size=1),
|
14 |
+
nn.BatchNorm2d(out_c2),
|
15 |
+
nn.ReLU(inplace=True)
|
16 |
+
)
|
17 |
+
self.conv2 = nn.Sequential(
|
18 |
+
nn.Conv2d(in_c1, out_c1, kernel_size=1),
|
19 |
+
nn.BatchNorm2d(out_c1),
|
20 |
+
nn.ReLU(inplace=True)
|
21 |
+
)
|
22 |
+
self.upscale = upscale
|
23 |
+
|
24 |
+
def forward(self, a, b):
|
25 |
+
b = self.conv1(b)
|
26 |
+
a = self.conv2(a)
|
27 |
+
b = F.interpolate(b, scale_factor=2.0, mode='bilinear', align_corners=True)
|
28 |
+
return torch.cat((a, b), dim=1)
|
29 |
+
|
30 |
+
|
31 |
+
class BlockTypeB(nn.Module):
|
32 |
+
def __init__(self, in_c, out_c):
|
33 |
+
super(BlockTypeB, self).__init__()
|
34 |
+
self.conv1 = nn.Sequential(
|
35 |
+
nn.Conv2d(in_c, in_c, kernel_size=3, padding=1),
|
36 |
+
nn.BatchNorm2d(in_c),
|
37 |
+
nn.ReLU()
|
38 |
+
)
|
39 |
+
self.conv2 = nn.Sequential(
|
40 |
+
nn.Conv2d(in_c, out_c, kernel_size=3, padding=1),
|
41 |
+
nn.BatchNorm2d(out_c),
|
42 |
+
nn.ReLU()
|
43 |
+
)
|
44 |
+
|
45 |
+
def forward(self, x):
|
46 |
+
x = self.conv1(x) + x
|
47 |
+
x = self.conv2(x)
|
48 |
+
return x
|
49 |
+
|
50 |
+
class BlockTypeC(nn.Module):
|
51 |
+
def __init__(self, in_c, out_c):
|
52 |
+
super(BlockTypeC, self).__init__()
|
53 |
+
self.conv1 = nn.Sequential(
|
54 |
+
nn.Conv2d(in_c, in_c, kernel_size=3, padding=5, dilation=5),
|
55 |
+
nn.BatchNorm2d(in_c),
|
56 |
+
nn.ReLU()
|
57 |
+
)
|
58 |
+
self.conv2 = nn.Sequential(
|
59 |
+
nn.Conv2d(in_c, in_c, kernel_size=3, padding=1),
|
60 |
+
nn.BatchNorm2d(in_c),
|
61 |
+
nn.ReLU()
|
62 |
+
)
|
63 |
+
self.conv3 = nn.Conv2d(in_c, out_c, kernel_size=1)
|
64 |
+
|
65 |
+
def forward(self, x):
|
66 |
+
x = self.conv1(x)
|
67 |
+
x = self.conv2(x)
|
68 |
+
x = self.conv3(x)
|
69 |
+
return x
|
70 |
+
|
71 |
+
def _make_divisible(v, divisor, min_value=None):
|
72 |
+
"""
|
73 |
+
This function is taken from the original tf repo.
|
74 |
+
It ensures that all layers have a channel number that is divisible by 8
|
75 |
+
It can be seen here:
|
76 |
+
https://github.com/tensorflow/models/blob/master/research/slim/nets/mobilenet/mobilenet.py
|
77 |
+
:param v:
|
78 |
+
:param divisor:
|
79 |
+
:param min_value:
|
80 |
+
:return:
|
81 |
+
"""
|
82 |
+
if min_value is None:
|
83 |
+
min_value = divisor
|
84 |
+
new_v = max(min_value, int(v + divisor / 2) // divisor * divisor)
|
85 |
+
# Make sure that round down does not go down by more than 10%.
|
86 |
+
if new_v < 0.9 * v:
|
87 |
+
new_v += divisor
|
88 |
+
return new_v
|
89 |
+
|
90 |
+
|
91 |
+
class ConvBNReLU(nn.Sequential):
|
92 |
+
def __init__(self, in_planes, out_planes, kernel_size=3, stride=1, groups=1):
|
93 |
+
self.channel_pad = out_planes - in_planes
|
94 |
+
self.stride = stride
|
95 |
+
#padding = (kernel_size - 1) // 2
|
96 |
+
|
97 |
+
# TFLite uses slightly different padding than PyTorch
|
98 |
+
if stride == 2:
|
99 |
+
padding = 0
|
100 |
+
else:
|
101 |
+
padding = (kernel_size - 1) // 2
|
102 |
+
|
103 |
+
super(ConvBNReLU, self).__init__(
|
104 |
+
nn.Conv2d(in_planes, out_planes, kernel_size, stride, padding, groups=groups, bias=False),
|
105 |
+
nn.BatchNorm2d(out_planes),
|
106 |
+
nn.ReLU6(inplace=True)
|
107 |
+
)
|
108 |
+
self.max_pool = nn.MaxPool2d(kernel_size=stride, stride=stride)
|
109 |
+
|
110 |
+
|
111 |
+
def forward(self, x):
|
112 |
+
# TFLite uses different padding
|
113 |
+
if self.stride == 2:
|
114 |
+
x = F.pad(x, (0, 1, 0, 1), "constant", 0)
|
115 |
+
#print(x.shape)
|
116 |
+
|
117 |
+
for module in self:
|
118 |
+
if not isinstance(module, nn.MaxPool2d):
|
119 |
+
x = module(x)
|
120 |
+
return x
|
121 |
+
|
122 |
+
|
123 |
+
class InvertedResidual(nn.Module):
|
124 |
+
def __init__(self, inp, oup, stride, expand_ratio):
|
125 |
+
super(InvertedResidual, self).__init__()
|
126 |
+
self.stride = stride
|
127 |
+
assert stride in [1, 2]
|
128 |
+
|
129 |
+
hidden_dim = int(round(inp * expand_ratio))
|
130 |
+
self.use_res_connect = self.stride == 1 and inp == oup
|
131 |
+
|
132 |
+
layers = []
|
133 |
+
if expand_ratio != 1:
|
134 |
+
# pw
|
135 |
+
layers.append(ConvBNReLU(inp, hidden_dim, kernel_size=1))
|
136 |
+
layers.extend([
|
137 |
+
# dw
|
138 |
+
ConvBNReLU(hidden_dim, hidden_dim, stride=stride, groups=hidden_dim),
|
139 |
+
# pw-linear
|
140 |
+
nn.Conv2d(hidden_dim, oup, 1, 1, 0, bias=False),
|
141 |
+
nn.BatchNorm2d(oup),
|
142 |
+
])
|
143 |
+
self.conv = nn.Sequential(*layers)
|
144 |
+
|
145 |
+
def forward(self, x):
|
146 |
+
if self.use_res_connect:
|
147 |
+
return x + self.conv(x)
|
148 |
+
else:
|
149 |
+
return self.conv(x)
|
150 |
+
|
151 |
+
|
152 |
+
class MobileNetV2(nn.Module):
|
153 |
+
def __init__(self, pretrained=True):
|
154 |
+
"""
|
155 |
+
MobileNet V2 main class
|
156 |
+
Args:
|
157 |
+
num_classes (int): Number of classes
|
158 |
+
width_mult (float): Width multiplier - adjusts number of channels in each layer by this amount
|
159 |
+
inverted_residual_setting: Network structure
|
160 |
+
round_nearest (int): Round the number of channels in each layer to be a multiple of this number
|
161 |
+
Set to 1 to turn off rounding
|
162 |
+
block: Module specifying inverted residual building block for mobilenet
|
163 |
+
"""
|
164 |
+
super(MobileNetV2, self).__init__()
|
165 |
+
|
166 |
+
block = InvertedResidual
|
167 |
+
input_channel = 32
|
168 |
+
last_channel = 1280
|
169 |
+
width_mult = 1.0
|
170 |
+
round_nearest = 8
|
171 |
+
|
172 |
+
inverted_residual_setting = [
|
173 |
+
# t, c, n, s
|
174 |
+
[1, 16, 1, 1],
|
175 |
+
[6, 24, 2, 2],
|
176 |
+
[6, 32, 3, 2],
|
177 |
+
[6, 64, 4, 2],
|
178 |
+
#[6, 96, 3, 1],
|
179 |
+
#[6, 160, 3, 2],
|
180 |
+
#[6, 320, 1, 1],
|
181 |
+
]
|
182 |
+
|
183 |
+
# only check the first element, assuming user knows t,c,n,s are required
|
184 |
+
if len(inverted_residual_setting) == 0 or len(inverted_residual_setting[0]) != 4:
|
185 |
+
raise ValueError("inverted_residual_setting should be non-empty "
|
186 |
+
"or a 4-element list, got {}".format(inverted_residual_setting))
|
187 |
+
|
188 |
+
# building first layer
|
189 |
+
input_channel = _make_divisible(input_channel * width_mult, round_nearest)
|
190 |
+
self.last_channel = _make_divisible(last_channel * max(1.0, width_mult), round_nearest)
|
191 |
+
features = [ConvBNReLU(4, input_channel, stride=2)]
|
192 |
+
# building inverted residual blocks
|
193 |
+
for t, c, n, s in inverted_residual_setting:
|
194 |
+
output_channel = _make_divisible(c * width_mult, round_nearest)
|
195 |
+
for i in range(n):
|
196 |
+
stride = s if i == 0 else 1
|
197 |
+
features.append(block(input_channel, output_channel, stride, expand_ratio=t))
|
198 |
+
input_channel = output_channel
|
199 |
+
self.features = nn.Sequential(*features)
|
200 |
+
|
201 |
+
self.fpn_selected = [3, 6, 10]
|
202 |
+
# weight initialization
|
203 |
+
for m in self.modules():
|
204 |
+
if isinstance(m, nn.Conv2d):
|
205 |
+
nn.init.kaiming_normal_(m.weight, mode='fan_out')
|
206 |
+
if m.bias is not None:
|
207 |
+
nn.init.zeros_(m.bias)
|
208 |
+
elif isinstance(m, nn.BatchNorm2d):
|
209 |
+
nn.init.ones_(m.weight)
|
210 |
+
nn.init.zeros_(m.bias)
|
211 |
+
elif isinstance(m, nn.Linear):
|
212 |
+
nn.init.normal_(m.weight, 0, 0.01)
|
213 |
+
nn.init.zeros_(m.bias)
|
214 |
+
|
215 |
+
#if pretrained:
|
216 |
+
# self._load_pretrained_model()
|
217 |
+
|
218 |
+
def _forward_impl(self, x):
|
219 |
+
# This exists since TorchScript doesn't support inheritance, so the superclass method
|
220 |
+
# (this one) needs to have a name other than `forward` that can be accessed in a subclass
|
221 |
+
fpn_features = []
|
222 |
+
for i, f in enumerate(self.features):
|
223 |
+
if i > self.fpn_selected[-1]:
|
224 |
+
break
|
225 |
+
x = f(x)
|
226 |
+
if i in self.fpn_selected:
|
227 |
+
fpn_features.append(x)
|
228 |
+
|
229 |
+
c2, c3, c4 = fpn_features
|
230 |
+
return c2, c3, c4
|
231 |
+
|
232 |
+
|
233 |
+
def forward(self, x):
|
234 |
+
return self._forward_impl(x)
|
235 |
+
|
236 |
+
def _load_pretrained_model(self):
|
237 |
+
pretrain_dict = model_zoo.load_url('https://download.pytorch.org/models/mobilenet_v2-b0353104.pth')
|
238 |
+
model_dict = {}
|
239 |
+
state_dict = self.state_dict()
|
240 |
+
for k, v in pretrain_dict.items():
|
241 |
+
if k in state_dict:
|
242 |
+
model_dict[k] = v
|
243 |
+
state_dict.update(model_dict)
|
244 |
+
self.load_state_dict(state_dict)
|
245 |
+
|
246 |
+
|
247 |
+
class MobileV2_MLSD_Tiny(nn.Module):
|
248 |
+
def __init__(self):
|
249 |
+
super(MobileV2_MLSD_Tiny, self).__init__()
|
250 |
+
|
251 |
+
self.backbone = MobileNetV2(pretrained=True)
|
252 |
+
|
253 |
+
self.block12 = BlockTypeA(in_c1= 32, in_c2= 64,
|
254 |
+
out_c1= 64, out_c2=64)
|
255 |
+
self.block13 = BlockTypeB(128, 64)
|
256 |
+
|
257 |
+
self.block14 = BlockTypeA(in_c1 = 24, in_c2 = 64,
|
258 |
+
out_c1= 32, out_c2= 32)
|
259 |
+
self.block15 = BlockTypeB(64, 64)
|
260 |
+
|
261 |
+
self.block16 = BlockTypeC(64, 16)
|
262 |
+
|
263 |
+
def forward(self, x):
|
264 |
+
c2, c3, c4 = self.backbone(x)
|
265 |
+
|
266 |
+
x = self.block12(c3, c4)
|
267 |
+
x = self.block13(x)
|
268 |
+
x = self.block14(c2, x)
|
269 |
+
x = self.block15(x)
|
270 |
+
x = self.block16(x)
|
271 |
+
x = x[:, 7:, :, :]
|
272 |
+
#print(x.shape)
|
273 |
+
x = F.interpolate(x, scale_factor=2.0, mode='bilinear', align_corners=True)
|
274 |
+
|
275 |
+
return x
|
ControlNet-v1-1-nightly-main/annotator/mlsd/utils.py
ADDED
@@ -0,0 +1,580 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
'''
|
2 |
+
modified by lihaoweicv
|
3 |
+
pytorch version
|
4 |
+
'''
|
5 |
+
|
6 |
+
'''
|
7 |
+
M-LSD
|
8 |
+
Copyright 2021-present NAVER Corp.
|
9 |
+
Apache License v2.0
|
10 |
+
'''
|
11 |
+
|
12 |
+
import os
|
13 |
+
import numpy as np
|
14 |
+
import cv2
|
15 |
+
import torch
|
16 |
+
from torch.nn import functional as F
|
17 |
+
|
18 |
+
|
19 |
+
def deccode_output_score_and_ptss(tpMap, topk_n = 200, ksize = 5):
|
20 |
+
'''
|
21 |
+
tpMap:
|
22 |
+
center: tpMap[1, 0, :, :]
|
23 |
+
displacement: tpMap[1, 1:5, :, :]
|
24 |
+
'''
|
25 |
+
b, c, h, w = tpMap.shape
|
26 |
+
assert b==1, 'only support bsize==1'
|
27 |
+
displacement = tpMap[:, 1:5, :, :][0]
|
28 |
+
center = tpMap[:, 0, :, :]
|
29 |
+
heat = torch.sigmoid(center)
|
30 |
+
hmax = F.max_pool2d( heat, (ksize, ksize), stride=1, padding=(ksize-1)//2)
|
31 |
+
keep = (hmax == heat).float()
|
32 |
+
heat = heat * keep
|
33 |
+
heat = heat.reshape(-1, )
|
34 |
+
|
35 |
+
scores, indices = torch.topk(heat, topk_n, dim=-1, largest=True)
|
36 |
+
yy = torch.floor_divide(indices, w).unsqueeze(-1)
|
37 |
+
xx = torch.fmod(indices, w).unsqueeze(-1)
|
38 |
+
ptss = torch.cat((yy, xx),dim=-1)
|
39 |
+
|
40 |
+
ptss = ptss.detach().cpu().numpy()
|
41 |
+
scores = scores.detach().cpu().numpy()
|
42 |
+
displacement = displacement.detach().cpu().numpy()
|
43 |
+
displacement = displacement.transpose((1,2,0))
|
44 |
+
return ptss, scores, displacement
|
45 |
+
|
46 |
+
|
47 |
+
def pred_lines(image, model,
|
48 |
+
input_shape=[512, 512],
|
49 |
+
score_thr=0.10,
|
50 |
+
dist_thr=20.0):
|
51 |
+
h, w, _ = image.shape
|
52 |
+
h_ratio, w_ratio = [h / input_shape[0], w / input_shape[1]]
|
53 |
+
|
54 |
+
resized_image = np.concatenate([cv2.resize(image, (input_shape[1], input_shape[0]), interpolation=cv2.INTER_AREA),
|
55 |
+
np.ones([input_shape[0], input_shape[1], 1])], axis=-1)
|
56 |
+
|
57 |
+
resized_image = resized_image.transpose((2,0,1))
|
58 |
+
batch_image = np.expand_dims(resized_image, axis=0).astype('float32')
|
59 |
+
batch_image = (batch_image / 127.5) - 1.0
|
60 |
+
|
61 |
+
batch_image = torch.from_numpy(batch_image).float().cuda()
|
62 |
+
outputs = model(batch_image)
|
63 |
+
pts, pts_score, vmap = deccode_output_score_and_ptss(outputs, 200, 3)
|
64 |
+
start = vmap[:, :, :2]
|
65 |
+
end = vmap[:, :, 2:]
|
66 |
+
dist_map = np.sqrt(np.sum((start - end) ** 2, axis=-1))
|
67 |
+
|
68 |
+
segments_list = []
|
69 |
+
for center, score in zip(pts, pts_score):
|
70 |
+
y, x = center
|
71 |
+
distance = dist_map[y, x]
|
72 |
+
if score > score_thr and distance > dist_thr:
|
73 |
+
disp_x_start, disp_y_start, disp_x_end, disp_y_end = vmap[y, x, :]
|
74 |
+
x_start = x + disp_x_start
|
75 |
+
y_start = y + disp_y_start
|
76 |
+
x_end = x + disp_x_end
|
77 |
+
y_end = y + disp_y_end
|
78 |
+
segments_list.append([x_start, y_start, x_end, y_end])
|
79 |
+
|
80 |
+
lines = 2 * np.array(segments_list) # 256 > 512
|
81 |
+
lines[:, 0] = lines[:, 0] * w_ratio
|
82 |
+
lines[:, 1] = lines[:, 1] * h_ratio
|
83 |
+
lines[:, 2] = lines[:, 2] * w_ratio
|
84 |
+
lines[:, 3] = lines[:, 3] * h_ratio
|
85 |
+
|
86 |
+
return lines
|
87 |
+
|
88 |
+
|
89 |
+
def pred_squares(image,
|
90 |
+
model,
|
91 |
+
input_shape=[512, 512],
|
92 |
+
params={'score': 0.06,
|
93 |
+
'outside_ratio': 0.28,
|
94 |
+
'inside_ratio': 0.45,
|
95 |
+
'w_overlap': 0.0,
|
96 |
+
'w_degree': 1.95,
|
97 |
+
'w_length': 0.0,
|
98 |
+
'w_area': 1.86,
|
99 |
+
'w_center': 0.14}):
|
100 |
+
'''
|
101 |
+
shape = [height, width]
|
102 |
+
'''
|
103 |
+
h, w, _ = image.shape
|
104 |
+
original_shape = [h, w]
|
105 |
+
|
106 |
+
resized_image = np.concatenate([cv2.resize(image, (input_shape[0], input_shape[1]), interpolation=cv2.INTER_AREA),
|
107 |
+
np.ones([input_shape[0], input_shape[1], 1])], axis=-1)
|
108 |
+
resized_image = resized_image.transpose((2, 0, 1))
|
109 |
+
batch_image = np.expand_dims(resized_image, axis=0).astype('float32')
|
110 |
+
batch_image = (batch_image / 127.5) - 1.0
|
111 |
+
|
112 |
+
batch_image = torch.from_numpy(batch_image).float().cuda()
|
113 |
+
outputs = model(batch_image)
|
114 |
+
|
115 |
+
pts, pts_score, vmap = deccode_output_score_and_ptss(outputs, 200, 3)
|
116 |
+
start = vmap[:, :, :2] # (x, y)
|
117 |
+
end = vmap[:, :, 2:] # (x, y)
|
118 |
+
dist_map = np.sqrt(np.sum((start - end) ** 2, axis=-1))
|
119 |
+
|
120 |
+
junc_list = []
|
121 |
+
segments_list = []
|
122 |
+
for junc, score in zip(pts, pts_score):
|
123 |
+
y, x = junc
|
124 |
+
distance = dist_map[y, x]
|
125 |
+
if score > params['score'] and distance > 20.0:
|
126 |
+
junc_list.append([x, y])
|
127 |
+
disp_x_start, disp_y_start, disp_x_end, disp_y_end = vmap[y, x, :]
|
128 |
+
d_arrow = 1.0
|
129 |
+
x_start = x + d_arrow * disp_x_start
|
130 |
+
y_start = y + d_arrow * disp_y_start
|
131 |
+
x_end = x + d_arrow * disp_x_end
|
132 |
+
y_end = y + d_arrow * disp_y_end
|
133 |
+
segments_list.append([x_start, y_start, x_end, y_end])
|
134 |
+
|
135 |
+
segments = np.array(segments_list)
|
136 |
+
|
137 |
+
####### post processing for squares
|
138 |
+
# 1. get unique lines
|
139 |
+
point = np.array([[0, 0]])
|
140 |
+
point = point[0]
|
141 |
+
start = segments[:, :2]
|
142 |
+
end = segments[:, 2:]
|
143 |
+
diff = start - end
|
144 |
+
a = diff[:, 1]
|
145 |
+
b = -diff[:, 0]
|
146 |
+
c = a * start[:, 0] + b * start[:, 1]
|
147 |
+
|
148 |
+
d = np.abs(a * point[0] + b * point[1] - c) / np.sqrt(a ** 2 + b ** 2 + 1e-10)
|
149 |
+
theta = np.arctan2(diff[:, 0], diff[:, 1]) * 180 / np.pi
|
150 |
+
theta[theta < 0.0] += 180
|
151 |
+
hough = np.concatenate([d[:, None], theta[:, None]], axis=-1)
|
152 |
+
|
153 |
+
d_quant = 1
|
154 |
+
theta_quant = 2
|
155 |
+
hough[:, 0] //= d_quant
|
156 |
+
hough[:, 1] //= theta_quant
|
157 |
+
_, indices, counts = np.unique(hough, axis=0, return_index=True, return_counts=True)
|
158 |
+
|
159 |
+
acc_map = np.zeros([512 // d_quant + 1, 360 // theta_quant + 1], dtype='float32')
|
160 |
+
idx_map = np.zeros([512 // d_quant + 1, 360 // theta_quant + 1], dtype='int32') - 1
|
161 |
+
yx_indices = hough[indices, :].astype('int32')
|
162 |
+
acc_map[yx_indices[:, 0], yx_indices[:, 1]] = counts
|
163 |
+
idx_map[yx_indices[:, 0], yx_indices[:, 1]] = indices
|
164 |
+
|
165 |
+
acc_map_np = acc_map
|
166 |
+
# acc_map = acc_map[None, :, :, None]
|
167 |
+
#
|
168 |
+
# ### fast suppression using tensorflow op
|
169 |
+
# acc_map = tf.constant(acc_map, dtype=tf.float32)
|
170 |
+
# max_acc_map = tf.keras.layers.MaxPool2D(pool_size=(5, 5), strides=1, padding='same')(acc_map)
|
171 |
+
# acc_map = acc_map * tf.cast(tf.math.equal(acc_map, max_acc_map), tf.float32)
|
172 |
+
# flatten_acc_map = tf.reshape(acc_map, [1, -1])
|
173 |
+
# topk_values, topk_indices = tf.math.top_k(flatten_acc_map, k=len(pts))
|
174 |
+
# _, h, w, _ = acc_map.shape
|
175 |
+
# y = tf.expand_dims(topk_indices // w, axis=-1)
|
176 |
+
# x = tf.expand_dims(topk_indices % w, axis=-1)
|
177 |
+
# yx = tf.concat([y, x], axis=-1)
|
178 |
+
|
179 |
+
### fast suppression using pytorch op
|
180 |
+
acc_map = torch.from_numpy(acc_map_np).unsqueeze(0).unsqueeze(0)
|
181 |
+
_,_, h, w = acc_map.shape
|
182 |
+
max_acc_map = F.max_pool2d(acc_map,kernel_size=5, stride=1, padding=2)
|
183 |
+
acc_map = acc_map * ( (acc_map == max_acc_map).float() )
|
184 |
+
flatten_acc_map = acc_map.reshape([-1, ])
|
185 |
+
|
186 |
+
scores, indices = torch.topk(flatten_acc_map, len(pts), dim=-1, largest=True)
|
187 |
+
yy = torch.div(indices, w, rounding_mode='floor').unsqueeze(-1)
|
188 |
+
xx = torch.fmod(indices, w).unsqueeze(-1)
|
189 |
+
yx = torch.cat((yy, xx), dim=-1)
|
190 |
+
|
191 |
+
yx = yx.detach().cpu().numpy()
|
192 |
+
|
193 |
+
topk_values = scores.detach().cpu().numpy()
|
194 |
+
indices = idx_map[yx[:, 0], yx[:, 1]]
|
195 |
+
basis = 5 // 2
|
196 |
+
|
197 |
+
merged_segments = []
|
198 |
+
for yx_pt, max_indice, value in zip(yx, indices, topk_values):
|
199 |
+
y, x = yx_pt
|
200 |
+
if max_indice == -1 or value == 0:
|
201 |
+
continue
|
202 |
+
segment_list = []
|
203 |
+
for y_offset in range(-basis, basis + 1):
|
204 |
+
for x_offset in range(-basis, basis + 1):
|
205 |
+
indice = idx_map[y + y_offset, x + x_offset]
|
206 |
+
cnt = int(acc_map_np[y + y_offset, x + x_offset])
|
207 |
+
if indice != -1:
|
208 |
+
segment_list.append(segments[indice])
|
209 |
+
if cnt > 1:
|
210 |
+
check_cnt = 1
|
211 |
+
current_hough = hough[indice]
|
212 |
+
for new_indice, new_hough in enumerate(hough):
|
213 |
+
if (current_hough == new_hough).all() and indice != new_indice:
|
214 |
+
segment_list.append(segments[new_indice])
|
215 |
+
check_cnt += 1
|
216 |
+
if check_cnt == cnt:
|
217 |
+
break
|
218 |
+
group_segments = np.array(segment_list).reshape([-1, 2])
|
219 |
+
sorted_group_segments = np.sort(group_segments, axis=0)
|
220 |
+
x_min, y_min = sorted_group_segments[0, :]
|
221 |
+
x_max, y_max = sorted_group_segments[-1, :]
|
222 |
+
|
223 |
+
deg = theta[max_indice]
|
224 |
+
if deg >= 90:
|
225 |
+
merged_segments.append([x_min, y_max, x_max, y_min])
|
226 |
+
else:
|
227 |
+
merged_segments.append([x_min, y_min, x_max, y_max])
|
228 |
+
|
229 |
+
# 2. get intersections
|
230 |
+
new_segments = np.array(merged_segments) # (x1, y1, x2, y2)
|
231 |
+
start = new_segments[:, :2] # (x1, y1)
|
232 |
+
end = new_segments[:, 2:] # (x2, y2)
|
233 |
+
new_centers = (start + end) / 2.0
|
234 |
+
diff = start - end
|
235 |
+
dist_segments = np.sqrt(np.sum(diff ** 2, axis=-1))
|
236 |
+
|
237 |
+
# ax + by = c
|
238 |
+
a = diff[:, 1]
|
239 |
+
b = -diff[:, 0]
|
240 |
+
c = a * start[:, 0] + b * start[:, 1]
|
241 |
+
pre_det = a[:, None] * b[None, :]
|
242 |
+
det = pre_det - np.transpose(pre_det)
|
243 |
+
|
244 |
+
pre_inter_y = a[:, None] * c[None, :]
|
245 |
+
inter_y = (pre_inter_y - np.transpose(pre_inter_y)) / (det + 1e-10)
|
246 |
+
pre_inter_x = c[:, None] * b[None, :]
|
247 |
+
inter_x = (pre_inter_x - np.transpose(pre_inter_x)) / (det + 1e-10)
|
248 |
+
inter_pts = np.concatenate([inter_x[:, :, None], inter_y[:, :, None]], axis=-1).astype('int32')
|
249 |
+
|
250 |
+
# 3. get corner information
|
251 |
+
# 3.1 get distance
|
252 |
+
'''
|
253 |
+
dist_segments:
|
254 |
+
| dist(0), dist(1), dist(2), ...|
|
255 |
+
dist_inter_to_segment1:
|
256 |
+
| dist(inter,0), dist(inter,0), dist(inter,0), ... |
|
257 |
+
| dist(inter,1), dist(inter,1), dist(inter,1), ... |
|
258 |
+
...
|
259 |
+
dist_inter_to_semgnet2:
|
260 |
+
| dist(inter,0), dist(inter,1), dist(inter,2), ... |
|
261 |
+
| dist(inter,0), dist(inter,1), dist(inter,2), ... |
|
262 |
+
...
|
263 |
+
'''
|
264 |
+
|
265 |
+
dist_inter_to_segment1_start = np.sqrt(
|
266 |
+
np.sum(((inter_pts - start[:, None, :]) ** 2), axis=-1, keepdims=True)) # [n_batch, n_batch, 1]
|
267 |
+
dist_inter_to_segment1_end = np.sqrt(
|
268 |
+
np.sum(((inter_pts - end[:, None, :]) ** 2), axis=-1, keepdims=True)) # [n_batch, n_batch, 1]
|
269 |
+
dist_inter_to_segment2_start = np.sqrt(
|
270 |
+
np.sum(((inter_pts - start[None, :, :]) ** 2), axis=-1, keepdims=True)) # [n_batch, n_batch, 1]
|
271 |
+
dist_inter_to_segment2_end = np.sqrt(
|
272 |
+
np.sum(((inter_pts - end[None, :, :]) ** 2), axis=-1, keepdims=True)) # [n_batch, n_batch, 1]
|
273 |
+
|
274 |
+
# sort ascending
|
275 |
+
dist_inter_to_segment1 = np.sort(
|
276 |
+
np.concatenate([dist_inter_to_segment1_start, dist_inter_to_segment1_end], axis=-1),
|
277 |
+
axis=-1) # [n_batch, n_batch, 2]
|
278 |
+
dist_inter_to_segment2 = np.sort(
|
279 |
+
np.concatenate([dist_inter_to_segment2_start, dist_inter_to_segment2_end], axis=-1),
|
280 |
+
axis=-1) # [n_batch, n_batch, 2]
|
281 |
+
|
282 |
+
# 3.2 get degree
|
283 |
+
inter_to_start = new_centers[:, None, :] - inter_pts
|
284 |
+
deg_inter_to_start = np.arctan2(inter_to_start[:, :, 1], inter_to_start[:, :, 0]) * 180 / np.pi
|
285 |
+
deg_inter_to_start[deg_inter_to_start < 0.0] += 360
|
286 |
+
inter_to_end = new_centers[None, :, :] - inter_pts
|
287 |
+
deg_inter_to_end = np.arctan2(inter_to_end[:, :, 1], inter_to_end[:, :, 0]) * 180 / np.pi
|
288 |
+
deg_inter_to_end[deg_inter_to_end < 0.0] += 360
|
289 |
+
|
290 |
+
'''
|
291 |
+
B -- G
|
292 |
+
| |
|
293 |
+
C -- R
|
294 |
+
B : blue / G: green / C: cyan / R: red
|
295 |
+
|
296 |
+
0 -- 1
|
297 |
+
| |
|
298 |
+
3 -- 2
|
299 |
+
'''
|
300 |
+
# rename variables
|
301 |
+
deg1_map, deg2_map = deg_inter_to_start, deg_inter_to_end
|
302 |
+
# sort deg ascending
|
303 |
+
deg_sort = np.sort(np.concatenate([deg1_map[:, :, None], deg2_map[:, :, None]], axis=-1), axis=-1)
|
304 |
+
|
305 |
+
deg_diff_map = np.abs(deg1_map - deg2_map)
|
306 |
+
# we only consider the smallest degree of intersect
|
307 |
+
deg_diff_map[deg_diff_map > 180] = 360 - deg_diff_map[deg_diff_map > 180]
|
308 |
+
|
309 |
+
# define available degree range
|
310 |
+
deg_range = [60, 120]
|
311 |
+
|
312 |
+
corner_dict = {corner_info: [] for corner_info in range(4)}
|
313 |
+
inter_points = []
|
314 |
+
for i in range(inter_pts.shape[0]):
|
315 |
+
for j in range(i + 1, inter_pts.shape[1]):
|
316 |
+
# i, j > line index, always i < j
|
317 |
+
x, y = inter_pts[i, j, :]
|
318 |
+
deg1, deg2 = deg_sort[i, j, :]
|
319 |
+
deg_diff = deg_diff_map[i, j]
|
320 |
+
|
321 |
+
check_degree = deg_diff > deg_range[0] and deg_diff < deg_range[1]
|
322 |
+
|
323 |
+
outside_ratio = params['outside_ratio'] # over ratio >>> drop it!
|
324 |
+
inside_ratio = params['inside_ratio'] # over ratio >>> drop it!
|
325 |
+
check_distance = ((dist_inter_to_segment1[i, j, 1] >= dist_segments[i] and \
|
326 |
+
dist_inter_to_segment1[i, j, 0] <= dist_segments[i] * outside_ratio) or \
|
327 |
+
(dist_inter_to_segment1[i, j, 1] <= dist_segments[i] and \
|
328 |
+
dist_inter_to_segment1[i, j, 0] <= dist_segments[i] * inside_ratio)) and \
|
329 |
+
((dist_inter_to_segment2[i, j, 1] >= dist_segments[j] and \
|
330 |
+
dist_inter_to_segment2[i, j, 0] <= dist_segments[j] * outside_ratio) or \
|
331 |
+
(dist_inter_to_segment2[i, j, 1] <= dist_segments[j] and \
|
332 |
+
dist_inter_to_segment2[i, j, 0] <= dist_segments[j] * inside_ratio))
|
333 |
+
|
334 |
+
if check_degree and check_distance:
|
335 |
+
corner_info = None
|
336 |
+
|
337 |
+
if (deg1 >= 0 and deg1 <= 45 and deg2 >= 45 and deg2 <= 120) or \
|
338 |
+
(deg2 >= 315 and deg1 >= 45 and deg1 <= 120):
|
339 |
+
corner_info, color_info = 0, 'blue'
|
340 |
+
elif (deg1 >= 45 and deg1 <= 125 and deg2 >= 125 and deg2 <= 225):
|
341 |
+
corner_info, color_info = 1, 'green'
|
342 |
+
elif (deg1 >= 125 and deg1 <= 225 and deg2 >= 225 and deg2 <= 315):
|
343 |
+
corner_info, color_info = 2, 'black'
|
344 |
+
elif (deg1 >= 0 and deg1 <= 45 and deg2 >= 225 and deg2 <= 315) or \
|
345 |
+
(deg2 >= 315 and deg1 >= 225 and deg1 <= 315):
|
346 |
+
corner_info, color_info = 3, 'cyan'
|
347 |
+
else:
|
348 |
+
corner_info, color_info = 4, 'red' # we don't use it
|
349 |
+
continue
|
350 |
+
|
351 |
+
corner_dict[corner_info].append([x, y, i, j])
|
352 |
+
inter_points.append([x, y])
|
353 |
+
|
354 |
+
square_list = []
|
355 |
+
connect_list = []
|
356 |
+
segments_list = []
|
357 |
+
for corner0 in corner_dict[0]:
|
358 |
+
for corner1 in corner_dict[1]:
|
359 |
+
connect01 = False
|
360 |
+
for corner0_line in corner0[2:]:
|
361 |
+
if corner0_line in corner1[2:]:
|
362 |
+
connect01 = True
|
363 |
+
break
|
364 |
+
if connect01:
|
365 |
+
for corner2 in corner_dict[2]:
|
366 |
+
connect12 = False
|
367 |
+
for corner1_line in corner1[2:]:
|
368 |
+
if corner1_line in corner2[2:]:
|
369 |
+
connect12 = True
|
370 |
+
break
|
371 |
+
if connect12:
|
372 |
+
for corner3 in corner_dict[3]:
|
373 |
+
connect23 = False
|
374 |
+
for corner2_line in corner2[2:]:
|
375 |
+
if corner2_line in corner3[2:]:
|
376 |
+
connect23 = True
|
377 |
+
break
|
378 |
+
if connect23:
|
379 |
+
for corner3_line in corner3[2:]:
|
380 |
+
if corner3_line in corner0[2:]:
|
381 |
+
# SQUARE!!!
|
382 |
+
'''
|
383 |
+
0 -- 1
|
384 |
+
| |
|
385 |
+
3 -- 2
|
386 |
+
square_list:
|
387 |
+
order: 0 > 1 > 2 > 3
|
388 |
+
| x0, y0, x1, y1, x2, y2, x3, y3 |
|
389 |
+
| x0, y0, x1, y1, x2, y2, x3, y3 |
|
390 |
+
...
|
391 |
+
connect_list:
|
392 |
+
order: 01 > 12 > 23 > 30
|
393 |
+
| line_idx01, line_idx12, line_idx23, line_idx30 |
|
394 |
+
| line_idx01, line_idx12, line_idx23, line_idx30 |
|
395 |
+
...
|
396 |
+
segments_list:
|
397 |
+
order: 0 > 1 > 2 > 3
|
398 |
+
| line_idx0_i, line_idx0_j, line_idx1_i, line_idx1_j, line_idx2_i, line_idx2_j, line_idx3_i, line_idx3_j |
|
399 |
+
| line_idx0_i, line_idx0_j, line_idx1_i, line_idx1_j, line_idx2_i, line_idx2_j, line_idx3_i, line_idx3_j |
|
400 |
+
...
|
401 |
+
'''
|
402 |
+
square_list.append(corner0[:2] + corner1[:2] + corner2[:2] + corner3[:2])
|
403 |
+
connect_list.append([corner0_line, corner1_line, corner2_line, corner3_line])
|
404 |
+
segments_list.append(corner0[2:] + corner1[2:] + corner2[2:] + corner3[2:])
|
405 |
+
|
406 |
+
def check_outside_inside(segments_info, connect_idx):
|
407 |
+
# return 'outside or inside', min distance, cover_param, peri_param
|
408 |
+
if connect_idx == segments_info[0]:
|
409 |
+
check_dist_mat = dist_inter_to_segment1
|
410 |
+
else:
|
411 |
+
check_dist_mat = dist_inter_to_segment2
|
412 |
+
|
413 |
+
i, j = segments_info
|
414 |
+
min_dist, max_dist = check_dist_mat[i, j, :]
|
415 |
+
connect_dist = dist_segments[connect_idx]
|
416 |
+
if max_dist > connect_dist:
|
417 |
+
return 'outside', min_dist, 0, 1
|
418 |
+
else:
|
419 |
+
return 'inside', min_dist, -1, -1
|
420 |
+
|
421 |
+
top_square = None
|
422 |
+
|
423 |
+
try:
|
424 |
+
map_size = input_shape[0] / 2
|
425 |
+
squares = np.array(square_list).reshape([-1, 4, 2])
|
426 |
+
score_array = []
|
427 |
+
connect_array = np.array(connect_list)
|
428 |
+
segments_array = np.array(segments_list).reshape([-1, 4, 2])
|
429 |
+
|
430 |
+
# get degree of corners:
|
431 |
+
squares_rollup = np.roll(squares, 1, axis=1)
|
432 |
+
squares_rolldown = np.roll(squares, -1, axis=1)
|
433 |
+
vec1 = squares_rollup - squares
|
434 |
+
normalized_vec1 = vec1 / (np.linalg.norm(vec1, axis=-1, keepdims=True) + 1e-10)
|
435 |
+
vec2 = squares_rolldown - squares
|
436 |
+
normalized_vec2 = vec2 / (np.linalg.norm(vec2, axis=-1, keepdims=True) + 1e-10)
|
437 |
+
inner_products = np.sum(normalized_vec1 * normalized_vec2, axis=-1) # [n_squares, 4]
|
438 |
+
squares_degree = np.arccos(inner_products) * 180 / np.pi # [n_squares, 4]
|
439 |
+
|
440 |
+
# get square score
|
441 |
+
overlap_scores = []
|
442 |
+
degree_scores = []
|
443 |
+
length_scores = []
|
444 |
+
|
445 |
+
for connects, segments, square, degree in zip(connect_array, segments_array, squares, squares_degree):
|
446 |
+
'''
|
447 |
+
0 -- 1
|
448 |
+
| |
|
449 |
+
3 -- 2
|
450 |
+
|
451 |
+
# segments: [4, 2]
|
452 |
+
# connects: [4]
|
453 |
+
'''
|
454 |
+
|
455 |
+
###################################### OVERLAP SCORES
|
456 |
+
cover = 0
|
457 |
+
perimeter = 0
|
458 |
+
# check 0 > 1 > 2 > 3
|
459 |
+
square_length = []
|
460 |
+
|
461 |
+
for start_idx in range(4):
|
462 |
+
end_idx = (start_idx + 1) % 4
|
463 |
+
|
464 |
+
connect_idx = connects[start_idx] # segment idx of segment01
|
465 |
+
start_segments = segments[start_idx]
|
466 |
+
end_segments = segments[end_idx]
|
467 |
+
|
468 |
+
start_point = square[start_idx]
|
469 |
+
end_point = square[end_idx]
|
470 |
+
|
471 |
+
# check whether outside or inside
|
472 |
+
start_position, start_min, start_cover_param, start_peri_param = check_outside_inside(start_segments,
|
473 |
+
connect_idx)
|
474 |
+
end_position, end_min, end_cover_param, end_peri_param = check_outside_inside(end_segments, connect_idx)
|
475 |
+
|
476 |
+
cover += dist_segments[connect_idx] + start_cover_param * start_min + end_cover_param * end_min
|
477 |
+
perimeter += dist_segments[connect_idx] + start_peri_param * start_min + end_peri_param * end_min
|
478 |
+
|
479 |
+
square_length.append(
|
480 |
+
dist_segments[connect_idx] + start_peri_param * start_min + end_peri_param * end_min)
|
481 |
+
|
482 |
+
overlap_scores.append(cover / perimeter)
|
483 |
+
######################################
|
484 |
+
###################################### DEGREE SCORES
|
485 |
+
'''
|
486 |
+
deg0 vs deg2
|
487 |
+
deg1 vs deg3
|
488 |
+
'''
|
489 |
+
deg0, deg1, deg2, deg3 = degree
|
490 |
+
deg_ratio1 = deg0 / deg2
|
491 |
+
if deg_ratio1 > 1.0:
|
492 |
+
deg_ratio1 = 1 / deg_ratio1
|
493 |
+
deg_ratio2 = deg1 / deg3
|
494 |
+
if deg_ratio2 > 1.0:
|
495 |
+
deg_ratio2 = 1 / deg_ratio2
|
496 |
+
degree_scores.append((deg_ratio1 + deg_ratio2) / 2)
|
497 |
+
######################################
|
498 |
+
###################################### LENGTH SCORES
|
499 |
+
'''
|
500 |
+
len0 vs len2
|
501 |
+
len1 vs len3
|
502 |
+
'''
|
503 |
+
len0, len1, len2, len3 = square_length
|
504 |
+
len_ratio1 = len0 / len2 if len2 > len0 else len2 / len0
|
505 |
+
len_ratio2 = len1 / len3 if len3 > len1 else len3 / len1
|
506 |
+
length_scores.append((len_ratio1 + len_ratio2) / 2)
|
507 |
+
|
508 |
+
######################################
|
509 |
+
|
510 |
+
overlap_scores = np.array(overlap_scores)
|
511 |
+
overlap_scores /= np.max(overlap_scores)
|
512 |
+
|
513 |
+
degree_scores = np.array(degree_scores)
|
514 |
+
# degree_scores /= np.max(degree_scores)
|
515 |
+
|
516 |
+
length_scores = np.array(length_scores)
|
517 |
+
|
518 |
+
###################################### AREA SCORES
|
519 |
+
area_scores = np.reshape(squares, [-1, 4, 2])
|
520 |
+
area_x = area_scores[:, :, 0]
|
521 |
+
area_y = area_scores[:, :, 1]
|
522 |
+
correction = area_x[:, -1] * area_y[:, 0] - area_y[:, -1] * area_x[:, 0]
|
523 |
+
area_scores = np.sum(area_x[:, :-1] * area_y[:, 1:], axis=-1) - np.sum(area_y[:, :-1] * area_x[:, 1:], axis=-1)
|
524 |
+
area_scores = 0.5 * np.abs(area_scores + correction)
|
525 |
+
area_scores /= (map_size * map_size) # np.max(area_scores)
|
526 |
+
######################################
|
527 |
+
|
528 |
+
###################################### CENTER SCORES
|
529 |
+
centers = np.array([[256 // 2, 256 // 2]], dtype='float32') # [1, 2]
|
530 |
+
# squares: [n, 4, 2]
|
531 |
+
square_centers = np.mean(squares, axis=1) # [n, 2]
|
532 |
+
center2center = np.sqrt(np.sum((centers - square_centers) ** 2))
|
533 |
+
center_scores = center2center / (map_size / np.sqrt(2.0))
|
534 |
+
|
535 |
+
'''
|
536 |
+
score_w = [overlap, degree, area, center, length]
|
537 |
+
'''
|
538 |
+
score_w = [0.0, 1.0, 10.0, 0.5, 1.0]
|
539 |
+
score_array = params['w_overlap'] * overlap_scores \
|
540 |
+
+ params['w_degree'] * degree_scores \
|
541 |
+
+ params['w_area'] * area_scores \
|
542 |
+
- params['w_center'] * center_scores \
|
543 |
+
+ params['w_length'] * length_scores
|
544 |
+
|
545 |
+
best_square = []
|
546 |
+
|
547 |
+
sorted_idx = np.argsort(score_array)[::-1]
|
548 |
+
score_array = score_array[sorted_idx]
|
549 |
+
squares = squares[sorted_idx]
|
550 |
+
|
551 |
+
except Exception as e:
|
552 |
+
pass
|
553 |
+
|
554 |
+
'''return list
|
555 |
+
merged_lines, squares, scores
|
556 |
+
'''
|
557 |
+
|
558 |
+
try:
|
559 |
+
new_segments[:, 0] = new_segments[:, 0] * 2 / input_shape[1] * original_shape[1]
|
560 |
+
new_segments[:, 1] = new_segments[:, 1] * 2 / input_shape[0] * original_shape[0]
|
561 |
+
new_segments[:, 2] = new_segments[:, 2] * 2 / input_shape[1] * original_shape[1]
|
562 |
+
new_segments[:, 3] = new_segments[:, 3] * 2 / input_shape[0] * original_shape[0]
|
563 |
+
except:
|
564 |
+
new_segments = []
|
565 |
+
|
566 |
+
try:
|
567 |
+
squares[:, :, 0] = squares[:, :, 0] * 2 / input_shape[1] * original_shape[1]
|
568 |
+
squares[:, :, 1] = squares[:, :, 1] * 2 / input_shape[0] * original_shape[0]
|
569 |
+
except:
|
570 |
+
squares = []
|
571 |
+
score_array = []
|
572 |
+
|
573 |
+
try:
|
574 |
+
inter_points = np.array(inter_points)
|
575 |
+
inter_points[:, 0] = inter_points[:, 0] * 2 / input_shape[1] * original_shape[1]
|
576 |
+
inter_points[:, 1] = inter_points[:, 1] * 2 / input_shape[0] * original_shape[0]
|
577 |
+
except:
|
578 |
+
inter_points = []
|
579 |
+
|
580 |
+
return new_segments, squares, score_array, inter_points
|
ControlNet-v1-1-nightly-main/annotator/normalbae/LICENSE
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
MIT License
|
2 |
+
|
3 |
+
Copyright (c) 2022 Caroline Chan
|
4 |
+
|
5 |
+
Permission is hereby granted, free of charge, to any person obtaining a copy
|
6 |
+
of this software and associated documentation files (the "Software"), to deal
|
7 |
+
in the Software without restriction, including without limitation the rights
|
8 |
+
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
9 |
+
copies of the Software, and to permit persons to whom the Software is
|
10 |
+
furnished to do so, subject to the following conditions:
|
11 |
+
|
12 |
+
The above copyright notice and this permission notice shall be included in all
|
13 |
+
copies or substantial portions of the Software.
|
14 |
+
|
15 |
+
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
16 |
+
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
17 |
+
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
18 |
+
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
19 |
+
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
20 |
+
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
21 |
+
SOFTWARE.
|
ControlNet-v1-1-nightly-main/annotator/normalbae/__init__.py
ADDED
@@ -0,0 +1,55 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Estimating and Exploiting the Aleatoric Uncertainty in Surface Normal Estimation
|
2 |
+
# https://github.com/baegwangbin/surface_normal_uncertainty
|
3 |
+
|
4 |
+
import os
|
5 |
+
import types
|
6 |
+
import torch
|
7 |
+
import numpy as np
|
8 |
+
|
9 |
+
from einops import rearrange
|
10 |
+
from .models.NNET import NNET
|
11 |
+
from .utils import utils
|
12 |
+
from annotator.util import annotator_ckpts_path
|
13 |
+
import torchvision.transforms as transforms
|
14 |
+
|
15 |
+
|
16 |
+
class NormalBaeDetector:
|
17 |
+
def __init__(self):
|
18 |
+
remote_model_path = "https://huggingface.co/lllyasviel/Annotators/resolve/main/scannet.pt"
|
19 |
+
modelpath = os.path.join(annotator_ckpts_path, "scannet.pt")
|
20 |
+
if not os.path.exists(modelpath):
|
21 |
+
from basicsr.utils.download_util import load_file_from_url
|
22 |
+
load_file_from_url(remote_model_path, model_dir=annotator_ckpts_path)
|
23 |
+
args = types.SimpleNamespace()
|
24 |
+
args.mode = 'client'
|
25 |
+
args.architecture = 'BN'
|
26 |
+
args.pretrained = 'scannet'
|
27 |
+
args.sampling_ratio = 0.4
|
28 |
+
args.importance_ratio = 0.7
|
29 |
+
model = NNET(args)
|
30 |
+
model = utils.load_checkpoint(modelpath, model)
|
31 |
+
model = model.cuda()
|
32 |
+
model.eval()
|
33 |
+
self.model = model
|
34 |
+
self.norm = transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
|
35 |
+
|
36 |
+
def __call__(self, input_image):
|
37 |
+
assert input_image.ndim == 3
|
38 |
+
image_normal = input_image
|
39 |
+
with torch.no_grad():
|
40 |
+
image_normal = torch.from_numpy(image_normal).float().cuda()
|
41 |
+
image_normal = image_normal / 255.0
|
42 |
+
image_normal = rearrange(image_normal, 'h w c -> 1 c h w')
|
43 |
+
image_normal = self.norm(image_normal)
|
44 |
+
|
45 |
+
normal = self.model(image_normal)
|
46 |
+
normal = normal[0][-1][:, :3]
|
47 |
+
# d = torch.sum(normal ** 2.0, dim=1, keepdim=True) ** 0.5
|
48 |
+
# d = torch.maximum(d, torch.ones_like(d) * 1e-5)
|
49 |
+
# normal /= d
|
50 |
+
normal = ((normal + 1) * 0.5).clip(0, 1)
|
51 |
+
|
52 |
+
normal = rearrange(normal[0], 'c h w -> h w c').cpu().numpy()
|
53 |
+
normal_image = (normal * 255.0).clip(0, 255).astype(np.uint8)
|
54 |
+
|
55 |
+
return normal_image
|
ControlNet-v1-1-nightly-main/annotator/normalbae/models/NNET.py
ADDED
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
import torch.nn.functional as F
|
4 |
+
|
5 |
+
from .submodules.encoder import Encoder
|
6 |
+
from .submodules.decoder import Decoder
|
7 |
+
|
8 |
+
|
9 |
+
class NNET(nn.Module):
|
10 |
+
def __init__(self, args):
|
11 |
+
super(NNET, self).__init__()
|
12 |
+
self.encoder = Encoder()
|
13 |
+
self.decoder = Decoder(args)
|
14 |
+
|
15 |
+
def get_1x_lr_params(self): # lr/10 learning rate
|
16 |
+
return self.encoder.parameters()
|
17 |
+
|
18 |
+
def get_10x_lr_params(self): # lr learning rate
|
19 |
+
return self.decoder.parameters()
|
20 |
+
|
21 |
+
def forward(self, img, **kwargs):
|
22 |
+
return self.decoder(self.encoder(img), **kwargs)
|
ControlNet-v1-1-nightly-main/annotator/normalbae/models/baseline.py
ADDED
@@ -0,0 +1,85 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
import torch.nn.functional as F
|
4 |
+
|
5 |
+
from .submodules.submodules import UpSampleBN, norm_normalize
|
6 |
+
|
7 |
+
|
8 |
+
# This is the baseline encoder-decoder we used in the ablation study
|
9 |
+
class NNET(nn.Module):
|
10 |
+
def __init__(self, args=None):
|
11 |
+
super(NNET, self).__init__()
|
12 |
+
self.encoder = Encoder()
|
13 |
+
self.decoder = Decoder(num_classes=4)
|
14 |
+
|
15 |
+
def forward(self, x, **kwargs):
|
16 |
+
out = self.decoder(self.encoder(x), **kwargs)
|
17 |
+
|
18 |
+
# Bilinearly upsample the output to match the input resolution
|
19 |
+
up_out = F.interpolate(out, size=[x.size(2), x.size(3)], mode='bilinear', align_corners=False)
|
20 |
+
|
21 |
+
# L2-normalize the first three channels / ensure positive value for concentration parameters (kappa)
|
22 |
+
up_out = norm_normalize(up_out)
|
23 |
+
return up_out
|
24 |
+
|
25 |
+
def get_1x_lr_params(self): # lr/10 learning rate
|
26 |
+
return self.encoder.parameters()
|
27 |
+
|
28 |
+
def get_10x_lr_params(self): # lr learning rate
|
29 |
+
modules = [self.decoder]
|
30 |
+
for m in modules:
|
31 |
+
yield from m.parameters()
|
32 |
+
|
33 |
+
|
34 |
+
# Encoder
|
35 |
+
class Encoder(nn.Module):
|
36 |
+
def __init__(self):
|
37 |
+
super(Encoder, self).__init__()
|
38 |
+
|
39 |
+
basemodel_name = 'tf_efficientnet_b5_ap'
|
40 |
+
basemodel = torch.hub.load('rwightman/gen-efficientnet-pytorch', basemodel_name, pretrained=True)
|
41 |
+
|
42 |
+
# Remove last layer
|
43 |
+
basemodel.global_pool = nn.Identity()
|
44 |
+
basemodel.classifier = nn.Identity()
|
45 |
+
|
46 |
+
self.original_model = basemodel
|
47 |
+
|
48 |
+
def forward(self, x):
|
49 |
+
features = [x]
|
50 |
+
for k, v in self.original_model._modules.items():
|
51 |
+
if (k == 'blocks'):
|
52 |
+
for ki, vi in v._modules.items():
|
53 |
+
features.append(vi(features[-1]))
|
54 |
+
else:
|
55 |
+
features.append(v(features[-1]))
|
56 |
+
return features
|
57 |
+
|
58 |
+
|
59 |
+
# Decoder (no pixel-wise MLP, no uncertainty-guided sampling)
|
60 |
+
class Decoder(nn.Module):
|
61 |
+
def __init__(self, num_classes=4):
|
62 |
+
super(Decoder, self).__init__()
|
63 |
+
self.conv2 = nn.Conv2d(2048, 2048, kernel_size=1, stride=1, padding=0)
|
64 |
+
self.up1 = UpSampleBN(skip_input=2048 + 176, output_features=1024)
|
65 |
+
self.up2 = UpSampleBN(skip_input=1024 + 64, output_features=512)
|
66 |
+
self.up3 = UpSampleBN(skip_input=512 + 40, output_features=256)
|
67 |
+
self.up4 = UpSampleBN(skip_input=256 + 24, output_features=128)
|
68 |
+
self.conv3 = nn.Conv2d(128, num_classes, kernel_size=3, stride=1, padding=1)
|
69 |
+
|
70 |
+
def forward(self, features):
|
71 |
+
x_block0, x_block1, x_block2, x_block3, x_block4 = features[4], features[5], features[6], features[8], features[11]
|
72 |
+
x_d0 = self.conv2(x_block4)
|
73 |
+
x_d1 = self.up1(x_d0, x_block3)
|
74 |
+
x_d2 = self.up2(x_d1, x_block2)
|
75 |
+
x_d3 = self.up3(x_d2, x_block1)
|
76 |
+
x_d4 = self.up4(x_d3, x_block0)
|
77 |
+
out = self.conv3(x_d4)
|
78 |
+
return out
|
79 |
+
|
80 |
+
|
81 |
+
if __name__ == '__main__':
|
82 |
+
model = Baseline()
|
83 |
+
x = torch.rand(2, 3, 480, 640)
|
84 |
+
out = model(x)
|
85 |
+
print(out.shape)
|
ControlNet-v1-1-nightly-main/annotator/normalbae/models/submodules/decoder.py
ADDED
@@ -0,0 +1,202 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
import torch.nn.functional as F
|
4 |
+
from .submodules import UpSampleBN, UpSampleGN, norm_normalize, sample_points
|
5 |
+
|
6 |
+
|
7 |
+
class Decoder(nn.Module):
|
8 |
+
def __init__(self, args):
|
9 |
+
super(Decoder, self).__init__()
|
10 |
+
|
11 |
+
# hyper-parameter for sampling
|
12 |
+
self.sampling_ratio = args.sampling_ratio
|
13 |
+
self.importance_ratio = args.importance_ratio
|
14 |
+
|
15 |
+
# feature-map
|
16 |
+
self.conv2 = nn.Conv2d(2048, 2048, kernel_size=1, stride=1, padding=0)
|
17 |
+
if args.architecture == 'BN':
|
18 |
+
self.up1 = UpSampleBN(skip_input=2048 + 176, output_features=1024)
|
19 |
+
self.up2 = UpSampleBN(skip_input=1024 + 64, output_features=512)
|
20 |
+
self.up3 = UpSampleBN(skip_input=512 + 40, output_features=256)
|
21 |
+
self.up4 = UpSampleBN(skip_input=256 + 24, output_features=128)
|
22 |
+
|
23 |
+
elif args.architecture == 'GN':
|
24 |
+
self.up1 = UpSampleGN(skip_input=2048 + 176, output_features=1024)
|
25 |
+
self.up2 = UpSampleGN(skip_input=1024 + 64, output_features=512)
|
26 |
+
self.up3 = UpSampleGN(skip_input=512 + 40, output_features=256)
|
27 |
+
self.up4 = UpSampleGN(skip_input=256 + 24, output_features=128)
|
28 |
+
|
29 |
+
else:
|
30 |
+
raise Exception('invalid architecture')
|
31 |
+
|
32 |
+
# produces 1/8 res output
|
33 |
+
self.out_conv_res8 = nn.Conv2d(512, 4, kernel_size=3, stride=1, padding=1)
|
34 |
+
|
35 |
+
# produces 1/4 res output
|
36 |
+
self.out_conv_res4 = nn.Sequential(
|
37 |
+
nn.Conv1d(512 + 4, 128, kernel_size=1), nn.ReLU(),
|
38 |
+
nn.Conv1d(128, 128, kernel_size=1), nn.ReLU(),
|
39 |
+
nn.Conv1d(128, 128, kernel_size=1), nn.ReLU(),
|
40 |
+
nn.Conv1d(128, 4, kernel_size=1),
|
41 |
+
)
|
42 |
+
|
43 |
+
# produces 1/2 res output
|
44 |
+
self.out_conv_res2 = nn.Sequential(
|
45 |
+
nn.Conv1d(256 + 4, 128, kernel_size=1), nn.ReLU(),
|
46 |
+
nn.Conv1d(128, 128, kernel_size=1), nn.ReLU(),
|
47 |
+
nn.Conv1d(128, 128, kernel_size=1), nn.ReLU(),
|
48 |
+
nn.Conv1d(128, 4, kernel_size=1),
|
49 |
+
)
|
50 |
+
|
51 |
+
# produces 1/1 res output
|
52 |
+
self.out_conv_res1 = nn.Sequential(
|
53 |
+
nn.Conv1d(128 + 4, 128, kernel_size=1), nn.ReLU(),
|
54 |
+
nn.Conv1d(128, 128, kernel_size=1), nn.ReLU(),
|
55 |
+
nn.Conv1d(128, 128, kernel_size=1), nn.ReLU(),
|
56 |
+
nn.Conv1d(128, 4, kernel_size=1),
|
57 |
+
)
|
58 |
+
|
59 |
+
def forward(self, features, gt_norm_mask=None, mode='test'):
|
60 |
+
x_block0, x_block1, x_block2, x_block3, x_block4 = features[4], features[5], features[6], features[8], features[11]
|
61 |
+
|
62 |
+
# generate feature-map
|
63 |
+
|
64 |
+
x_d0 = self.conv2(x_block4) # x_d0 : [2, 2048, 15, 20] 1/32 res
|
65 |
+
x_d1 = self.up1(x_d0, x_block3) # x_d1 : [2, 1024, 30, 40] 1/16 res
|
66 |
+
x_d2 = self.up2(x_d1, x_block2) # x_d2 : [2, 512, 60, 80] 1/8 res
|
67 |
+
x_d3 = self.up3(x_d2, x_block1) # x_d3: [2, 256, 120, 160] 1/4 res
|
68 |
+
x_d4 = self.up4(x_d3, x_block0) # x_d4: [2, 128, 240, 320] 1/2 res
|
69 |
+
|
70 |
+
# 1/8 res output
|
71 |
+
out_res8 = self.out_conv_res8(x_d2) # out_res8: [2, 4, 60, 80] 1/8 res output
|
72 |
+
out_res8 = norm_normalize(out_res8) # out_res8: [2, 4, 60, 80] 1/8 res output
|
73 |
+
|
74 |
+
################################################################################################################
|
75 |
+
# out_res4
|
76 |
+
################################################################################################################
|
77 |
+
|
78 |
+
if mode == 'train':
|
79 |
+
# upsampling ... out_res8: [2, 4, 60, 80] -> out_res8_res4: [2, 4, 120, 160]
|
80 |
+
out_res8_res4 = F.interpolate(out_res8, scale_factor=2, mode='bilinear', align_corners=True)
|
81 |
+
B, _, H, W = out_res8_res4.shape
|
82 |
+
|
83 |
+
# samples: [B, 1, N, 2]
|
84 |
+
point_coords_res4, rows_int, cols_int = sample_points(out_res8_res4.detach(), gt_norm_mask,
|
85 |
+
sampling_ratio=self.sampling_ratio,
|
86 |
+
beta=self.importance_ratio)
|
87 |
+
|
88 |
+
# output (needed for evaluation / visualization)
|
89 |
+
out_res4 = out_res8_res4
|
90 |
+
|
91 |
+
# grid_sample feature-map
|
92 |
+
feat_res4 = F.grid_sample(x_d2, point_coords_res4, mode='bilinear', align_corners=True) # (B, 512, 1, N)
|
93 |
+
init_pred = F.grid_sample(out_res8, point_coords_res4, mode='bilinear', align_corners=True) # (B, 4, 1, N)
|
94 |
+
feat_res4 = torch.cat([feat_res4, init_pred], dim=1) # (B, 512+4, 1, N)
|
95 |
+
|
96 |
+
# prediction (needed to compute loss)
|
97 |
+
samples_pred_res4 = self.out_conv_res4(feat_res4[:, :, 0, :]) # (B, 4, N)
|
98 |
+
samples_pred_res4 = norm_normalize(samples_pred_res4) # (B, 4, N) - normalized
|
99 |
+
|
100 |
+
for i in range(B):
|
101 |
+
out_res4[i, :, rows_int[i, :], cols_int[i, :]] = samples_pred_res4[i, :, :]
|
102 |
+
|
103 |
+
else:
|
104 |
+
# grid_sample feature-map
|
105 |
+
feat_map = F.interpolate(x_d2, scale_factor=2, mode='bilinear', align_corners=True)
|
106 |
+
init_pred = F.interpolate(out_res8, scale_factor=2, mode='bilinear', align_corners=True)
|
107 |
+
feat_map = torch.cat([feat_map, init_pred], dim=1) # (B, 512+4, H, W)
|
108 |
+
B, _, H, W = feat_map.shape
|
109 |
+
|
110 |
+
# try all pixels
|
111 |
+
out_res4 = self.out_conv_res4(feat_map.view(B, 512 + 4, -1)) # (B, 4, N)
|
112 |
+
out_res4 = norm_normalize(out_res4) # (B, 4, N) - normalized
|
113 |
+
out_res4 = out_res4.view(B, 4, H, W)
|
114 |
+
samples_pred_res4 = point_coords_res4 = None
|
115 |
+
|
116 |
+
################################################################################################################
|
117 |
+
# out_res2
|
118 |
+
################################################################################################################
|
119 |
+
|
120 |
+
if mode == 'train':
|
121 |
+
|
122 |
+
# upsampling ... out_res4: [2, 4, 120, 160] -> out_res4_res2: [2, 4, 240, 320]
|
123 |
+
out_res4_res2 = F.interpolate(out_res4, scale_factor=2, mode='bilinear', align_corners=True)
|
124 |
+
B, _, H, W = out_res4_res2.shape
|
125 |
+
|
126 |
+
# samples: [B, 1, N, 2]
|
127 |
+
point_coords_res2, rows_int, cols_int = sample_points(out_res4_res2.detach(), gt_norm_mask,
|
128 |
+
sampling_ratio=self.sampling_ratio,
|
129 |
+
beta=self.importance_ratio)
|
130 |
+
|
131 |
+
# output (needed for evaluation / visualization)
|
132 |
+
out_res2 = out_res4_res2
|
133 |
+
|
134 |
+
# grid_sample feature-map
|
135 |
+
feat_res2 = F.grid_sample(x_d3, point_coords_res2, mode='bilinear', align_corners=True) # (B, 256, 1, N)
|
136 |
+
init_pred = F.grid_sample(out_res4, point_coords_res2, mode='bilinear', align_corners=True) # (B, 4, 1, N)
|
137 |
+
feat_res2 = torch.cat([feat_res2, init_pred], dim=1) # (B, 256+4, 1, N)
|
138 |
+
|
139 |
+
# prediction (needed to compute loss)
|
140 |
+
samples_pred_res2 = self.out_conv_res2(feat_res2[:, :, 0, :]) # (B, 4, N)
|
141 |
+
samples_pred_res2 = norm_normalize(samples_pred_res2) # (B, 4, N) - normalized
|
142 |
+
|
143 |
+
for i in range(B):
|
144 |
+
out_res2[i, :, rows_int[i, :], cols_int[i, :]] = samples_pred_res2[i, :, :]
|
145 |
+
|
146 |
+
else:
|
147 |
+
# grid_sample feature-map
|
148 |
+
feat_map = F.interpolate(x_d3, scale_factor=2, mode='bilinear', align_corners=True)
|
149 |
+
init_pred = F.interpolate(out_res4, scale_factor=2, mode='bilinear', align_corners=True)
|
150 |
+
feat_map = torch.cat([feat_map, init_pred], dim=1) # (B, 512+4, H, W)
|
151 |
+
B, _, H, W = feat_map.shape
|
152 |
+
|
153 |
+
out_res2 = self.out_conv_res2(feat_map.view(B, 256 + 4, -1)) # (B, 4, N)
|
154 |
+
out_res2 = norm_normalize(out_res2) # (B, 4, N) - normalized
|
155 |
+
out_res2 = out_res2.view(B, 4, H, W)
|
156 |
+
samples_pred_res2 = point_coords_res2 = None
|
157 |
+
|
158 |
+
################################################################################################################
|
159 |
+
# out_res1
|
160 |
+
################################################################################################################
|
161 |
+
|
162 |
+
if mode == 'train':
|
163 |
+
# upsampling ... out_res4: [2, 4, 120, 160] -> out_res4_res2: [2, 4, 240, 320]
|
164 |
+
out_res2_res1 = F.interpolate(out_res2, scale_factor=2, mode='bilinear', align_corners=True)
|
165 |
+
B, _, H, W = out_res2_res1.shape
|
166 |
+
|
167 |
+
# samples: [B, 1, N, 2]
|
168 |
+
point_coords_res1, rows_int, cols_int = sample_points(out_res2_res1.detach(), gt_norm_mask,
|
169 |
+
sampling_ratio=self.sampling_ratio,
|
170 |
+
beta=self.importance_ratio)
|
171 |
+
|
172 |
+
# output (needed for evaluation / visualization)
|
173 |
+
out_res1 = out_res2_res1
|
174 |
+
|
175 |
+
# grid_sample feature-map
|
176 |
+
feat_res1 = F.grid_sample(x_d4, point_coords_res1, mode='bilinear', align_corners=True) # (B, 128, 1, N)
|
177 |
+
init_pred = F.grid_sample(out_res2, point_coords_res1, mode='bilinear', align_corners=True) # (B, 4, 1, N)
|
178 |
+
feat_res1 = torch.cat([feat_res1, init_pred], dim=1) # (B, 128+4, 1, N)
|
179 |
+
|
180 |
+
# prediction (needed to compute loss)
|
181 |
+
samples_pred_res1 = self.out_conv_res1(feat_res1[:, :, 0, :]) # (B, 4, N)
|
182 |
+
samples_pred_res1 = norm_normalize(samples_pred_res1) # (B, 4, N) - normalized
|
183 |
+
|
184 |
+
for i in range(B):
|
185 |
+
out_res1[i, :, rows_int[i, :], cols_int[i, :]] = samples_pred_res1[i, :, :]
|
186 |
+
|
187 |
+
else:
|
188 |
+
# grid_sample feature-map
|
189 |
+
feat_map = F.interpolate(x_d4, scale_factor=2, mode='bilinear', align_corners=True)
|
190 |
+
init_pred = F.interpolate(out_res2, scale_factor=2, mode='bilinear', align_corners=True)
|
191 |
+
feat_map = torch.cat([feat_map, init_pred], dim=1) # (B, 512+4, H, W)
|
192 |
+
B, _, H, W = feat_map.shape
|
193 |
+
|
194 |
+
out_res1 = self.out_conv_res1(feat_map.view(B, 128 + 4, -1)) # (B, 4, N)
|
195 |
+
out_res1 = norm_normalize(out_res1) # (B, 4, N) - normalized
|
196 |
+
out_res1 = out_res1.view(B, 4, H, W)
|
197 |
+
samples_pred_res1 = point_coords_res1 = None
|
198 |
+
|
199 |
+
return [out_res8, out_res4, out_res2, out_res1], \
|
200 |
+
[out_res8, samples_pred_res4, samples_pred_res2, samples_pred_res1], \
|
201 |
+
[None, point_coords_res4, point_coords_res2, point_coords_res1]
|
202 |
+
|
ControlNet-v1-1-nightly-main/annotator/normalbae/models/submodules/efficientnet_repo/.gitignore
ADDED
@@ -0,0 +1,109 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Byte-compiled / optimized / DLL files
|
2 |
+
__pycache__/
|
3 |
+
*.py[cod]
|
4 |
+
*$py.class
|
5 |
+
|
6 |
+
# C extensions
|
7 |
+
*.so
|
8 |
+
|
9 |
+
# Distribution / packaging
|
10 |
+
.Python
|
11 |
+
build/
|
12 |
+
develop-eggs/
|
13 |
+
dist/
|
14 |
+
downloads/
|
15 |
+
eggs/
|
16 |
+
.eggs/
|
17 |
+
lib/
|
18 |
+
lib64/
|
19 |
+
parts/
|
20 |
+
sdist/
|
21 |
+
var/
|
22 |
+
wheels/
|
23 |
+
*.egg-info/
|
24 |
+
.installed.cfg
|
25 |
+
*.egg
|
26 |
+
MANIFEST
|
27 |
+
|
28 |
+
# PyInstaller
|
29 |
+
# Usually these files are written by a python script from a template
|
30 |
+
# before PyInstaller builds the exe, so as to inject date/other infos into it.
|
31 |
+
*.manifest
|
32 |
+
*.spec
|
33 |
+
|
34 |
+
# Installer logs
|
35 |
+
pip-log.txt
|
36 |
+
pip-delete-this-directory.txt
|
37 |
+
|
38 |
+
# Unit test / coverage reports
|
39 |
+
htmlcov/
|
40 |
+
.tox/
|
41 |
+
.coverage
|
42 |
+
.coverage.*
|
43 |
+
.cache
|
44 |
+
nosetests.xml
|
45 |
+
coverage.xml
|
46 |
+
*.cover
|
47 |
+
.hypothesis/
|
48 |
+
.pytest_cache/
|
49 |
+
|
50 |
+
# Translations
|
51 |
+
*.mo
|
52 |
+
*.pot
|
53 |
+
|
54 |
+
# Django stuff:
|
55 |
+
*.log
|
56 |
+
local_settings.py
|
57 |
+
db.sqlite3
|
58 |
+
|
59 |
+
# Flask stuff:
|
60 |
+
instance/
|
61 |
+
.webassets-cache
|
62 |
+
|
63 |
+
# Scrapy stuff:
|
64 |
+
.scrapy
|
65 |
+
|
66 |
+
# Sphinx documentation
|
67 |
+
docs/_build/
|
68 |
+
|
69 |
+
# PyBuilder
|
70 |
+
target/
|
71 |
+
|
72 |
+
# Jupyter Notebook
|
73 |
+
.ipynb_checkpoints
|
74 |
+
|
75 |
+
# pyenv
|
76 |
+
.python-version
|
77 |
+
|
78 |
+
# celery beat schedule file
|
79 |
+
celerybeat-schedule
|
80 |
+
|
81 |
+
# SageMath parsed files
|
82 |
+
*.sage.py
|
83 |
+
|
84 |
+
# Environments
|
85 |
+
.env
|
86 |
+
.venv
|
87 |
+
env/
|
88 |
+
venv/
|
89 |
+
ENV/
|
90 |
+
env.bak/
|
91 |
+
venv.bak/
|
92 |
+
|
93 |
+
# Spyder project settings
|
94 |
+
.spyderproject
|
95 |
+
.spyproject
|
96 |
+
|
97 |
+
# Rope project settings
|
98 |
+
.ropeproject
|
99 |
+
|
100 |
+
# mkdocs documentation
|
101 |
+
/site
|
102 |
+
|
103 |
+
# pytorch stuff
|
104 |
+
*.pth
|
105 |
+
*.onnx
|
106 |
+
*.pb
|
107 |
+
|
108 |
+
trained_models/
|
109 |
+
.fuse_hidden*
|
ControlNet-v1-1-nightly-main/annotator/normalbae/models/submodules/efficientnet_repo/BENCHMARK.md
ADDED
@@ -0,0 +1,555 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Model Performance Benchmarks
|
2 |
+
|
3 |
+
All benchmarks run as per:
|
4 |
+
|
5 |
+
```
|
6 |
+
python onnx_export.py --model mobilenetv3_100 ./mobilenetv3_100.onnx
|
7 |
+
python onnx_optimize.py ./mobilenetv3_100.onnx --output mobilenetv3_100-opt.onnx
|
8 |
+
python onnx_to_caffe.py ./mobilenetv3_100.onnx --c2-prefix mobilenetv3
|
9 |
+
python onnx_to_caffe.py ./mobilenetv3_100-opt.onnx --c2-prefix mobilenetv3-opt
|
10 |
+
python caffe2_benchmark.py --c2-init ./mobilenetv3.init.pb --c2-predict ./mobilenetv3.predict.pb
|
11 |
+
python caffe2_benchmark.py --c2-init ./mobilenetv3-opt.init.pb --c2-predict ./mobilenetv3-opt.predict.pb
|
12 |
+
```
|
13 |
+
|
14 |
+
## EfficientNet-B0
|
15 |
+
|
16 |
+
### Unoptimized
|
17 |
+
```
|
18 |
+
Main run finished. Milliseconds per iter: 49.2862. Iters per second: 20.2897
|
19 |
+
Time per operator type:
|
20 |
+
29.7378 ms. 60.5145%. Conv
|
21 |
+
12.1785 ms. 24.7824%. Sigmoid
|
22 |
+
3.62811 ms. 7.38297%. SpatialBN
|
23 |
+
2.98444 ms. 6.07314%. Mul
|
24 |
+
0.326902 ms. 0.665225%. AveragePool
|
25 |
+
0.197317 ms. 0.401528%. FC
|
26 |
+
0.0852877 ms. 0.173555%. Add
|
27 |
+
0.0032607 ms. 0.00663532%. Squeeze
|
28 |
+
49.1416 ms in Total
|
29 |
+
FLOP per operator type:
|
30 |
+
0.76907 GFLOP. 95.2696%. Conv
|
31 |
+
0.0269508 GFLOP. 3.33857%. SpatialBN
|
32 |
+
0.00846444 GFLOP. 1.04855%. Mul
|
33 |
+
0.002561 GFLOP. 0.317248%. FC
|
34 |
+
0.000210112 GFLOP. 0.0260279%. Add
|
35 |
+
0.807256 GFLOP in Total
|
36 |
+
Feature Memory Read per operator type:
|
37 |
+
58.5253 MB. 43.0891%. Mul
|
38 |
+
43.2015 MB. 31.807%. Conv
|
39 |
+
27.2869 MB. 20.0899%. SpatialBN
|
40 |
+
5.12912 MB. 3.77631%. FC
|
41 |
+
1.6809 MB. 1.23756%. Add
|
42 |
+
135.824 MB in Total
|
43 |
+
Feature Memory Written per operator type:
|
44 |
+
33.8578 MB. 38.1965%. Mul
|
45 |
+
26.9881 MB. 30.4465%. Conv
|
46 |
+
26.9508 MB. 30.4044%. SpatialBN
|
47 |
+
0.840448 MB. 0.948147%. Add
|
48 |
+
0.004 MB. 0.00451258%. FC
|
49 |
+
88.6412 MB in Total
|
50 |
+
Parameter Memory per operator type:
|
51 |
+
15.8248 MB. 74.9391%. Conv
|
52 |
+
5.124 MB. 24.265%. FC
|
53 |
+
0.168064 MB. 0.795877%. SpatialBN
|
54 |
+
0 MB. 0%. Add
|
55 |
+
0 MB. 0%. Mul
|
56 |
+
21.1168 MB in Total
|
57 |
+
```
|
58 |
+
### Optimized
|
59 |
+
```
|
60 |
+
Main run finished. Milliseconds per iter: 46.0838. Iters per second: 21.6996
|
61 |
+
Time per operator type:
|
62 |
+
29.776 ms. 65.002%. Conv
|
63 |
+
12.2803 ms. 26.8084%. Sigmoid
|
64 |
+
3.15073 ms. 6.87815%. Mul
|
65 |
+
0.328651 ms. 0.717456%. AveragePool
|
66 |
+
0.186237 ms. 0.406563%. FC
|
67 |
+
0.0832429 ms. 0.181722%. Add
|
68 |
+
0.0026184 ms. 0.00571606%. Squeeze
|
69 |
+
45.8078 ms in Total
|
70 |
+
FLOP per operator type:
|
71 |
+
0.76907 GFLOP. 98.5601%. Conv
|
72 |
+
0.00846444 GFLOP. 1.08476%. Mul
|
73 |
+
0.002561 GFLOP. 0.328205%. FC
|
74 |
+
0.000210112 GFLOP. 0.0269269%. Add
|
75 |
+
0.780305 GFLOP in Total
|
76 |
+
Feature Memory Read per operator type:
|
77 |
+
58.5253 MB. 53.8803%. Mul
|
78 |
+
43.2855 MB. 39.8501%. Conv
|
79 |
+
5.12912 MB. 4.72204%. FC
|
80 |
+
1.6809 MB. 1.54749%. Add
|
81 |
+
108.621 MB in Total
|
82 |
+
Feature Memory Written per operator type:
|
83 |
+
33.8578 MB. 54.8834%. Mul
|
84 |
+
26.9881 MB. 43.7477%. Conv
|
85 |
+
0.840448 MB. 1.36237%. Add
|
86 |
+
0.004 MB. 0.00648399%. FC
|
87 |
+
61.6904 MB in Total
|
88 |
+
Parameter Memory per operator type:
|
89 |
+
15.8248 MB. 75.5403%. Conv
|
90 |
+
5.124 MB. 24.4597%. FC
|
91 |
+
0 MB. 0%. Add
|
92 |
+
0 MB. 0%. Mul
|
93 |
+
20.9488 MB in Total
|
94 |
+
```
|
95 |
+
|
96 |
+
## EfficientNet-B1
|
97 |
+
### Optimized
|
98 |
+
```
|
99 |
+
Main run finished. Milliseconds per iter: 71.8102. Iters per second: 13.9256
|
100 |
+
Time per operator type:
|
101 |
+
45.7915 ms. 66.3206%. Conv
|
102 |
+
17.8718 ms. 25.8841%. Sigmoid
|
103 |
+
4.44132 ms. 6.43244%. Mul
|
104 |
+
0.51001 ms. 0.738658%. AveragePool
|
105 |
+
0.233283 ms. 0.337868%. Add
|
106 |
+
0.194986 ms. 0.282402%. FC
|
107 |
+
0.00268255 ms. 0.00388519%. Squeeze
|
108 |
+
69.0456 ms in Total
|
109 |
+
FLOP per operator type:
|
110 |
+
1.37105 GFLOP. 98.7673%. Conv
|
111 |
+
0.0138759 GFLOP. 0.99959%. Mul
|
112 |
+
0.002561 GFLOP. 0.184489%. FC
|
113 |
+
0.000674432 GFLOP. 0.0485847%. Add
|
114 |
+
1.38816 GFLOP in Total
|
115 |
+
Feature Memory Read per operator type:
|
116 |
+
94.624 MB. 54.0789%. Mul
|
117 |
+
69.8255 MB. 39.9062%. Conv
|
118 |
+
5.39546 MB. 3.08357%. Add
|
119 |
+
5.12912 MB. 2.93136%. FC
|
120 |
+
174.974 MB in Total
|
121 |
+
Feature Memory Written per operator type:
|
122 |
+
55.5035 MB. 54.555%. Mul
|
123 |
+
43.5333 MB. 42.7894%. Conv
|
124 |
+
2.69773 MB. 2.65163%. Add
|
125 |
+
0.004 MB. 0.00393165%. FC
|
126 |
+
101.739 MB in Total
|
127 |
+
Parameter Memory per operator type:
|
128 |
+
25.7479 MB. 83.4024%. Conv
|
129 |
+
5.124 MB. 16.5976%. FC
|
130 |
+
0 MB. 0%. Add
|
131 |
+
0 MB. 0%. Mul
|
132 |
+
30.8719 MB in Total
|
133 |
+
```
|
134 |
+
|
135 |
+
## EfficientNet-B2
|
136 |
+
### Optimized
|
137 |
+
```
|
138 |
+
Main run finished. Milliseconds per iter: 92.28. Iters per second: 10.8366
|
139 |
+
Time per operator type:
|
140 |
+
61.4627 ms. 67.5845%. Conv
|
141 |
+
22.7458 ms. 25.0113%. Sigmoid
|
142 |
+
5.59931 ms. 6.15701%. Mul
|
143 |
+
0.642567 ms. 0.706568%. AveragePool
|
144 |
+
0.272795 ms. 0.299965%. Add
|
145 |
+
0.216178 ms. 0.237709%. FC
|
146 |
+
0.00268895 ms. 0.00295677%. Squeeze
|
147 |
+
90.942 ms in Total
|
148 |
+
FLOP per operator type:
|
149 |
+
1.98431 GFLOP. 98.9343%. Conv
|
150 |
+
0.0177039 GFLOP. 0.882686%. Mul
|
151 |
+
0.002817 GFLOP. 0.140451%. FC
|
152 |
+
0.000853984 GFLOP. 0.0425782%. Add
|
153 |
+
2.00568 GFLOP in Total
|
154 |
+
Feature Memory Read per operator type:
|
155 |
+
120.609 MB. 54.9637%. Mul
|
156 |
+
86.3512 MB. 39.3519%. Conv
|
157 |
+
6.83187 MB. 3.11341%. Add
|
158 |
+
5.64163 MB. 2.571%. FC
|
159 |
+
219.433 MB in Total
|
160 |
+
Feature Memory Written per operator type:
|
161 |
+
70.8155 MB. 54.6573%. Mul
|
162 |
+
55.3273 MB. 42.7031%. Conv
|
163 |
+
3.41594 MB. 2.63651%. Add
|
164 |
+
0.004 MB. 0.00308731%. FC
|
165 |
+
129.563 MB in Total
|
166 |
+
Parameter Memory per operator type:
|
167 |
+
30.4721 MB. 84.3913%. Conv
|
168 |
+
5.636 MB. 15.6087%. FC
|
169 |
+
0 MB. 0%. Add
|
170 |
+
0 MB. 0%. Mul
|
171 |
+
36.1081 MB in Total
|
172 |
+
```
|
173 |
+
|
174 |
+
## MixNet-M
|
175 |
+
### Optimized
|
176 |
+
```
|
177 |
+
Main run finished. Milliseconds per iter: 63.1122. Iters per second: 15.8448
|
178 |
+
Time per operator type:
|
179 |
+
48.1139 ms. 75.2052%. Conv
|
180 |
+
7.1341 ms. 11.1511%. Sigmoid
|
181 |
+
2.63706 ms. 4.12189%. SpatialBN
|
182 |
+
1.73186 ms. 2.70701%. Mul
|
183 |
+
1.38707 ms. 2.16809%. Split
|
184 |
+
1.29322 ms. 2.02139%. Concat
|
185 |
+
1.00093 ms. 1.56452%. Relu
|
186 |
+
0.235309 ms. 0.367803%. Add
|
187 |
+
0.221579 ms. 0.346343%. FC
|
188 |
+
0.219315 ms. 0.342803%. AveragePool
|
189 |
+
0.00250145 ms. 0.00390993%. Squeeze
|
190 |
+
63.9768 ms in Total
|
191 |
+
FLOP per operator type:
|
192 |
+
0.675273 GFLOP. 95.5827%. Conv
|
193 |
+
0.0221072 GFLOP. 3.12921%. SpatialBN
|
194 |
+
0.00538445 GFLOP. 0.762152%. Mul
|
195 |
+
0.003073 GFLOP. 0.434973%. FC
|
196 |
+
0.000642488 GFLOP. 0.0909421%. Add
|
197 |
+
0 GFLOP. 0%. Concat
|
198 |
+
0 GFLOP. 0%. Relu
|
199 |
+
0.70648 GFLOP in Total
|
200 |
+
Feature Memory Read per operator type:
|
201 |
+
46.8424 MB. 30.502%. Conv
|
202 |
+
36.8626 MB. 24.0036%. Mul
|
203 |
+
22.3152 MB. 14.5309%. SpatialBN
|
204 |
+
22.1074 MB. 14.3955%. Concat
|
205 |
+
14.1496 MB. 9.21372%. Relu
|
206 |
+
6.15414 MB. 4.00735%. FC
|
207 |
+
5.1399 MB. 3.34692%. Add
|
208 |
+
153.571 MB in Total
|
209 |
+
Feature Memory Written per operator type:
|
210 |
+
32.7672 MB. 28.4331%. Conv
|
211 |
+
22.1072 MB. 19.1831%. Concat
|
212 |
+
22.1072 MB. 19.1831%. SpatialBN
|
213 |
+
21.5378 MB. 18.689%. Mul
|
214 |
+
14.1496 MB. 12.2781%. Relu
|
215 |
+
2.56995 MB. 2.23003%. Add
|
216 |
+
0.004 MB. 0.00347092%. FC
|
217 |
+
115.243 MB in Total
|
218 |
+
Parameter Memory per operator type:
|
219 |
+
13.7059 MB. 68.674%. Conv
|
220 |
+
6.148 MB. 30.8049%. FC
|
221 |
+
0.104 MB. 0.521097%. SpatialBN
|
222 |
+
0 MB. 0%. Add
|
223 |
+
0 MB. 0%. Concat
|
224 |
+
0 MB. 0%. Mul
|
225 |
+
0 MB. 0%. Relu
|
226 |
+
19.9579 MB in Total
|
227 |
+
```
|
228 |
+
|
229 |
+
## TF MobileNet-V3 Large 1.0
|
230 |
+
|
231 |
+
### Optimized
|
232 |
+
```
|
233 |
+
Main run finished. Milliseconds per iter: 22.0495. Iters per second: 45.3525
|
234 |
+
Time per operator type:
|
235 |
+
17.437 ms. 80.0087%. Conv
|
236 |
+
1.27662 ms. 5.8577%. Add
|
237 |
+
1.12759 ms. 5.17387%. Div
|
238 |
+
0.701155 ms. 3.21721%. Mul
|
239 |
+
0.562654 ms. 2.58171%. Relu
|
240 |
+
0.431144 ms. 1.97828%. Clip
|
241 |
+
0.156902 ms. 0.719936%. FC
|
242 |
+
0.0996858 ms. 0.457402%. AveragePool
|
243 |
+
0.00112455 ms. 0.00515993%. Flatten
|
244 |
+
21.7939 ms in Total
|
245 |
+
FLOP per operator type:
|
246 |
+
0.43062 GFLOP. 98.1484%. Conv
|
247 |
+
0.002561 GFLOP. 0.583713%. FC
|
248 |
+
0.00210867 GFLOP. 0.480616%. Mul
|
249 |
+
0.00193868 GFLOP. 0.441871%. Add
|
250 |
+
0.00151532 GFLOP. 0.345377%. Div
|
251 |
+
0 GFLOP. 0%. Relu
|
252 |
+
0.438743 GFLOP in Total
|
253 |
+
Feature Memory Read per operator type:
|
254 |
+
34.7967 MB. 43.9391%. Conv
|
255 |
+
14.496 MB. 18.3046%. Mul
|
256 |
+
9.44828 MB. 11.9307%. Add
|
257 |
+
9.26157 MB. 11.6949%. Relu
|
258 |
+
6.0614 MB. 7.65395%. Div
|
259 |
+
5.12912 MB. 6.47673%. FC
|
260 |
+
79.193 MB in Total
|
261 |
+
Feature Memory Written per operator type:
|
262 |
+
17.6247 MB. 35.8656%. Conv
|
263 |
+
9.26157 MB. 18.847%. Relu
|
264 |
+
8.43469 MB. 17.1643%. Mul
|
265 |
+
7.75472 MB. 15.7806%. Add
|
266 |
+
6.06128 MB. 12.3345%. Div
|
267 |
+
0.004 MB. 0.00813985%. FC
|
268 |
+
49.1409 MB in Total
|
269 |
+
Parameter Memory per operator type:
|
270 |
+
16.6851 MB. 76.5052%. Conv
|
271 |
+
5.124 MB. 23.4948%. FC
|
272 |
+
0 MB. 0%. Add
|
273 |
+
0 MB. 0%. Div
|
274 |
+
0 MB. 0%. Mul
|
275 |
+
0 MB. 0%. Relu
|
276 |
+
21.8091 MB in Total
|
277 |
+
```
|
278 |
+
|
279 |
+
## MobileNet-V3 (RW)
|
280 |
+
|
281 |
+
### Unoptimized
|
282 |
+
```
|
283 |
+
Main run finished. Milliseconds per iter: 24.8316. Iters per second: 40.2712
|
284 |
+
Time per operator type:
|
285 |
+
15.9266 ms. 69.2624%. Conv
|
286 |
+
2.36551 ms. 10.2873%. SpatialBN
|
287 |
+
1.39102 ms. 6.04936%. Add
|
288 |
+
1.30327 ms. 5.66773%. Div
|
289 |
+
0.737014 ms. 3.20517%. Mul
|
290 |
+
0.639697 ms. 2.78195%. Relu
|
291 |
+
0.375681 ms. 1.63378%. Clip
|
292 |
+
0.153126 ms. 0.665921%. FC
|
293 |
+
0.0993787 ms. 0.432184%. AveragePool
|
294 |
+
0.0032632 ms. 0.0141912%. Squeeze
|
295 |
+
22.9946 ms in Total
|
296 |
+
FLOP per operator type:
|
297 |
+
0.430616 GFLOP. 94.4041%. Conv
|
298 |
+
0.0175992 GFLOP. 3.85829%. SpatialBN
|
299 |
+
0.002561 GFLOP. 0.561449%. FC
|
300 |
+
0.00210961 GFLOP. 0.46249%. Mul
|
301 |
+
0.00173891 GFLOP. 0.381223%. Add
|
302 |
+
0.00151626 GFLOP. 0.33241%. Div
|
303 |
+
0 GFLOP. 0%. Relu
|
304 |
+
0.456141 GFLOP in Total
|
305 |
+
Feature Memory Read per operator type:
|
306 |
+
34.7354 MB. 36.4363%. Conv
|
307 |
+
17.7944 MB. 18.6658%. SpatialBN
|
308 |
+
14.5035 MB. 15.2137%. Mul
|
309 |
+
9.25778 MB. 9.71113%. Relu
|
310 |
+
7.84641 MB. 8.23064%. Add
|
311 |
+
6.06516 MB. 6.36216%. Div
|
312 |
+
5.12912 MB. 5.38029%. FC
|
313 |
+
95.3317 MB in Total
|
314 |
+
Feature Memory Written per operator type:
|
315 |
+
17.6246 MB. 26.7264%. Conv
|
316 |
+
17.5992 MB. 26.6878%. SpatialBN
|
317 |
+
9.25778 MB. 14.0387%. Relu
|
318 |
+
8.43843 MB. 12.7962%. Mul
|
319 |
+
6.95565 MB. 10.5477%. Add
|
320 |
+
6.06502 MB. 9.19713%. Div
|
321 |
+
0.004 MB. 0.00606568%. FC
|
322 |
+
65.9447 MB in Total
|
323 |
+
Parameter Memory per operator type:
|
324 |
+
16.6778 MB. 76.1564%. Conv
|
325 |
+
5.124 MB. 23.3979%. FC
|
326 |
+
0.0976 MB. 0.445674%. SpatialBN
|
327 |
+
0 MB. 0%. Add
|
328 |
+
0 MB. 0%. Div
|
329 |
+
0 MB. 0%. Mul
|
330 |
+
0 MB. 0%. Relu
|
331 |
+
21.8994 MB in Total
|
332 |
+
|
333 |
+
```
|
334 |
+
### Optimized
|
335 |
+
|
336 |
+
```
|
337 |
+
Main run finished. Milliseconds per iter: 22.0981. Iters per second: 45.2527
|
338 |
+
Time per operator type:
|
339 |
+
17.146 ms. 78.8965%. Conv
|
340 |
+
1.38453 ms. 6.37084%. Add
|
341 |
+
1.30991 ms. 6.02749%. Div
|
342 |
+
0.685417 ms. 3.15391%. Mul
|
343 |
+
0.532589 ms. 2.45068%. Relu
|
344 |
+
0.418263 ms. 1.92461%. Clip
|
345 |
+
0.15128 ms. 0.696106%. FC
|
346 |
+
0.102065 ms. 0.469648%. AveragePool
|
347 |
+
0.0022143 ms. 0.010189%. Squeeze
|
348 |
+
21.7323 ms in Total
|
349 |
+
FLOP per operator type:
|
350 |
+
0.430616 GFLOP. 98.1927%. Conv
|
351 |
+
0.002561 GFLOP. 0.583981%. FC
|
352 |
+
0.00210961 GFLOP. 0.481051%. Mul
|
353 |
+
0.00173891 GFLOP. 0.396522%. Add
|
354 |
+
0.00151626 GFLOP. 0.34575%. Div
|
355 |
+
0 GFLOP. 0%. Relu
|
356 |
+
0.438542 GFLOP in Total
|
357 |
+
Feature Memory Read per operator type:
|
358 |
+
34.7842 MB. 44.833%. Conv
|
359 |
+
14.5035 MB. 18.6934%. Mul
|
360 |
+
9.25778 MB. 11.9323%. Relu
|
361 |
+
7.84641 MB. 10.1132%. Add
|
362 |
+
6.06516 MB. 7.81733%. Div
|
363 |
+
5.12912 MB. 6.61087%. FC
|
364 |
+
77.5861 MB in Total
|
365 |
+
Feature Memory Written per operator type:
|
366 |
+
17.6246 MB. 36.4556%. Conv
|
367 |
+
9.25778 MB. 19.1492%. Relu
|
368 |
+
8.43843 MB. 17.4544%. Mul
|
369 |
+
6.95565 MB. 14.3874%. Add
|
370 |
+
6.06502 MB. 12.5452%. Div
|
371 |
+
0.004 MB. 0.00827378%. FC
|
372 |
+
48.3455 MB in Total
|
373 |
+
Parameter Memory per operator type:
|
374 |
+
16.6778 MB. 76.4973%. Conv
|
375 |
+
5.124 MB. 23.5027%. FC
|
376 |
+
0 MB. 0%. Add
|
377 |
+
0 MB. 0%. Div
|
378 |
+
0 MB. 0%. Mul
|
379 |
+
0 MB. 0%. Relu
|
380 |
+
21.8018 MB in Total
|
381 |
+
|
382 |
+
```
|
383 |
+
|
384 |
+
## MnasNet-A1
|
385 |
+
|
386 |
+
### Unoptimized
|
387 |
+
```
|
388 |
+
Main run finished. Milliseconds per iter: 30.0892. Iters per second: 33.2345
|
389 |
+
Time per operator type:
|
390 |
+
24.4656 ms. 79.0905%. Conv
|
391 |
+
4.14958 ms. 13.4144%. SpatialBN
|
392 |
+
1.60598 ms. 5.19169%. Relu
|
393 |
+
0.295219 ms. 0.95436%. Mul
|
394 |
+
0.187609 ms. 0.606486%. FC
|
395 |
+
0.120556 ms. 0.389724%. AveragePool
|
396 |
+
0.09036 ms. 0.292109%. Add
|
397 |
+
0.015727 ms. 0.050841%. Sigmoid
|
398 |
+
0.00306205 ms. 0.00989875%. Squeeze
|
399 |
+
30.9337 ms in Total
|
400 |
+
FLOP per operator type:
|
401 |
+
0.620598 GFLOP. 95.6434%. Conv
|
402 |
+
0.0248873 GFLOP. 3.8355%. SpatialBN
|
403 |
+
0.002561 GFLOP. 0.394688%. FC
|
404 |
+
0.000597408 GFLOP. 0.0920695%. Mul
|
405 |
+
0.000222656 GFLOP. 0.0343146%. Add
|
406 |
+
0 GFLOP. 0%. Relu
|
407 |
+
0.648867 GFLOP in Total
|
408 |
+
Feature Memory Read per operator type:
|
409 |
+
35.5457 MB. 38.4109%. Conv
|
410 |
+
25.1552 MB. 27.1829%. SpatialBN
|
411 |
+
22.5235 MB. 24.339%. Relu
|
412 |
+
5.12912 MB. 5.54256%. FC
|
413 |
+
2.40586 MB. 2.59978%. Mul
|
414 |
+
1.78125 MB. 1.92483%. Add
|
415 |
+
92.5406 MB in Total
|
416 |
+
Feature Memory Written per operator type:
|
417 |
+
24.9042 MB. 32.9424%. Conv
|
418 |
+
24.8873 MB. 32.92%. SpatialBN
|
419 |
+
22.5235 MB. 29.7932%. Relu
|
420 |
+
2.38963 MB. 3.16092%. Mul
|
421 |
+
0.890624 MB. 1.17809%. Add
|
422 |
+
0.004 MB. 0.00529106%. FC
|
423 |
+
75.5993 MB in Total
|
424 |
+
Parameter Memory per operator type:
|
425 |
+
10.2732 MB. 66.1459%. Conv
|
426 |
+
5.124 MB. 32.9917%. FC
|
427 |
+
0.133952 MB. 0.86247%. SpatialBN
|
428 |
+
0 MB. 0%. Add
|
429 |
+
0 MB. 0%. Mul
|
430 |
+
0 MB. 0%. Relu
|
431 |
+
15.5312 MB in Total
|
432 |
+
```
|
433 |
+
|
434 |
+
### Optimized
|
435 |
+
```
|
436 |
+
Main run finished. Milliseconds per iter: 24.2367. Iters per second: 41.2597
|
437 |
+
Time per operator type:
|
438 |
+
22.0547 ms. 91.1375%. Conv
|
439 |
+
1.49096 ms. 6.16116%. Relu
|
440 |
+
0.253417 ms. 1.0472%. Mul
|
441 |
+
0.18506 ms. 0.76473%. FC
|
442 |
+
0.112942 ms. 0.466717%. AveragePool
|
443 |
+
0.086769 ms. 0.358559%. Add
|
444 |
+
0.0127889 ms. 0.0528479%. Sigmoid
|
445 |
+
0.0027346 ms. 0.0113003%. Squeeze
|
446 |
+
24.1994 ms in Total
|
447 |
+
FLOP per operator type:
|
448 |
+
0.620598 GFLOP. 99.4581%. Conv
|
449 |
+
0.002561 GFLOP. 0.41043%. FC
|
450 |
+
0.000597408 GFLOP. 0.0957417%. Mul
|
451 |
+
0.000222656 GFLOP. 0.0356832%. Add
|
452 |
+
0 GFLOP. 0%. Relu
|
453 |
+
0.623979 GFLOP in Total
|
454 |
+
Feature Memory Read per operator type:
|
455 |
+
35.6127 MB. 52.7968%. Conv
|
456 |
+
22.5235 MB. 33.3917%. Relu
|
457 |
+
5.12912 MB. 7.60406%. FC
|
458 |
+
2.40586 MB. 3.56675%. Mul
|
459 |
+
1.78125 MB. 2.64075%. Add
|
460 |
+
67.4524 MB in Total
|
461 |
+
Feature Memory Written per operator type:
|
462 |
+
24.9042 MB. 49.1092%. Conv
|
463 |
+
22.5235 MB. 44.4145%. Relu
|
464 |
+
2.38963 MB. 4.71216%. Mul
|
465 |
+
0.890624 MB. 1.75624%. Add
|
466 |
+
0.004 MB. 0.00788768%. FC
|
467 |
+
50.712 MB in Total
|
468 |
+
Parameter Memory per operator type:
|
469 |
+
10.2732 MB. 66.7213%. Conv
|
470 |
+
5.124 MB. 33.2787%. FC
|
471 |
+
0 MB. 0%. Add
|
472 |
+
0 MB. 0%. Mul
|
473 |
+
0 MB. 0%. Relu
|
474 |
+
15.3972 MB in Total
|
475 |
+
```
|
476 |
+
## MnasNet-B1
|
477 |
+
|
478 |
+
### Unoptimized
|
479 |
+
```
|
480 |
+
Main run finished. Milliseconds per iter: 28.3109. Iters per second: 35.322
|
481 |
+
Time per operator type:
|
482 |
+
29.1121 ms. 83.3081%. Conv
|
483 |
+
4.14959 ms. 11.8746%. SpatialBN
|
484 |
+
1.35823 ms. 3.88675%. Relu
|
485 |
+
0.186188 ms. 0.532802%. FC
|
486 |
+
0.116244 ms. 0.332647%. Add
|
487 |
+
0.018641 ms. 0.0533437%. AveragePool
|
488 |
+
0.0040904 ms. 0.0117052%. Squeeze
|
489 |
+
34.9451 ms in Total
|
490 |
+
FLOP per operator type:
|
491 |
+
0.626272 GFLOP. 96.2088%. Conv
|
492 |
+
0.0218266 GFLOP. 3.35303%. SpatialBN
|
493 |
+
0.002561 GFLOP. 0.393424%. FC
|
494 |
+
0.000291648 GFLOP. 0.0448034%. Add
|
495 |
+
0 GFLOP. 0%. Relu
|
496 |
+
0.650951 GFLOP in Total
|
497 |
+
Feature Memory Read per operator type:
|
498 |
+
34.4354 MB. 41.3788%. Conv
|
499 |
+
22.1299 MB. 26.5921%. SpatialBN
|
500 |
+
19.1923 MB. 23.0622%. Relu
|
501 |
+
5.12912 MB. 6.16333%. FC
|
502 |
+
2.33318 MB. 2.80364%. Add
|
503 |
+
83.2199 MB in Total
|
504 |
+
Feature Memory Written per operator type:
|
505 |
+
21.8266 MB. 34.0955%. Conv
|
506 |
+
21.8266 MB. 34.0955%. SpatialBN
|
507 |
+
19.1923 MB. 29.9805%. Relu
|
508 |
+
1.16659 MB. 1.82234%. Add
|
509 |
+
0.004 MB. 0.00624844%. FC
|
510 |
+
64.016 MB in Total
|
511 |
+
Parameter Memory per operator type:
|
512 |
+
12.2576 MB. 69.9104%. Conv
|
513 |
+
5.124 MB. 29.2245%. FC
|
514 |
+
0.15168 MB. 0.865099%. SpatialBN
|
515 |
+
0 MB. 0%. Add
|
516 |
+
0 MB. 0%. Relu
|
517 |
+
17.5332 MB in Total
|
518 |
+
```
|
519 |
+
|
520 |
+
### Optimized
|
521 |
+
```
|
522 |
+
Main run finished. Milliseconds per iter: 26.6364. Iters per second: 37.5426
|
523 |
+
Time per operator type:
|
524 |
+
24.9888 ms. 94.0962%. Conv
|
525 |
+
1.26147 ms. 4.75011%. Relu
|
526 |
+
0.176234 ms. 0.663619%. FC
|
527 |
+
0.113309 ms. 0.426672%. Add
|
528 |
+
0.0138708 ms. 0.0522311%. AveragePool
|
529 |
+
0.00295685 ms. 0.0111341%. Squeeze
|
530 |
+
26.5566 ms in Total
|
531 |
+
FLOP per operator type:
|
532 |
+
0.626272 GFLOP. 99.5466%. Conv
|
533 |
+
0.002561 GFLOP. 0.407074%. FC
|
534 |
+
0.000291648 GFLOP. 0.0463578%. Add
|
535 |
+
0 GFLOP. 0%. Relu
|
536 |
+
0.629124 GFLOP in Total
|
537 |
+
Feature Memory Read per operator type:
|
538 |
+
34.5112 MB. 56.4224%. Conv
|
539 |
+
19.1923 MB. 31.3775%. Relu
|
540 |
+
5.12912 MB. 8.3856%. FC
|
541 |
+
2.33318 MB. 3.81452%. Add
|
542 |
+
61.1658 MB in Total
|
543 |
+
Feature Memory Written per operator type:
|
544 |
+
21.8266 MB. 51.7346%. Conv
|
545 |
+
19.1923 MB. 45.4908%. Relu
|
546 |
+
1.16659 MB. 2.76513%. Add
|
547 |
+
0.004 MB. 0.00948104%. FC
|
548 |
+
42.1895 MB in Total
|
549 |
+
Parameter Memory per operator type:
|
550 |
+
12.2576 MB. 70.5205%. Conv
|
551 |
+
5.124 MB. 29.4795%. FC
|
552 |
+
0 MB. 0%. Add
|
553 |
+
0 MB. 0%. Relu
|
554 |
+
17.3816 MB in Total
|
555 |
+
```
|
ControlNet-v1-1-nightly-main/annotator/normalbae/models/submodules/efficientnet_repo/LICENSE
ADDED
@@ -0,0 +1,201 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Apache License
|
2 |
+
Version 2.0, January 2004
|
3 |
+
http://www.apache.org/licenses/
|
4 |
+
|
5 |
+
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
|
6 |
+
|
7 |
+
1. Definitions.
|
8 |
+
|
9 |
+
"License" shall mean the terms and conditions for use, reproduction,
|
10 |
+
and distribution as defined by Sections 1 through 9 of this document.
|
11 |
+
|
12 |
+
"Licensor" shall mean the copyright owner or entity authorized by
|
13 |
+
the copyright owner that is granting the License.
|
14 |
+
|
15 |
+
"Legal Entity" shall mean the union of the acting entity and all
|
16 |
+
other entities that control, are controlled by, or are under common
|
17 |
+
control with that entity. For the purposes of this definition,
|
18 |
+
"control" means (i) the power, direct or indirect, to cause the
|
19 |
+
direction or management of such entity, whether by contract or
|
20 |
+
otherwise, or (ii) ownership of fifty percent (50%) or more of the
|
21 |
+
outstanding shares, or (iii) beneficial ownership of such entity.
|
22 |
+
|
23 |
+
"You" (or "Your") shall mean an individual or Legal Entity
|
24 |
+
exercising permissions granted by this License.
|
25 |
+
|
26 |
+
"Source" form shall mean the preferred form for making modifications,
|
27 |
+
including but not limited to software source code, documentation
|
28 |
+
source, and configuration files.
|
29 |
+
|
30 |
+
"Object" form shall mean any form resulting from mechanical
|
31 |
+
transformation or translation of a Source form, including but
|
32 |
+
not limited to compiled object code, generated documentation,
|
33 |
+
and conversions to other media types.
|
34 |
+
|
35 |
+
"Work" shall mean the work of authorship, whether in Source or
|
36 |
+
Object form, made available under the License, as indicated by a
|
37 |
+
copyright notice that is included in or attached to the work
|
38 |
+
(an example is provided in the Appendix below).
|
39 |
+
|
40 |
+
"Derivative Works" shall mean any work, whether in Source or Object
|
41 |
+
form, that is based on (or derived from) the Work and for which the
|
42 |
+
editorial revisions, annotations, elaborations, or other modifications
|
43 |
+
represent, as a whole, an original work of authorship. For the purposes
|
44 |
+
of this License, Derivative Works shall not include works that remain
|
45 |
+
separable from, or merely link (or bind by name) to the interfaces of,
|
46 |
+
the Work and Derivative Works thereof.
|
47 |
+
|
48 |
+
"Contribution" shall mean any work of authorship, including
|
49 |
+
the original version of the Work and any modifications or additions
|
50 |
+
to that Work or Derivative Works thereof, that is intentionally
|
51 |
+
submitted to Licensor for inclusion in the Work by the copyright owner
|
52 |
+
or by an individual or Legal Entity authorized to submit on behalf of
|
53 |
+
the copyright owner. For the purposes of this definition, "submitted"
|
54 |
+
means any form of electronic, verbal, or written communication sent
|
55 |
+
to the Licensor or its representatives, including but not limited to
|
56 |
+
communication on electronic mailing lists, source code control systems,
|
57 |
+
and issue tracking systems that are managed by, or on behalf of, the
|
58 |
+
Licensor for the purpose of discussing and improving the Work, but
|
59 |
+
excluding communication that is conspicuously marked or otherwise
|
60 |
+
designated in writing by the copyright owner as "Not a Contribution."
|
61 |
+
|
62 |
+
"Contributor" shall mean Licensor and any individual or Legal Entity
|
63 |
+
on behalf of whom a Contribution has been received by Licensor and
|
64 |
+
subsequently incorporated within the Work.
|
65 |
+
|
66 |
+
2. Grant of Copyright License. Subject to the terms and conditions of
|
67 |
+
this License, each Contributor hereby grants to You a perpetual,
|
68 |
+
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
69 |
+
copyright license to reproduce, prepare Derivative Works of,
|
70 |
+
publicly display, publicly perform, sublicense, and distribute the
|
71 |
+
Work and such Derivative Works in Source or Object form.
|
72 |
+
|
73 |
+
3. Grant of Patent License. Subject to the terms and conditions of
|
74 |
+
this License, each Contributor hereby grants to You a perpetual,
|
75 |
+
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
76 |
+
(except as stated in this section) patent license to make, have made,
|
77 |
+
use, offer to sell, sell, import, and otherwise transfer the Work,
|
78 |
+
where such license applies only to those patent claims licensable
|
79 |
+
by such Contributor that are necessarily infringed by their
|
80 |
+
Contribution(s) alone or by combination of their Contribution(s)
|
81 |
+
with the Work to which such Contribution(s) was submitted. If You
|
82 |
+
institute patent litigation against any entity (including a
|
83 |
+
cross-claim or counterclaim in a lawsuit) alleging that the Work
|
84 |
+
or a Contribution incorporated within the Work constitutes direct
|
85 |
+
or contributory patent infringement, then any patent licenses
|
86 |
+
granted to You under this License for that Work shall terminate
|
87 |
+
as of the date such litigation is filed.
|
88 |
+
|
89 |
+
4. Redistribution. You may reproduce and distribute copies of the
|
90 |
+
Work or Derivative Works thereof in any medium, with or without
|
91 |
+
modifications, and in Source or Object form, provided that You
|
92 |
+
meet the following conditions:
|
93 |
+
|
94 |
+
(a) You must give any other recipients of the Work or
|
95 |
+
Derivative Works a copy of this License; and
|
96 |
+
|
97 |
+
(b) You must cause any modified files to carry prominent notices
|
98 |
+
stating that You changed the files; and
|
99 |
+
|
100 |
+
(c) You must retain, in the Source form of any Derivative Works
|
101 |
+
that You distribute, all copyright, patent, trademark, and
|
102 |
+
attribution notices from the Source form of the Work,
|
103 |
+
excluding those notices that do not pertain to any part of
|
104 |
+
the Derivative Works; and
|
105 |
+
|
106 |
+
(d) If the Work includes a "NOTICE" text file as part of its
|
107 |
+
distribution, then any Derivative Works that You distribute must
|
108 |
+
include a readable copy of the attribution notices contained
|
109 |
+
within such NOTICE file, excluding those notices that do not
|
110 |
+
pertain to any part of the Derivative Works, in at least one
|
111 |
+
of the following places: within a NOTICE text file distributed
|
112 |
+
as part of the Derivative Works; within the Source form or
|
113 |
+
documentation, if provided along with the Derivative Works; or,
|
114 |
+
within a display generated by the Derivative Works, if and
|
115 |
+
wherever such third-party notices normally appear. The contents
|
116 |
+
of the NOTICE file are for informational purposes only and
|
117 |
+
do not modify the License. You may add Your own attribution
|
118 |
+
notices within Derivative Works that You distribute, alongside
|
119 |
+
or as an addendum to the NOTICE text from the Work, provided
|
120 |
+
that such additional attribution notices cannot be construed
|
121 |
+
as modifying the License.
|
122 |
+
|
123 |
+
You may add Your own copyright statement to Your modifications and
|
124 |
+
may provide additional or different license terms and conditions
|
125 |
+
for use, reproduction, or distribution of Your modifications, or
|
126 |
+
for any such Derivative Works as a whole, provided Your use,
|
127 |
+
reproduction, and distribution of the Work otherwise complies with
|
128 |
+
the conditions stated in this License.
|
129 |
+
|
130 |
+
5. Submission of Contributions. Unless You explicitly state otherwise,
|
131 |
+
any Contribution intentionally submitted for inclusion in the Work
|
132 |
+
by You to the Licensor shall be under the terms and conditions of
|
133 |
+
this License, without any additional terms or conditions.
|
134 |
+
Notwithstanding the above, nothing herein shall supersede or modify
|
135 |
+
the terms of any separate license agreement you may have executed
|
136 |
+
with Licensor regarding such Contributions.
|
137 |
+
|
138 |
+
6. Trademarks. This License does not grant permission to use the trade
|
139 |
+
names, trademarks, service marks, or product names of the Licensor,
|
140 |
+
except as required for reasonable and customary use in describing the
|
141 |
+
origin of the Work and reproducing the content of the NOTICE file.
|
142 |
+
|
143 |
+
7. Disclaimer of Warranty. Unless required by applicable law or
|
144 |
+
agreed to in writing, Licensor provides the Work (and each
|
145 |
+
Contributor provides its Contributions) on an "AS IS" BASIS,
|
146 |
+
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
|
147 |
+
implied, including, without limitation, any warranties or conditions
|
148 |
+
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
|
149 |
+
PARTICULAR PURPOSE. You are solely responsible for determining the
|
150 |
+
appropriateness of using or redistributing the Work and assume any
|
151 |
+
risks associated with Your exercise of permissions under this License.
|
152 |
+
|
153 |
+
8. Limitation of Liability. In no event and under no legal theory,
|
154 |
+
whether in tort (including negligence), contract, or otherwise,
|
155 |
+
unless required by applicable law (such as deliberate and grossly
|
156 |
+
negligent acts) or agreed to in writing, shall any Contributor be
|
157 |
+
liable to You for damages, including any direct, indirect, special,
|
158 |
+
incidental, or consequential damages of any character arising as a
|
159 |
+
result of this License or out of the use or inability to use the
|
160 |
+
Work (including but not limited to damages for loss of goodwill,
|
161 |
+
work stoppage, computer failure or malfunction, or any and all
|
162 |
+
other commercial damages or losses), even if such Contributor
|
163 |
+
has been advised of the possibility of such damages.
|
164 |
+
|
165 |
+
9. Accepting Warranty or Additional Liability. While redistributing
|
166 |
+
the Work or Derivative Works thereof, You may choose to offer,
|
167 |
+
and charge a fee for, acceptance of support, warranty, indemnity,
|
168 |
+
or other liability obligations and/or rights consistent with this
|
169 |
+
License. However, in accepting such obligations, You may act only
|
170 |
+
on Your own behalf and on Your sole responsibility, not on behalf
|
171 |
+
of any other Contributor, and only if You agree to indemnify,
|
172 |
+
defend, and hold each Contributor harmless for any liability
|
173 |
+
incurred by, or claims asserted against, such Contributor by reason
|
174 |
+
of your accepting any such warranty or additional liability.
|
175 |
+
|
176 |
+
END OF TERMS AND CONDITIONS
|
177 |
+
|
178 |
+
APPENDIX: How to apply the Apache License to your work.
|
179 |
+
|
180 |
+
To apply the Apache License to your work, attach the following
|
181 |
+
boilerplate notice, with the fields enclosed by brackets "{}"
|
182 |
+
replaced with your own identifying information. (Don't include
|
183 |
+
the brackets!) The text should be enclosed in the appropriate
|
184 |
+
comment syntax for the file format. We also recommend that a
|
185 |
+
file or class name and description of purpose be included on the
|
186 |
+
same "printed page" as the copyright notice for easier
|
187 |
+
identification within third-party archives.
|
188 |
+
|
189 |
+
Copyright 2020 Ross Wightman
|
190 |
+
|
191 |
+
Licensed under the Apache License, Version 2.0 (the "License");
|
192 |
+
you may not use this file except in compliance with the License.
|
193 |
+
You may obtain a copy of the License at
|
194 |
+
|
195 |
+
http://www.apache.org/licenses/LICENSE-2.0
|
196 |
+
|
197 |
+
Unless required by applicable law or agreed to in writing, software
|
198 |
+
distributed under the License is distributed on an "AS IS" BASIS,
|
199 |
+
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
200 |
+
See the License for the specific language governing permissions and
|
201 |
+
limitations under the License.
|
ControlNet-v1-1-nightly-main/annotator/normalbae/models/submodules/efficientnet_repo/README.md
ADDED
@@ -0,0 +1,323 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# (Generic) EfficientNets for PyTorch
|
2 |
+
|
3 |
+
A 'generic' implementation of EfficientNet, MixNet, MobileNetV3, etc. that covers most of the compute/parameter efficient architectures derived from the MobileNet V1/V2 block sequence, including those found via automated neural architecture search.
|
4 |
+
|
5 |
+
All models are implemented by GenEfficientNet or MobileNetV3 classes, with string based architecture definitions to configure the block layouts (idea from [here](https://github.com/tensorflow/tpu/blob/master/models/official/mnasnet/mnasnet_models.py))
|
6 |
+
|
7 |
+
## What's New
|
8 |
+
|
9 |
+
### Aug 19, 2020
|
10 |
+
* Add updated PyTorch trained EfficientNet-B3 weights trained by myself with `timm` (82.1 top-1)
|
11 |
+
* Add PyTorch trained EfficientNet-Lite0 contributed by [@hal-314](https://github.com/hal-314) (75.5 top-1)
|
12 |
+
* Update ONNX and Caffe2 export / utility scripts to work with latest PyTorch / ONNX
|
13 |
+
* ONNX runtime based validation script added
|
14 |
+
* activations (mostly) brought in sync with `timm` equivalents
|
15 |
+
|
16 |
+
|
17 |
+
### April 5, 2020
|
18 |
+
* Add some newly trained MobileNet-V2 models trained with latest h-params, rand augment. They compare quite favourably to EfficientNet-Lite
|
19 |
+
* 3.5M param MobileNet-V2 100 @ 73%
|
20 |
+
* 4.5M param MobileNet-V2 110d @ 75%
|
21 |
+
* 6.1M param MobileNet-V2 140 @ 76.5%
|
22 |
+
* 5.8M param MobileNet-V2 120d @ 77.3%
|
23 |
+
|
24 |
+
### March 23, 2020
|
25 |
+
* Add EfficientNet-Lite models w/ weights ported from [Tensorflow TPU](https://github.com/tensorflow/tpu/tree/master/models/official/efficientnet/lite)
|
26 |
+
* Add PyTorch trained MobileNet-V3 Large weights with 75.77% top-1
|
27 |
+
* IMPORTANT CHANGE (if training from scratch) - weight init changed to better match Tensorflow impl, set `fix_group_fanout=False` in `initialize_weight_goog` for old behavior
|
28 |
+
|
29 |
+
### Feb 12, 2020
|
30 |
+
* Add EfficientNet-L2 and B0-B7 NoisyStudent weights ported from [Tensorflow TPU](https://github.com/tensorflow/tpu/tree/master/models/official/efficientnet)
|
31 |
+
* Port new EfficientNet-B8 (RandAugment) weights from TF TPU, these are different than the B8 AdvProp, different input normalization.
|
32 |
+
* Add RandAugment PyTorch trained EfficientNet-ES (EdgeTPU-Small) weights with 78.1 top-1. Trained by [Andrew Lavin](https://github.com/andravin)
|
33 |
+
|
34 |
+
### Jan 22, 2020
|
35 |
+
* Update weights for EfficientNet B0, B2, B3 and MixNet-XL with latest RandAugment trained weights. Trained with (https://github.com/rwightman/pytorch-image-models)
|
36 |
+
* Fix torchscript compatibility for PyTorch 1.4, add torchscript support for MixedConv2d using ModuleDict
|
37 |
+
* Test models, torchscript, onnx export with PyTorch 1.4 -- no issues
|
38 |
+
|
39 |
+
### Nov 22, 2019
|
40 |
+
* New top-1 high! Ported official TF EfficientNet AdvProp (https://arxiv.org/abs/1911.09665) weights and B8 model spec. Created a new set of `ap` models since they use a different
|
41 |
+
preprocessing (Inception mean/std) from the original EfficientNet base/AA/RA weights.
|
42 |
+
|
43 |
+
### Nov 15, 2019
|
44 |
+
* Ported official TF MobileNet-V3 float32 large/small/minimalistic weights
|
45 |
+
* Modifications to MobileNet-V3 model and components to support some additional config needed for differences between TF MobileNet-V3 and mine
|
46 |
+
|
47 |
+
### Oct 30, 2019
|
48 |
+
* Many of the models will now work with torch.jit.script, MixNet being the biggest exception
|
49 |
+
* Improved interface for enabling torchscript or ONNX export compatible modes (via config)
|
50 |
+
* Add JIT optimized mem-efficient Swish/Mish autograd.fn in addition to memory-efficient autgrad.fn
|
51 |
+
* Activation factory to select best version of activation by name or override one globally
|
52 |
+
* Add pretrained checkpoint load helper that handles input conv and classifier changes
|
53 |
+
|
54 |
+
### Oct 27, 2019
|
55 |
+
* Add CondConv EfficientNet variants ported from https://github.com/tensorflow/tpu/tree/master/models/official/efficientnet/condconv
|
56 |
+
* Add RandAug weights for TF EfficientNet B5 and B7 from https://github.com/tensorflow/tpu/tree/master/models/official/efficientnet
|
57 |
+
* Bring over MixNet-XL model and depth scaling algo from my pytorch-image-models code base
|
58 |
+
* Switch activations and global pooling to modules
|
59 |
+
* Add memory-efficient Swish/Mish impl
|
60 |
+
* Add as_sequential() method to all models and allow as an argument in entrypoint fns
|
61 |
+
* Move MobileNetV3 into own file since it has a different head
|
62 |
+
* Remove ChamNet, MobileNet V2/V1 since they will likely never be used here
|
63 |
+
|
64 |
+
## Models
|
65 |
+
|
66 |
+
Implemented models include:
|
67 |
+
* EfficientNet NoisyStudent (B0-B7, L2) (https://arxiv.org/abs/1911.04252)
|
68 |
+
* EfficientNet AdvProp (B0-B8) (https://arxiv.org/abs/1911.09665)
|
69 |
+
* EfficientNet (B0-B8) (https://arxiv.org/abs/1905.11946)
|
70 |
+
* EfficientNet-EdgeTPU (S, M, L) (https://ai.googleblog.com/2019/08/efficientnet-edgetpu-creating.html)
|
71 |
+
* EfficientNet-CondConv (https://arxiv.org/abs/1904.04971)
|
72 |
+
* EfficientNet-Lite (https://github.com/tensorflow/tpu/tree/master/models/official/efficientnet/lite)
|
73 |
+
* MixNet (https://arxiv.org/abs/1907.09595)
|
74 |
+
* MNASNet B1, A1 (Squeeze-Excite), and Small (https://arxiv.org/abs/1807.11626)
|
75 |
+
* MobileNet-V3 (https://arxiv.org/abs/1905.02244)
|
76 |
+
* FBNet-C (https://arxiv.org/abs/1812.03443)
|
77 |
+
* Single-Path NAS (https://arxiv.org/abs/1904.02877)
|
78 |
+
|
79 |
+
I originally implemented and trained some these models with code [here](https://github.com/rwightman/pytorch-image-models), this repository contains just the GenEfficientNet models, validation, and associated ONNX/Caffe2 export code.
|
80 |
+
|
81 |
+
## Pretrained
|
82 |
+
|
83 |
+
I've managed to train several of the models to accuracies close to or above the originating papers and official impl. My training code is here: https://github.com/rwightman/pytorch-image-models
|
84 |
+
|
85 |
+
|
86 |
+
|Model | Prec@1 (Err) | Prec@5 (Err) | Param#(M) | MAdds(M) | Image Scaling | Resolution | Crop |
|
87 |
+
|---|---|---|---|---|---|---|---|
|
88 |
+
| efficientnet_b3 | 82.240 (17.760) | 96.116 (3.884) | 12.23 | TBD | bicubic | 320 | 1.0 |
|
89 |
+
| efficientnet_b3 | 82.076 (17.924) | 96.020 (3.980) | 12.23 | TBD | bicubic | 300 | 0.904 |
|
90 |
+
| mixnet_xl | 81.074 (18.926) | 95.282 (4.718) | 11.90 | TBD | bicubic | 256 | 1.0 |
|
91 |
+
| efficientnet_b2 | 80.612 (19.388) | 95.318 (4.682) | 9.1 | TBD | bicubic | 288 | 1.0 |
|
92 |
+
| mixnet_xl | 80.476 (19.524) | 94.936 (5.064) | 11.90 | TBD | bicubic | 224 | 0.875 |
|
93 |
+
| efficientnet_b2 | 80.288 (19.712) | 95.166 (4.834) | 9.1 | 1003 | bicubic | 260 | 0.890 |
|
94 |
+
| mixnet_l | 78.976 (21.024 | 94.184 (5.816) | 7.33 | TBD | bicubic | 224 | 0.875 |
|
95 |
+
| efficientnet_b1 | 78.692 (21.308) | 94.086 (5.914) | 7.8 | 694 | bicubic | 240 | 0.882 |
|
96 |
+
| efficientnet_es | 78.066 (21.934) | 93.926 (6.074) | 5.44 | TBD | bicubic | 224 | 0.875 |
|
97 |
+
| efficientnet_b0 | 77.698 (22.302) | 93.532 (6.468) | 5.3 | 390 | bicubic | 224 | 0.875 |
|
98 |
+
| mobilenetv2_120d | 77.294 (22.706 | 93.502 (6.498) | 5.8 | TBD | bicubic | 224 | 0.875 |
|
99 |
+
| mixnet_m | 77.256 (22.744) | 93.418 (6.582) | 5.01 | 353 | bicubic | 224 | 0.875 |
|
100 |
+
| mobilenetv2_140 | 76.524 (23.476) | 92.990 (7.010) | 6.1 | TBD | bicubic | 224 | 0.875 |
|
101 |
+
| mixnet_s | 75.988 (24.012) | 92.794 (7.206) | 4.13 | TBD | bicubic | 224 | 0.875 |
|
102 |
+
| mobilenetv3_large_100 | 75.766 (24.234) | 92.542 (7.458) | 5.5 | TBD | bicubic | 224 | 0.875 |
|
103 |
+
| mobilenetv3_rw | 75.634 (24.366) | 92.708 (7.292) | 5.5 | 219 | bicubic | 224 | 0.875 |
|
104 |
+
| efficientnet_lite0 | 75.472 (24.528) | 92.520 (7.480) | 4.65 | TBD | bicubic | 224 | 0.875 |
|
105 |
+
| mnasnet_a1 | 75.448 (24.552) | 92.604 (7.396) | 3.9 | 312 | bicubic | 224 | 0.875 |
|
106 |
+
| fbnetc_100 | 75.124 (24.876) | 92.386 (7.614) | 5.6 | 385 | bilinear | 224 | 0.875 |
|
107 |
+
| mobilenetv2_110d | 75.052 (24.948) | 92.180 (7.820) | 4.5 | TBD | bicubic | 224 | 0.875 |
|
108 |
+
| mnasnet_b1 | 74.658 (25.342) | 92.114 (7.886) | 4.4 | 315 | bicubic | 224 | 0.875 |
|
109 |
+
| spnasnet_100 | 74.084 (25.916) | 91.818 (8.182) | 4.4 | TBD | bilinear | 224 | 0.875 |
|
110 |
+
| mobilenetv2_100 | 72.978 (27.022) | 91.016 (8.984) | 3.5 | TBD | bicubic | 224 | 0.875 |
|
111 |
+
|
112 |
+
|
113 |
+
More pretrained models to come...
|
114 |
+
|
115 |
+
|
116 |
+
## Ported Weights
|
117 |
+
|
118 |
+
The weights ported from Tensorflow checkpoints for the EfficientNet models do pretty much match accuracy in Tensorflow once a SAME convolution padding equivalent is added, and the same crop factors, image scaling, etc (see table) are used via cmd line args.
|
119 |
+
|
120 |
+
**IMPORTANT:**
|
121 |
+
* Tensorflow ported weights for EfficientNet AdvProp (AP), EfficientNet EdgeTPU, EfficientNet-CondConv, EfficientNet-Lite, and MobileNet-V3 models use Inception style (0.5, 0.5, 0.5) for mean and std.
|
122 |
+
* Enabling the Tensorflow preprocessing pipeline with `--tf-preprocessing` at validation time will improve scores by 0.1-0.5%, very close to original TF impl.
|
123 |
+
|
124 |
+
To run validation for tf_efficientnet_b5:
|
125 |
+
`python validate.py /path/to/imagenet/validation/ --model tf_efficientnet_b5 -b 64 --img-size 456 --crop-pct 0.934 --interpolation bicubic`
|
126 |
+
|
127 |
+
To run validation w/ TF preprocessing for tf_efficientnet_b5:
|
128 |
+
`python validate.py /path/to/imagenet/validation/ --model tf_efficientnet_b5 -b 64 --img-size 456 --tf-preprocessing`
|
129 |
+
|
130 |
+
To run validation for a model with Inception preprocessing, ie EfficientNet-B8 AdvProp:
|
131 |
+
`python validate.py /path/to/imagenet/validation/ --model tf_efficientnet_b8_ap -b 48 --num-gpu 2 --img-size 672 --crop-pct 0.954 --mean 0.5 --std 0.5`
|
132 |
+
|
133 |
+
|Model | Prec@1 (Err) | Prec@5 (Err) | Param # | Image Scaling | Image Size | Crop |
|
134 |
+
|---|---|---|---|---|---|---|
|
135 |
+
| tf_efficientnet_l2_ns *tfp | 88.352 (11.648) | 98.652 (1.348) | 480 | bicubic | 800 | N/A |
|
136 |
+
| tf_efficientnet_l2_ns | TBD | TBD | 480 | bicubic | 800 | 0.961 |
|
137 |
+
| tf_efficientnet_l2_ns_475 | 88.234 (11.766) | 98.546 (1.454) | 480 | bicubic | 475 | 0.936 |
|
138 |
+
| tf_efficientnet_l2_ns_475 *tfp | 88.172 (11.828) | 98.566 (1.434) | 480 | bicubic | 475 | N/A |
|
139 |
+
| tf_efficientnet_b7_ns *tfp | 86.844 (13.156) | 98.084 (1.916) | 66.35 | bicubic | 600 | N/A |
|
140 |
+
| tf_efficientnet_b7_ns | 86.840 (13.160) | 98.094 (1.906) | 66.35 | bicubic | 600 | N/A |
|
141 |
+
| tf_efficientnet_b6_ns | 86.452 (13.548) | 97.882 (2.118) | 43.04 | bicubic | 528 | N/A |
|
142 |
+
| tf_efficientnet_b6_ns *tfp | 86.444 (13.556) | 97.880 (2.120) | 43.04 | bicubic | 528 | N/A |
|
143 |
+
| tf_efficientnet_b5_ns *tfp | 86.064 (13.936) | 97.746 (2.254) | 30.39 | bicubic | 456 | N/A |
|
144 |
+
| tf_efficientnet_b5_ns | 86.088 (13.912) | 97.752 (2.248) | 30.39 | bicubic | 456 | N/A |
|
145 |
+
| tf_efficientnet_b8_ap *tfp | 85.436 (14.564) | 97.272 (2.728) | 87.4 | bicubic | 672 | N/A |
|
146 |
+
| tf_efficientnet_b8 *tfp | 85.384 (14.616) | 97.394 (2.606) | 87.4 | bicubic | 672 | N/A |
|
147 |
+
| tf_efficientnet_b8 | 85.370 (14.630) | 97.390 (2.610) | 87.4 | bicubic | 672 | 0.954 |
|
148 |
+
| tf_efficientnet_b8_ap | 85.368 (14.632) | 97.294 (2.706) | 87.4 | bicubic | 672 | 0.954 |
|
149 |
+
| tf_efficientnet_b4_ns *tfp | 85.298 (14.702) | 97.504 (2.496) | 19.34 | bicubic | 380 | N/A |
|
150 |
+
| tf_efficientnet_b4_ns | 85.162 (14.838) | 97.470 (2.530) | 19.34 | bicubic | 380 | 0.922 |
|
151 |
+
| tf_efficientnet_b7_ap *tfp | 85.154 (14.846) | 97.244 (2.756) | 66.35 | bicubic | 600 | N/A |
|
152 |
+
| tf_efficientnet_b7_ap | 85.118 (14.882) | 97.252 (2.748) | 66.35 | bicubic | 600 | 0.949 |
|
153 |
+
| tf_efficientnet_b7 *tfp | 84.940 (15.060) | 97.214 (2.786) | 66.35 | bicubic | 600 | N/A |
|
154 |
+
| tf_efficientnet_b7 | 84.932 (15.068) | 97.208 (2.792) | 66.35 | bicubic | 600 | 0.949 |
|
155 |
+
| tf_efficientnet_b6_ap | 84.786 (15.214) | 97.138 (2.862) | 43.04 | bicubic | 528 | 0.942 |
|
156 |
+
| tf_efficientnet_b6_ap *tfp | 84.760 (15.240) | 97.124 (2.876) | 43.04 | bicubic | 528 | N/A |
|
157 |
+
| tf_efficientnet_b5_ap *tfp | 84.276 (15.724) | 96.932 (3.068) | 30.39 | bicubic | 456 | N/A |
|
158 |
+
| tf_efficientnet_b5_ap | 84.254 (15.746) | 96.976 (3.024) | 30.39 | bicubic | 456 | 0.934 |
|
159 |
+
| tf_efficientnet_b6 *tfp | 84.140 (15.860) | 96.852 (3.148) | 43.04 | bicubic | 528 | N/A |
|
160 |
+
| tf_efficientnet_b6 | 84.110 (15.890) | 96.886 (3.114) | 43.04 | bicubic | 528 | 0.942 |
|
161 |
+
| tf_efficientnet_b3_ns *tfp | 84.054 (15.946) | 96.918 (3.082) | 12.23 | bicubic | 300 | N/A |
|
162 |
+
| tf_efficientnet_b3_ns | 84.048 (15.952) | 96.910 (3.090) | 12.23 | bicubic | 300 | .904 |
|
163 |
+
| tf_efficientnet_b5 *tfp | 83.822 (16.178) | 96.756 (3.244) | 30.39 | bicubic | 456 | N/A |
|
164 |
+
| tf_efficientnet_b5 | 83.812 (16.188) | 96.748 (3.252) | 30.39 | bicubic | 456 | 0.934 |
|
165 |
+
| tf_efficientnet_b4_ap *tfp | 83.278 (16.722) | 96.376 (3.624) | 19.34 | bicubic | 380 | N/A |
|
166 |
+
| tf_efficientnet_b4_ap | 83.248 (16.752) | 96.388 (3.612) | 19.34 | bicubic | 380 | 0.922 |
|
167 |
+
| tf_efficientnet_b4 | 83.022 (16.978) | 96.300 (3.700) | 19.34 | bicubic | 380 | 0.922 |
|
168 |
+
| tf_efficientnet_b4 *tfp | 82.948 (17.052) | 96.308 (3.692) | 19.34 | bicubic | 380 | N/A |
|
169 |
+
| tf_efficientnet_b2_ns *tfp | 82.436 (17.564) | 96.268 (3.732) | 9.11 | bicubic | 260 | N/A |
|
170 |
+
| tf_efficientnet_b2_ns | 82.380 (17.620) | 96.248 (3.752) | 9.11 | bicubic | 260 | 0.89 |
|
171 |
+
| tf_efficientnet_b3_ap *tfp | 81.882 (18.118) | 95.662 (4.338) | 12.23 | bicubic | 300 | N/A |
|
172 |
+
| tf_efficientnet_b3_ap | 81.828 (18.172) | 95.624 (4.376) | 12.23 | bicubic | 300 | 0.904 |
|
173 |
+
| tf_efficientnet_b3 | 81.636 (18.364) | 95.718 (4.282) | 12.23 | bicubic | 300 | 0.904 |
|
174 |
+
| tf_efficientnet_b3 *tfp | 81.576 (18.424) | 95.662 (4.338) | 12.23 | bicubic | 300 | N/A |
|
175 |
+
| tf_efficientnet_lite4 | 81.528 (18.472) | 95.668 (4.332) | 13.00 | bilinear | 380 | 0.92 |
|
176 |
+
| tf_efficientnet_b1_ns *tfp | 81.514 (18.486) | 95.776 (4.224) | 7.79 | bicubic | 240 | N/A |
|
177 |
+
| tf_efficientnet_lite4 *tfp | 81.502 (18.498) | 95.676 (4.324) | 13.00 | bilinear | 380 | N/A |
|
178 |
+
| tf_efficientnet_b1_ns | 81.388 (18.612) | 95.738 (4.262) | 7.79 | bicubic | 240 | 0.88 |
|
179 |
+
| tf_efficientnet_el | 80.534 (19.466) | 95.190 (4.810) | 10.59 | bicubic | 300 | 0.904 |
|
180 |
+
| tf_efficientnet_el *tfp | 80.476 (19.524) | 95.200 (4.800) | 10.59 | bicubic | 300 | N/A |
|
181 |
+
| tf_efficientnet_b2_ap *tfp | 80.420 (19.580) | 95.040 (4.960) | 9.11 | bicubic | 260 | N/A |
|
182 |
+
| tf_efficientnet_b2_ap | 80.306 (19.694) | 95.028 (4.972) | 9.11 | bicubic | 260 | 0.890 |
|
183 |
+
| tf_efficientnet_b2 *tfp | 80.188 (19.812) | 94.974 (5.026) | 9.11 | bicubic | 260 | N/A |
|
184 |
+
| tf_efficientnet_b2 | 80.086 (19.914) | 94.908 (5.092) | 9.11 | bicubic | 260 | 0.890 |
|
185 |
+
| tf_efficientnet_lite3 | 79.812 (20.188) | 94.914 (5.086) | 8.20 | bilinear | 300 | 0.904 |
|
186 |
+
| tf_efficientnet_lite3 *tfp | 79.734 (20.266) | 94.838 (5.162) | 8.20 | bilinear | 300 | N/A |
|
187 |
+
| tf_efficientnet_b1_ap *tfp | 79.532 (20.468) | 94.378 (5.622) | 7.79 | bicubic | 240 | N/A |
|
188 |
+
| tf_efficientnet_cc_b1_8e *tfp | 79.464 (20.536)| 94.492 (5.508) | 39.7 | bicubic | 240 | 0.88 |
|
189 |
+
| tf_efficientnet_cc_b1_8e | 79.298 (20.702) | 94.364 (5.636) | 39.7 | bicubic | 240 | 0.88 |
|
190 |
+
| tf_efficientnet_b1_ap | 79.278 (20.722) | 94.308 (5.692) | 7.79 | bicubic | 240 | 0.88 |
|
191 |
+
| tf_efficientnet_b1 *tfp | 79.172 (20.828) | 94.450 (5.550) | 7.79 | bicubic | 240 | N/A |
|
192 |
+
| tf_efficientnet_em *tfp | 78.958 (21.042) | 94.458 (5.542) | 6.90 | bicubic | 240 | N/A |
|
193 |
+
| tf_efficientnet_b0_ns *tfp | 78.806 (21.194) | 94.496 (5.504) | 5.29 | bicubic | 224 | N/A |
|
194 |
+
| tf_mixnet_l *tfp | 78.846 (21.154) | 94.212 (5.788) | 7.33 | bilinear | 224 | N/A |
|
195 |
+
| tf_efficientnet_b1 | 78.826 (21.174) | 94.198 (5.802) | 7.79 | bicubic | 240 | 0.88 |
|
196 |
+
| tf_mixnet_l | 78.770 (21.230) | 94.004 (5.996) | 7.33 | bicubic | 224 | 0.875 |
|
197 |
+
| tf_efficientnet_em | 78.742 (21.258) | 94.332 (5.668) | 6.90 | bicubic | 240 | 0.875 |
|
198 |
+
| tf_efficientnet_b0_ns | 78.658 (21.342) | 94.376 (5.624) | 5.29 | bicubic | 224 | 0.875 |
|
199 |
+
| tf_efficientnet_cc_b0_8e *tfp | 78.314 (21.686) | 93.790 (6.210) | 24.0 | bicubic | 224 | 0.875 |
|
200 |
+
| tf_efficientnet_cc_b0_8e | 77.908 (22.092) | 93.656 (6.344) | 24.0 | bicubic | 224 | 0.875 |
|
201 |
+
| tf_efficientnet_cc_b0_4e *tfp | 77.746 (22.254) | 93.552 (6.448) | 13.3 | bicubic | 224 | 0.875 |
|
202 |
+
| tf_efficientnet_cc_b0_4e | 77.304 (22.696) | 93.332 (6.668) | 13.3 | bicubic | 224 | 0.875 |
|
203 |
+
| tf_efficientnet_es *tfp | 77.616 (22.384) | 93.750 (6.250) | 5.44 | bicubic | 224 | N/A |
|
204 |
+
| tf_efficientnet_lite2 *tfp | 77.544 (22.456) | 93.800 (6.200) | 6.09 | bilinear | 260 | N/A |
|
205 |
+
| tf_efficientnet_lite2 | 77.460 (22.540) | 93.746 (6.254) | 6.09 | bicubic | 260 | 0.89 |
|
206 |
+
| tf_efficientnet_b0_ap *tfp | 77.514 (22.486) | 93.576 (6.424) | 5.29 | bicubic | 224 | N/A |
|
207 |
+
| tf_efficientnet_es | 77.264 (22.736) | 93.600 (6.400) | 5.44 | bicubic | 224 | N/A |
|
208 |
+
| tf_efficientnet_b0 *tfp | 77.258 (22.742) | 93.478 (6.522) | 5.29 | bicubic | 224 | N/A |
|
209 |
+
| tf_efficientnet_b0_ap | 77.084 (22.916) | 93.254 (6.746) | 5.29 | bicubic | 224 | 0.875 |
|
210 |
+
| tf_mixnet_m *tfp | 77.072 (22.928) | 93.368 (6.632) | 5.01 | bilinear | 224 | N/A |
|
211 |
+
| tf_mixnet_m | 76.950 (23.050) | 93.156 (6.844) | 5.01 | bicubic | 224 | 0.875 |
|
212 |
+
| tf_efficientnet_b0 | 76.848 (23.152) | 93.228 (6.772) | 5.29 | bicubic | 224 | 0.875 |
|
213 |
+
| tf_efficientnet_lite1 *tfp | 76.764 (23.236) | 93.326 (6.674) | 5.42 | bilinear | 240 | N/A |
|
214 |
+
| tf_efficientnet_lite1 | 76.638 (23.362) | 93.232 (6.768) | 5.42 | bicubic | 240 | 0.882 |
|
215 |
+
| tf_mixnet_s *tfp | 75.800 (24.200) | 92.788 (7.212) | 4.13 | bilinear | 224 | N/A |
|
216 |
+
| tf_mobilenetv3_large_100 *tfp | 75.768 (24.232) | 92.710 (7.290) | 5.48 | bilinear | 224 | N/A |
|
217 |
+
| tf_mixnet_s | 75.648 (24.352) | 92.636 (7.364) | 4.13 | bicubic | 224 | 0.875 |
|
218 |
+
| tf_mobilenetv3_large_100 | 75.516 (24.484) | 92.600 (7.400) | 5.48 | bilinear | 224 | 0.875 |
|
219 |
+
| tf_efficientnet_lite0 *tfp | 75.074 (24.926) | 92.314 (7.686) | 4.65 | bilinear | 224 | N/A |
|
220 |
+
| tf_efficientnet_lite0 | 74.842 (25.158) | 92.170 (7.830) | 4.65 | bicubic | 224 | 0.875 |
|
221 |
+
| tf_mobilenetv3_large_075 *tfp | 73.730 (26.270) | 91.616 (8.384) | 3.99 | bilinear | 224 |N/A |
|
222 |
+
| tf_mobilenetv3_large_075 | 73.442 (26.558) | 91.352 (8.648) | 3.99 | bilinear | 224 | 0.875 |
|
223 |
+
| tf_mobilenetv3_large_minimal_100 *tfp | 72.678 (27.322) | 90.860 (9.140) | 3.92 | bilinear | 224 | N/A |
|
224 |
+
| tf_mobilenetv3_large_minimal_100 | 72.244 (27.756) | 90.636 (9.364) | 3.92 | bilinear | 224 | 0.875 |
|
225 |
+
| tf_mobilenetv3_small_100 *tfp | 67.918 (32.082) | 87.958 (12.042 | 2.54 | bilinear | 224 | N/A |
|
226 |
+
| tf_mobilenetv3_small_100 | 67.918 (32.082) | 87.662 (12.338) | 2.54 | bilinear | 224 | 0.875 |
|
227 |
+
| tf_mobilenetv3_small_075 *tfp | 66.142 (33.858) | 86.498 (13.502) | 2.04 | bilinear | 224 | N/A |
|
228 |
+
| tf_mobilenetv3_small_075 | 65.718 (34.282) | 86.136 (13.864) | 2.04 | bilinear | 224 | 0.875 |
|
229 |
+
| tf_mobilenetv3_small_minimal_100 *tfp | 63.378 (36.622) | 84.802 (15.198) | 2.04 | bilinear | 224 | N/A |
|
230 |
+
| tf_mobilenetv3_small_minimal_100 | 62.898 (37.102) | 84.230 (15.770) | 2.04 | bilinear | 224 | 0.875 |
|
231 |
+
|
232 |
+
|
233 |
+
*tfp models validated with `tf-preprocessing` pipeline
|
234 |
+
|
235 |
+
Google tf and tflite weights ported from official Tensorflow repositories
|
236 |
+
* https://github.com/tensorflow/tpu/tree/master/models/official/mnasnet
|
237 |
+
* https://github.com/tensorflow/tpu/tree/master/models/official/efficientnet
|
238 |
+
* https://github.com/tensorflow/models/tree/master/research/slim/nets/mobilenet
|
239 |
+
|
240 |
+
## Usage
|
241 |
+
|
242 |
+
### Environment
|
243 |
+
|
244 |
+
All development and testing has been done in Conda Python 3 environments on Linux x86-64 systems, specifically Python 3.6.x, 3.7.x, 3.8.x.
|
245 |
+
|
246 |
+
Users have reported that a Python 3 Anaconda install in Windows works. I have not verified this myself.
|
247 |
+
|
248 |
+
PyTorch versions 1.4, 1.5, 1.6 have been tested with this code.
|
249 |
+
|
250 |
+
I've tried to keep the dependencies minimal, the setup is as per the PyTorch default install instructions for Conda:
|
251 |
+
```
|
252 |
+
conda create -n torch-env
|
253 |
+
conda activate torch-env
|
254 |
+
conda install -c pytorch pytorch torchvision cudatoolkit=10.2
|
255 |
+
```
|
256 |
+
|
257 |
+
### PyTorch Hub
|
258 |
+
|
259 |
+
Models can be accessed via the PyTorch Hub API
|
260 |
+
|
261 |
+
```
|
262 |
+
>>> torch.hub.list('rwightman/gen-efficientnet-pytorch')
|
263 |
+
['efficientnet_b0', ...]
|
264 |
+
>>> model = torch.hub.load('rwightman/gen-efficientnet-pytorch', 'efficientnet_b0', pretrained=True)
|
265 |
+
>>> model.eval()
|
266 |
+
>>> output = model(torch.randn(1,3,224,224))
|
267 |
+
```
|
268 |
+
|
269 |
+
### Pip
|
270 |
+
This package can be installed via pip.
|
271 |
+
|
272 |
+
Install (after conda env/install):
|
273 |
+
```
|
274 |
+
pip install geffnet
|
275 |
+
```
|
276 |
+
|
277 |
+
Eval use:
|
278 |
+
```
|
279 |
+
>>> import geffnet
|
280 |
+
>>> m = geffnet.create_model('mobilenetv3_large_100', pretrained=True)
|
281 |
+
>>> m.eval()
|
282 |
+
```
|
283 |
+
|
284 |
+
Train use:
|
285 |
+
```
|
286 |
+
>>> import geffnet
|
287 |
+
>>> # models can also be created by using the entrypoint directly
|
288 |
+
>>> m = geffnet.efficientnet_b2(pretrained=True, drop_rate=0.25, drop_connect_rate=0.2)
|
289 |
+
>>> m.train()
|
290 |
+
```
|
291 |
+
|
292 |
+
Create in a nn.Sequential container, for fast.ai, etc:
|
293 |
+
```
|
294 |
+
>>> import geffnet
|
295 |
+
>>> m = geffnet.mixnet_l(pretrained=True, drop_rate=0.25, drop_connect_rate=0.2, as_sequential=True)
|
296 |
+
```
|
297 |
+
|
298 |
+
### Exporting
|
299 |
+
|
300 |
+
Scripts are included to
|
301 |
+
* export models to ONNX (`onnx_export.py`)
|
302 |
+
* optimized ONNX graph (`onnx_optimize.py` or `onnx_validate.py` w/ `--onnx-output-opt` arg)
|
303 |
+
* validate with ONNX runtime (`onnx_validate.py`)
|
304 |
+
* convert ONNX model to Caffe2 (`onnx_to_caffe.py`)
|
305 |
+
* validate in Caffe2 (`caffe2_validate.py`)
|
306 |
+
* benchmark in Caffe2 w/ FLOPs, parameters output (`caffe2_benchmark.py`)
|
307 |
+
|
308 |
+
As an example, to export the MobileNet-V3 pretrained model and then run an Imagenet validation:
|
309 |
+
```
|
310 |
+
python onnx_export.py --model mobilenetv3_large_100 ./mobilenetv3_100.onnx
|
311 |
+
python onnx_validate.py /imagenet/validation/ --onnx-input ./mobilenetv3_100.onnx
|
312 |
+
```
|
313 |
+
|
314 |
+
These scripts were tested to be working as of PyTorch 1.6 and ONNX 1.7 w/ ONNX runtime 1.4. Caffe2 compatible
|
315 |
+
export now requires additional args mentioned in the export script (not needed in earlier versions).
|
316 |
+
|
317 |
+
#### Export Notes
|
318 |
+
1. The TF ported weights with the 'SAME' conv padding activated cannot be exported to ONNX unless `_EXPORTABLE` flag in `config.py` is set to True. Use `config.set_exportable(True)` as in the `onnx_export.py` script.
|
319 |
+
2. TF ported models with 'SAME' padding will have the padding fixed at export time to the resolution used for export. Even though dynamic padding is supported in opset >= 11, I can't get it working.
|
320 |
+
3. ONNX optimize facility doesn't work reliably in PyTorch 1.6 / ONNX 1.7. Fortunately, the onnxruntime based inference is working very well now and includes on the fly optimization.
|
321 |
+
3. ONNX / Caffe2 export/import frequently breaks with different PyTorch and ONNX version releases. Please check their respective issue trackers before filing issues here.
|
322 |
+
|
323 |
+
|
ControlNet-v1-1-nightly-main/annotator/normalbae/models/submodules/efficientnet_repo/caffe2_benchmark.py
ADDED
@@ -0,0 +1,65 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
""" Caffe2 validation script
|
2 |
+
|
3 |
+
This script runs Caffe2 benchmark on exported ONNX model.
|
4 |
+
It is a useful tool for reporting model FLOPS.
|
5 |
+
|
6 |
+
Copyright 2020 Ross Wightman
|
7 |
+
"""
|
8 |
+
import argparse
|
9 |
+
from caffe2.python import core, workspace, model_helper
|
10 |
+
from caffe2.proto import caffe2_pb2
|
11 |
+
|
12 |
+
|
13 |
+
parser = argparse.ArgumentParser(description='Caffe2 Model Benchmark')
|
14 |
+
parser.add_argument('--c2-prefix', default='', type=str, metavar='NAME',
|
15 |
+
help='caffe2 model pb name prefix')
|
16 |
+
parser.add_argument('--c2-init', default='', type=str, metavar='PATH',
|
17 |
+
help='caffe2 model init .pb')
|
18 |
+
parser.add_argument('--c2-predict', default='', type=str, metavar='PATH',
|
19 |
+
help='caffe2 model predict .pb')
|
20 |
+
parser.add_argument('-b', '--batch-size', default=1, type=int,
|
21 |
+
metavar='N', help='mini-batch size (default: 1)')
|
22 |
+
parser.add_argument('--img-size', default=224, type=int,
|
23 |
+
metavar='N', help='Input image dimension, uses model default if empty')
|
24 |
+
|
25 |
+
|
26 |
+
def main():
|
27 |
+
args = parser.parse_args()
|
28 |
+
args.gpu_id = 0
|
29 |
+
if args.c2_prefix:
|
30 |
+
args.c2_init = args.c2_prefix + '.init.pb'
|
31 |
+
args.c2_predict = args.c2_prefix + '.predict.pb'
|
32 |
+
|
33 |
+
model = model_helper.ModelHelper(name="le_net", init_params=False)
|
34 |
+
|
35 |
+
# Bring in the init net from init_net.pb
|
36 |
+
init_net_proto = caffe2_pb2.NetDef()
|
37 |
+
with open(args.c2_init, "rb") as f:
|
38 |
+
init_net_proto.ParseFromString(f.read())
|
39 |
+
model.param_init_net = core.Net(init_net_proto)
|
40 |
+
|
41 |
+
# bring in the predict net from predict_net.pb
|
42 |
+
predict_net_proto = caffe2_pb2.NetDef()
|
43 |
+
with open(args.c2_predict, "rb") as f:
|
44 |
+
predict_net_proto.ParseFromString(f.read())
|
45 |
+
model.net = core.Net(predict_net_proto)
|
46 |
+
|
47 |
+
# CUDA performance not impressive
|
48 |
+
#device_opts = core.DeviceOption(caffe2_pb2.PROTO_CUDA, args.gpu_id)
|
49 |
+
#model.net.RunAllOnGPU(gpu_id=args.gpu_id, use_cudnn=True)
|
50 |
+
#model.param_init_net.RunAllOnGPU(gpu_id=args.gpu_id, use_cudnn=True)
|
51 |
+
|
52 |
+
input_blob = model.net.external_inputs[0]
|
53 |
+
model.param_init_net.GaussianFill(
|
54 |
+
[],
|
55 |
+
input_blob.GetUnscopedName(),
|
56 |
+
shape=(args.batch_size, 3, args.img_size, args.img_size),
|
57 |
+
mean=0.0,
|
58 |
+
std=1.0)
|
59 |
+
workspace.RunNetOnce(model.param_init_net)
|
60 |
+
workspace.CreateNet(model.net, overwrite=True)
|
61 |
+
workspace.BenchmarkNet(model.net.Proto().name, 5, 20, True)
|
62 |
+
|
63 |
+
|
64 |
+
if __name__ == '__main__':
|
65 |
+
main()
|
ControlNet-v1-1-nightly-main/annotator/normalbae/models/submodules/efficientnet_repo/caffe2_validate.py
ADDED
@@ -0,0 +1,138 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
""" Caffe2 validation script
|
2 |
+
|
3 |
+
This script is created to verify exported ONNX models running in Caffe2
|
4 |
+
It utilizes the same PyTorch dataloader/processing pipeline for a
|
5 |
+
fair comparison against the originals.
|
6 |
+
|
7 |
+
Copyright 2020 Ross Wightman
|
8 |
+
"""
|
9 |
+
import argparse
|
10 |
+
import numpy as np
|
11 |
+
from caffe2.python import core, workspace, model_helper
|
12 |
+
from caffe2.proto import caffe2_pb2
|
13 |
+
from data import create_loader, resolve_data_config, Dataset
|
14 |
+
from utils import AverageMeter
|
15 |
+
import time
|
16 |
+
|
17 |
+
parser = argparse.ArgumentParser(description='Caffe2 ImageNet Validation')
|
18 |
+
parser.add_argument('data', metavar='DIR',
|
19 |
+
help='path to dataset')
|
20 |
+
parser.add_argument('--c2-prefix', default='', type=str, metavar='NAME',
|
21 |
+
help='caffe2 model pb name prefix')
|
22 |
+
parser.add_argument('--c2-init', default='', type=str, metavar='PATH',
|
23 |
+
help='caffe2 model init .pb')
|
24 |
+
parser.add_argument('--c2-predict', default='', type=str, metavar='PATH',
|
25 |
+
help='caffe2 model predict .pb')
|
26 |
+
parser.add_argument('-j', '--workers', default=2, type=int, metavar='N',
|
27 |
+
help='number of data loading workers (default: 2)')
|
28 |
+
parser.add_argument('-b', '--batch-size', default=256, type=int,
|
29 |
+
metavar='N', help='mini-batch size (default: 256)')
|
30 |
+
parser.add_argument('--img-size', default=None, type=int,
|
31 |
+
metavar='N', help='Input image dimension, uses model default if empty')
|
32 |
+
parser.add_argument('--mean', type=float, nargs='+', default=None, metavar='MEAN',
|
33 |
+
help='Override mean pixel value of dataset')
|
34 |
+
parser.add_argument('--std', type=float, nargs='+', default=None, metavar='STD',
|
35 |
+
help='Override std deviation of of dataset')
|
36 |
+
parser.add_argument('--crop-pct', type=float, default=None, metavar='PCT',
|
37 |
+
help='Override default crop pct of 0.875')
|
38 |
+
parser.add_argument('--interpolation', default='', type=str, metavar='NAME',
|
39 |
+
help='Image resize interpolation type (overrides model)')
|
40 |
+
parser.add_argument('--tf-preprocessing', dest='tf_preprocessing', action='store_true',
|
41 |
+
help='use tensorflow mnasnet preporcessing')
|
42 |
+
parser.add_argument('--print-freq', '-p', default=10, type=int,
|
43 |
+
metavar='N', help='print frequency (default: 10)')
|
44 |
+
|
45 |
+
|
46 |
+
def main():
|
47 |
+
args = parser.parse_args()
|
48 |
+
args.gpu_id = 0
|
49 |
+
if args.c2_prefix:
|
50 |
+
args.c2_init = args.c2_prefix + '.init.pb'
|
51 |
+
args.c2_predict = args.c2_prefix + '.predict.pb'
|
52 |
+
|
53 |
+
model = model_helper.ModelHelper(name="validation_net", init_params=False)
|
54 |
+
|
55 |
+
# Bring in the init net from init_net.pb
|
56 |
+
init_net_proto = caffe2_pb2.NetDef()
|
57 |
+
with open(args.c2_init, "rb") as f:
|
58 |
+
init_net_proto.ParseFromString(f.read())
|
59 |
+
model.param_init_net = core.Net(init_net_proto)
|
60 |
+
|
61 |
+
# bring in the predict net from predict_net.pb
|
62 |
+
predict_net_proto = caffe2_pb2.NetDef()
|
63 |
+
with open(args.c2_predict, "rb") as f:
|
64 |
+
predict_net_proto.ParseFromString(f.read())
|
65 |
+
model.net = core.Net(predict_net_proto)
|
66 |
+
|
67 |
+
data_config = resolve_data_config(None, args)
|
68 |
+
loader = create_loader(
|
69 |
+
Dataset(args.data, load_bytes=args.tf_preprocessing),
|
70 |
+
input_size=data_config['input_size'],
|
71 |
+
batch_size=args.batch_size,
|
72 |
+
use_prefetcher=False,
|
73 |
+
interpolation=data_config['interpolation'],
|
74 |
+
mean=data_config['mean'],
|
75 |
+
std=data_config['std'],
|
76 |
+
num_workers=args.workers,
|
77 |
+
crop_pct=data_config['crop_pct'],
|
78 |
+
tensorflow_preprocessing=args.tf_preprocessing)
|
79 |
+
|
80 |
+
# this is so obvious, wonderful interface </sarcasm>
|
81 |
+
input_blob = model.net.external_inputs[0]
|
82 |
+
output_blob = model.net.external_outputs[0]
|
83 |
+
|
84 |
+
if True:
|
85 |
+
device_opts = None
|
86 |
+
else:
|
87 |
+
# CUDA is crashing, no idea why, awesome error message, give it a try for kicks
|
88 |
+
device_opts = core.DeviceOption(caffe2_pb2.PROTO_CUDA, args.gpu_id)
|
89 |
+
model.net.RunAllOnGPU(gpu_id=args.gpu_id, use_cudnn=True)
|
90 |
+
model.param_init_net.RunAllOnGPU(gpu_id=args.gpu_id, use_cudnn=True)
|
91 |
+
|
92 |
+
model.param_init_net.GaussianFill(
|
93 |
+
[], input_blob.GetUnscopedName(),
|
94 |
+
shape=(1,) + data_config['input_size'], mean=0.0, std=1.0)
|
95 |
+
workspace.RunNetOnce(model.param_init_net)
|
96 |
+
workspace.CreateNet(model.net, overwrite=True)
|
97 |
+
|
98 |
+
batch_time = AverageMeter()
|
99 |
+
top1 = AverageMeter()
|
100 |
+
top5 = AverageMeter()
|
101 |
+
end = time.time()
|
102 |
+
for i, (input, target) in enumerate(loader):
|
103 |
+
# run the net and return prediction
|
104 |
+
caffe2_in = input.data.numpy()
|
105 |
+
workspace.FeedBlob(input_blob, caffe2_in, device_opts)
|
106 |
+
workspace.RunNet(model.net, num_iter=1)
|
107 |
+
output = workspace.FetchBlob(output_blob)
|
108 |
+
|
109 |
+
# measure accuracy and record loss
|
110 |
+
prec1, prec5 = accuracy_np(output.data, target.numpy())
|
111 |
+
top1.update(prec1.item(), input.size(0))
|
112 |
+
top5.update(prec5.item(), input.size(0))
|
113 |
+
|
114 |
+
# measure elapsed time
|
115 |
+
batch_time.update(time.time() - end)
|
116 |
+
end = time.time()
|
117 |
+
|
118 |
+
if i % args.print_freq == 0:
|
119 |
+
print('Test: [{0}/{1}]\t'
|
120 |
+
'Time {batch_time.val:.3f} ({batch_time.avg:.3f}, {rate_avg:.3f}/s, {ms_avg:.3f} ms/sample) \t'
|
121 |
+
'Prec@1 {top1.val:.3f} ({top1.avg:.3f})\t'
|
122 |
+
'Prec@5 {top5.val:.3f} ({top5.avg:.3f})'.format(
|
123 |
+
i, len(loader), batch_time=batch_time, rate_avg=input.size(0) / batch_time.avg,
|
124 |
+
ms_avg=100 * batch_time.avg / input.size(0), top1=top1, top5=top5))
|
125 |
+
|
126 |
+
print(' * Prec@1 {top1.avg:.3f} ({top1a:.3f}) Prec@5 {top5.avg:.3f} ({top5a:.3f})'.format(
|
127 |
+
top1=top1, top1a=100-top1.avg, top5=top5, top5a=100.-top5.avg))
|
128 |
+
|
129 |
+
|
130 |
+
def accuracy_np(output, target):
|
131 |
+
max_indices = np.argsort(output, axis=1)[:, ::-1]
|
132 |
+
top5 = 100 * np.equal(max_indices[:, :5], target[:, np.newaxis]).sum(axis=1).mean()
|
133 |
+
top1 = 100 * np.equal(max_indices[:, 0], target).mean()
|
134 |
+
return top1, top5
|
135 |
+
|
136 |
+
|
137 |
+
if __name__ == '__main__':
|
138 |
+
main()
|
ControlNet-v1-1-nightly-main/annotator/normalbae/models/submodules/efficientnet_repo/data/__init__.py
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
from .dataset import Dataset
|
2 |
+
from .transforms import *
|
3 |
+
from .loader import create_loader
|
ControlNet-v1-1-nightly-main/annotator/normalbae/models/submodules/efficientnet_repo/data/dataset.py
ADDED
@@ -0,0 +1,91 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
""" Quick n simple image folder dataset
|
2 |
+
|
3 |
+
Copyright 2020 Ross Wightman
|
4 |
+
"""
|
5 |
+
import torch.utils.data as data
|
6 |
+
|
7 |
+
import os
|
8 |
+
import re
|
9 |
+
import torch
|
10 |
+
from PIL import Image
|
11 |
+
|
12 |
+
|
13 |
+
IMG_EXTENSIONS = ['.png', '.jpg', '.jpeg']
|
14 |
+
|
15 |
+
|
16 |
+
def natural_key(string_):
|
17 |
+
"""See http://www.codinghorror.com/blog/archives/001018.html"""
|
18 |
+
return [int(s) if s.isdigit() else s for s in re.split(r'(\d+)', string_.lower())]
|
19 |
+
|
20 |
+
|
21 |
+
def find_images_and_targets(folder, types=IMG_EXTENSIONS, class_to_idx=None, leaf_name_only=True, sort=True):
|
22 |
+
if class_to_idx is None:
|
23 |
+
class_to_idx = dict()
|
24 |
+
build_class_idx = True
|
25 |
+
else:
|
26 |
+
build_class_idx = False
|
27 |
+
labels = []
|
28 |
+
filenames = []
|
29 |
+
for root, subdirs, files in os.walk(folder, topdown=False):
|
30 |
+
rel_path = os.path.relpath(root, folder) if (root != folder) else ''
|
31 |
+
label = os.path.basename(rel_path) if leaf_name_only else rel_path.replace(os.path.sep, '_')
|
32 |
+
if build_class_idx and not subdirs:
|
33 |
+
class_to_idx[label] = None
|
34 |
+
for f in files:
|
35 |
+
base, ext = os.path.splitext(f)
|
36 |
+
if ext.lower() in types:
|
37 |
+
filenames.append(os.path.join(root, f))
|
38 |
+
labels.append(label)
|
39 |
+
if build_class_idx:
|
40 |
+
classes = sorted(class_to_idx.keys(), key=natural_key)
|
41 |
+
for idx, c in enumerate(classes):
|
42 |
+
class_to_idx[c] = idx
|
43 |
+
images_and_targets = zip(filenames, [class_to_idx[l] for l in labels])
|
44 |
+
if sort:
|
45 |
+
images_and_targets = sorted(images_and_targets, key=lambda k: natural_key(k[0]))
|
46 |
+
if build_class_idx:
|
47 |
+
return images_and_targets, classes, class_to_idx
|
48 |
+
else:
|
49 |
+
return images_and_targets
|
50 |
+
|
51 |
+
|
52 |
+
class Dataset(data.Dataset):
|
53 |
+
|
54 |
+
def __init__(
|
55 |
+
self,
|
56 |
+
root,
|
57 |
+
transform=None,
|
58 |
+
load_bytes=False):
|
59 |
+
|
60 |
+
imgs, _, _ = find_images_and_targets(root)
|
61 |
+
if len(imgs) == 0:
|
62 |
+
raise(RuntimeError("Found 0 images in subfolders of: " + root + "\n"
|
63 |
+
"Supported image extensions are: " + ",".join(IMG_EXTENSIONS)))
|
64 |
+
self.root = root
|
65 |
+
self.imgs = imgs
|
66 |
+
self.transform = transform
|
67 |
+
self.load_bytes = load_bytes
|
68 |
+
|
69 |
+
def __getitem__(self, index):
|
70 |
+
path, target = self.imgs[index]
|
71 |
+
img = open(path, 'rb').read() if self.load_bytes else Image.open(path).convert('RGB')
|
72 |
+
if self.transform is not None:
|
73 |
+
img = self.transform(img)
|
74 |
+
if target is None:
|
75 |
+
target = torch.zeros(1).long()
|
76 |
+
return img, target
|
77 |
+
|
78 |
+
def __len__(self):
|
79 |
+
return len(self.imgs)
|
80 |
+
|
81 |
+
def filenames(self, indices=[], basename=False):
|
82 |
+
if indices:
|
83 |
+
if basename:
|
84 |
+
return [os.path.basename(self.imgs[i][0]) for i in indices]
|
85 |
+
else:
|
86 |
+
return [self.imgs[i][0] for i in indices]
|
87 |
+
else:
|
88 |
+
if basename:
|
89 |
+
return [os.path.basename(x[0]) for x in self.imgs]
|
90 |
+
else:
|
91 |
+
return [x[0] for x in self.imgs]
|
ControlNet-v1-1-nightly-main/annotator/normalbae/models/submodules/efficientnet_repo/data/loader.py
ADDED
@@ -0,0 +1,108 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
""" Fast Collate, CUDA Prefetcher
|
2 |
+
|
3 |
+
Prefetcher and Fast Collate inspired by NVIDIA APEX example at
|
4 |
+
https://github.com/NVIDIA/apex/commit/d5e2bb4bdeedd27b1dfaf5bb2b24d6c000dee9be#diff-cf86c282ff7fba81fad27a559379d5bf
|
5 |
+
|
6 |
+
Hacked together by / Copyright 2020 Ross Wightman
|
7 |
+
"""
|
8 |
+
import torch
|
9 |
+
import torch.utils.data
|
10 |
+
from .transforms import *
|
11 |
+
|
12 |
+
|
13 |
+
def fast_collate(batch):
|
14 |
+
targets = torch.tensor([b[1] for b in batch], dtype=torch.int64)
|
15 |
+
batch_size = len(targets)
|
16 |
+
tensor = torch.zeros((batch_size, *batch[0][0].shape), dtype=torch.uint8)
|
17 |
+
for i in range(batch_size):
|
18 |
+
tensor[i] += torch.from_numpy(batch[i][0])
|
19 |
+
|
20 |
+
return tensor, targets
|
21 |
+
|
22 |
+
|
23 |
+
class PrefetchLoader:
|
24 |
+
|
25 |
+
def __init__(self,
|
26 |
+
loader,
|
27 |
+
mean=IMAGENET_DEFAULT_MEAN,
|
28 |
+
std=IMAGENET_DEFAULT_STD):
|
29 |
+
self.loader = loader
|
30 |
+
self.mean = torch.tensor([x * 255 for x in mean]).cuda().view(1, 3, 1, 1)
|
31 |
+
self.std = torch.tensor([x * 255 for x in std]).cuda().view(1, 3, 1, 1)
|
32 |
+
|
33 |
+
def __iter__(self):
|
34 |
+
stream = torch.cuda.Stream()
|
35 |
+
first = True
|
36 |
+
|
37 |
+
for next_input, next_target in self.loader:
|
38 |
+
with torch.cuda.stream(stream):
|
39 |
+
next_input = next_input.cuda(non_blocking=True)
|
40 |
+
next_target = next_target.cuda(non_blocking=True)
|
41 |
+
next_input = next_input.float().sub_(self.mean).div_(self.std)
|
42 |
+
|
43 |
+
if not first:
|
44 |
+
yield input, target
|
45 |
+
else:
|
46 |
+
first = False
|
47 |
+
|
48 |
+
torch.cuda.current_stream().wait_stream(stream)
|
49 |
+
input = next_input
|
50 |
+
target = next_target
|
51 |
+
|
52 |
+
yield input, target
|
53 |
+
|
54 |
+
def __len__(self):
|
55 |
+
return len(self.loader)
|
56 |
+
|
57 |
+
@property
|
58 |
+
def sampler(self):
|
59 |
+
return self.loader.sampler
|
60 |
+
|
61 |
+
|
62 |
+
def create_loader(
|
63 |
+
dataset,
|
64 |
+
input_size,
|
65 |
+
batch_size,
|
66 |
+
is_training=False,
|
67 |
+
use_prefetcher=True,
|
68 |
+
interpolation='bilinear',
|
69 |
+
mean=IMAGENET_DEFAULT_MEAN,
|
70 |
+
std=IMAGENET_DEFAULT_STD,
|
71 |
+
num_workers=1,
|
72 |
+
crop_pct=None,
|
73 |
+
tensorflow_preprocessing=False
|
74 |
+
):
|
75 |
+
if isinstance(input_size, tuple):
|
76 |
+
img_size = input_size[-2:]
|
77 |
+
else:
|
78 |
+
img_size = input_size
|
79 |
+
|
80 |
+
if tensorflow_preprocessing and use_prefetcher:
|
81 |
+
from data.tf_preprocessing import TfPreprocessTransform
|
82 |
+
transform = TfPreprocessTransform(
|
83 |
+
is_training=is_training, size=img_size, interpolation=interpolation)
|
84 |
+
else:
|
85 |
+
transform = transforms_imagenet_eval(
|
86 |
+
img_size,
|
87 |
+
interpolation=interpolation,
|
88 |
+
use_prefetcher=use_prefetcher,
|
89 |
+
mean=mean,
|
90 |
+
std=std,
|
91 |
+
crop_pct=crop_pct)
|
92 |
+
|
93 |
+
dataset.transform = transform
|
94 |
+
|
95 |
+
loader = torch.utils.data.DataLoader(
|
96 |
+
dataset,
|
97 |
+
batch_size=batch_size,
|
98 |
+
shuffle=False,
|
99 |
+
num_workers=num_workers,
|
100 |
+
collate_fn=fast_collate if use_prefetcher else torch.utils.data.dataloader.default_collate,
|
101 |
+
)
|
102 |
+
if use_prefetcher:
|
103 |
+
loader = PrefetchLoader(
|
104 |
+
loader,
|
105 |
+
mean=mean,
|
106 |
+
std=std)
|
107 |
+
|
108 |
+
return loader
|
ControlNet-v1-1-nightly-main/annotator/normalbae/models/submodules/efficientnet_repo/data/tf_preprocessing.py
ADDED
@@ -0,0 +1,234 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
""" Tensorflow Preprocessing Adapter
|
2 |
+
|
3 |
+
Allows use of Tensorflow preprocessing pipeline in PyTorch Transform
|
4 |
+
|
5 |
+
Copyright of original Tensorflow code below.
|
6 |
+
|
7 |
+
Hacked together by / Copyright 2020 Ross Wightman
|
8 |
+
"""
|
9 |
+
# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
|
10 |
+
#
|
11 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
12 |
+
# you may not use this file except in compliance with the License.
|
13 |
+
# You may obtain a copy of the License at
|
14 |
+
#
|
15 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
16 |
+
#
|
17 |
+
# Unless required by applicable law or agreed to in writing, software
|
18 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
19 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
20 |
+
# See the License for the specific language governing permissions and
|
21 |
+
# limitations under the License.
|
22 |
+
# ==============================================================================
|
23 |
+
from __future__ import absolute_import
|
24 |
+
from __future__ import division
|
25 |
+
from __future__ import print_function
|
26 |
+
|
27 |
+
import tensorflow as tf
|
28 |
+
import numpy as np
|
29 |
+
|
30 |
+
IMAGE_SIZE = 224
|
31 |
+
CROP_PADDING = 32
|
32 |
+
|
33 |
+
|
34 |
+
def distorted_bounding_box_crop(image_bytes,
|
35 |
+
bbox,
|
36 |
+
min_object_covered=0.1,
|
37 |
+
aspect_ratio_range=(0.75, 1.33),
|
38 |
+
area_range=(0.05, 1.0),
|
39 |
+
max_attempts=100,
|
40 |
+
scope=None):
|
41 |
+
"""Generates cropped_image using one of the bboxes randomly distorted.
|
42 |
+
|
43 |
+
See `tf.image.sample_distorted_bounding_box` for more documentation.
|
44 |
+
|
45 |
+
Args:
|
46 |
+
image_bytes: `Tensor` of binary image data.
|
47 |
+
bbox: `Tensor` of bounding boxes arranged `[1, num_boxes, coords]`
|
48 |
+
where each coordinate is [0, 1) and the coordinates are arranged
|
49 |
+
as `[ymin, xmin, ymax, xmax]`. If num_boxes is 0 then use the whole
|
50 |
+
image.
|
51 |
+
min_object_covered: An optional `float`. Defaults to `0.1`. The cropped
|
52 |
+
area of the image must contain at least this fraction of any bounding
|
53 |
+
box supplied.
|
54 |
+
aspect_ratio_range: An optional list of `float`s. The cropped area of the
|
55 |
+
image must have an aspect ratio = width / height within this range.
|
56 |
+
area_range: An optional list of `float`s. The cropped area of the image
|
57 |
+
must contain a fraction of the supplied image within in this range.
|
58 |
+
max_attempts: An optional `int`. Number of attempts at generating a cropped
|
59 |
+
region of the image of the specified constraints. After `max_attempts`
|
60 |
+
failures, return the entire image.
|
61 |
+
scope: Optional `str` for name scope.
|
62 |
+
Returns:
|
63 |
+
cropped image `Tensor`
|
64 |
+
"""
|
65 |
+
with tf.name_scope(scope, 'distorted_bounding_box_crop', [image_bytes, bbox]):
|
66 |
+
shape = tf.image.extract_jpeg_shape(image_bytes)
|
67 |
+
sample_distorted_bounding_box = tf.image.sample_distorted_bounding_box(
|
68 |
+
shape,
|
69 |
+
bounding_boxes=bbox,
|
70 |
+
min_object_covered=min_object_covered,
|
71 |
+
aspect_ratio_range=aspect_ratio_range,
|
72 |
+
area_range=area_range,
|
73 |
+
max_attempts=max_attempts,
|
74 |
+
use_image_if_no_bounding_boxes=True)
|
75 |
+
bbox_begin, bbox_size, _ = sample_distorted_bounding_box
|
76 |
+
|
77 |
+
# Crop the image to the specified bounding box.
|
78 |
+
offset_y, offset_x, _ = tf.unstack(bbox_begin)
|
79 |
+
target_height, target_width, _ = tf.unstack(bbox_size)
|
80 |
+
crop_window = tf.stack([offset_y, offset_x, target_height, target_width])
|
81 |
+
image = tf.image.decode_and_crop_jpeg(image_bytes, crop_window, channels=3)
|
82 |
+
|
83 |
+
return image
|
84 |
+
|
85 |
+
|
86 |
+
def _at_least_x_are_equal(a, b, x):
|
87 |
+
"""At least `x` of `a` and `b` `Tensors` are equal."""
|
88 |
+
match = tf.equal(a, b)
|
89 |
+
match = tf.cast(match, tf.int32)
|
90 |
+
return tf.greater_equal(tf.reduce_sum(match), x)
|
91 |
+
|
92 |
+
|
93 |
+
def _decode_and_random_crop(image_bytes, image_size, resize_method):
|
94 |
+
"""Make a random crop of image_size."""
|
95 |
+
bbox = tf.constant([0.0, 0.0, 1.0, 1.0], dtype=tf.float32, shape=[1, 1, 4])
|
96 |
+
image = distorted_bounding_box_crop(
|
97 |
+
image_bytes,
|
98 |
+
bbox,
|
99 |
+
min_object_covered=0.1,
|
100 |
+
aspect_ratio_range=(3. / 4, 4. / 3.),
|
101 |
+
area_range=(0.08, 1.0),
|
102 |
+
max_attempts=10,
|
103 |
+
scope=None)
|
104 |
+
original_shape = tf.image.extract_jpeg_shape(image_bytes)
|
105 |
+
bad = _at_least_x_are_equal(original_shape, tf.shape(image), 3)
|
106 |
+
|
107 |
+
image = tf.cond(
|
108 |
+
bad,
|
109 |
+
lambda: _decode_and_center_crop(image_bytes, image_size),
|
110 |
+
lambda: tf.image.resize([image], [image_size, image_size], resize_method)[0])
|
111 |
+
|
112 |
+
return image
|
113 |
+
|
114 |
+
|
115 |
+
def _decode_and_center_crop(image_bytes, image_size, resize_method):
|
116 |
+
"""Crops to center of image with padding then scales image_size."""
|
117 |
+
shape = tf.image.extract_jpeg_shape(image_bytes)
|
118 |
+
image_height = shape[0]
|
119 |
+
image_width = shape[1]
|
120 |
+
|
121 |
+
padded_center_crop_size = tf.cast(
|
122 |
+
((image_size / (image_size + CROP_PADDING)) *
|
123 |
+
tf.cast(tf.minimum(image_height, image_width), tf.float32)),
|
124 |
+
tf.int32)
|
125 |
+
|
126 |
+
offset_height = ((image_height - padded_center_crop_size) + 1) // 2
|
127 |
+
offset_width = ((image_width - padded_center_crop_size) + 1) // 2
|
128 |
+
crop_window = tf.stack([offset_height, offset_width,
|
129 |
+
padded_center_crop_size, padded_center_crop_size])
|
130 |
+
image = tf.image.decode_and_crop_jpeg(image_bytes, crop_window, channels=3)
|
131 |
+
image = tf.image.resize([image], [image_size, image_size], resize_method)[0]
|
132 |
+
|
133 |
+
return image
|
134 |
+
|
135 |
+
|
136 |
+
def _flip(image):
|
137 |
+
"""Random horizontal image flip."""
|
138 |
+
image = tf.image.random_flip_left_right(image)
|
139 |
+
return image
|
140 |
+
|
141 |
+
|
142 |
+
def preprocess_for_train(image_bytes, use_bfloat16, image_size=IMAGE_SIZE, interpolation='bicubic'):
|
143 |
+
"""Preprocesses the given image for evaluation.
|
144 |
+
|
145 |
+
Args:
|
146 |
+
image_bytes: `Tensor` representing an image binary of arbitrary size.
|
147 |
+
use_bfloat16: `bool` for whether to use bfloat16.
|
148 |
+
image_size: image size.
|
149 |
+
interpolation: image interpolation method
|
150 |
+
|
151 |
+
Returns:
|
152 |
+
A preprocessed image `Tensor`.
|
153 |
+
"""
|
154 |
+
resize_method = tf.image.ResizeMethod.BICUBIC if interpolation == 'bicubic' else tf.image.ResizeMethod.BILINEAR
|
155 |
+
image = _decode_and_random_crop(image_bytes, image_size, resize_method)
|
156 |
+
image = _flip(image)
|
157 |
+
image = tf.reshape(image, [image_size, image_size, 3])
|
158 |
+
image = tf.image.convert_image_dtype(
|
159 |
+
image, dtype=tf.bfloat16 if use_bfloat16 else tf.float32)
|
160 |
+
return image
|
161 |
+
|
162 |
+
|
163 |
+
def preprocess_for_eval(image_bytes, use_bfloat16, image_size=IMAGE_SIZE, interpolation='bicubic'):
|
164 |
+
"""Preprocesses the given image for evaluation.
|
165 |
+
|
166 |
+
Args:
|
167 |
+
image_bytes: `Tensor` representing an image binary of arbitrary size.
|
168 |
+
use_bfloat16: `bool` for whether to use bfloat16.
|
169 |
+
image_size: image size.
|
170 |
+
interpolation: image interpolation method
|
171 |
+
|
172 |
+
Returns:
|
173 |
+
A preprocessed image `Tensor`.
|
174 |
+
"""
|
175 |
+
resize_method = tf.image.ResizeMethod.BICUBIC if interpolation == 'bicubic' else tf.image.ResizeMethod.BILINEAR
|
176 |
+
image = _decode_and_center_crop(image_bytes, image_size, resize_method)
|
177 |
+
image = tf.reshape(image, [image_size, image_size, 3])
|
178 |
+
image = tf.image.convert_image_dtype(
|
179 |
+
image, dtype=tf.bfloat16 if use_bfloat16 else tf.float32)
|
180 |
+
return image
|
181 |
+
|
182 |
+
|
183 |
+
def preprocess_image(image_bytes,
|
184 |
+
is_training=False,
|
185 |
+
use_bfloat16=False,
|
186 |
+
image_size=IMAGE_SIZE,
|
187 |
+
interpolation='bicubic'):
|
188 |
+
"""Preprocesses the given image.
|
189 |
+
|
190 |
+
Args:
|
191 |
+
image_bytes: `Tensor` representing an image binary of arbitrary size.
|
192 |
+
is_training: `bool` for whether the preprocessing is for training.
|
193 |
+
use_bfloat16: `bool` for whether to use bfloat16.
|
194 |
+
image_size: image size.
|
195 |
+
interpolation: image interpolation method
|
196 |
+
|
197 |
+
Returns:
|
198 |
+
A preprocessed image `Tensor` with value range of [0, 255].
|
199 |
+
"""
|
200 |
+
if is_training:
|
201 |
+
return preprocess_for_train(image_bytes, use_bfloat16, image_size, interpolation)
|
202 |
+
else:
|
203 |
+
return preprocess_for_eval(image_bytes, use_bfloat16, image_size, interpolation)
|
204 |
+
|
205 |
+
|
206 |
+
class TfPreprocessTransform:
|
207 |
+
|
208 |
+
def __init__(self, is_training=False, size=224, interpolation='bicubic'):
|
209 |
+
self.is_training = is_training
|
210 |
+
self.size = size[0] if isinstance(size, tuple) else size
|
211 |
+
self.interpolation = interpolation
|
212 |
+
self._image_bytes = None
|
213 |
+
self.process_image = self._build_tf_graph()
|
214 |
+
self.sess = None
|
215 |
+
|
216 |
+
def _build_tf_graph(self):
|
217 |
+
with tf.device('/cpu:0'):
|
218 |
+
self._image_bytes = tf.placeholder(
|
219 |
+
shape=[],
|
220 |
+
dtype=tf.string,
|
221 |
+
)
|
222 |
+
img = preprocess_image(
|
223 |
+
self._image_bytes, self.is_training, False, self.size, self.interpolation)
|
224 |
+
return img
|
225 |
+
|
226 |
+
def __call__(self, image_bytes):
|
227 |
+
if self.sess is None:
|
228 |
+
self.sess = tf.Session()
|
229 |
+
img = self.sess.run(self.process_image, feed_dict={self._image_bytes: image_bytes})
|
230 |
+
img = img.round().clip(0, 255).astype(np.uint8)
|
231 |
+
if img.ndim < 3:
|
232 |
+
img = np.expand_dims(img, axis=-1)
|
233 |
+
img = np.rollaxis(img, 2) # HWC to CHW
|
234 |
+
return img
|
ControlNet-v1-1-nightly-main/annotator/normalbae/models/submodules/efficientnet_repo/data/transforms.py
ADDED
@@ -0,0 +1,150 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from torchvision import transforms
|
3 |
+
from PIL import Image
|
4 |
+
import math
|
5 |
+
import numpy as np
|
6 |
+
|
7 |
+
DEFAULT_CROP_PCT = 0.875
|
8 |
+
|
9 |
+
IMAGENET_DEFAULT_MEAN = (0.485, 0.456, 0.406)
|
10 |
+
IMAGENET_DEFAULT_STD = (0.229, 0.224, 0.225)
|
11 |
+
IMAGENET_INCEPTION_MEAN = (0.5, 0.5, 0.5)
|
12 |
+
IMAGENET_INCEPTION_STD = (0.5, 0.5, 0.5)
|
13 |
+
IMAGENET_DPN_MEAN = (124 / 255, 117 / 255, 104 / 255)
|
14 |
+
IMAGENET_DPN_STD = tuple([1 / (.0167 * 255)] * 3)
|
15 |
+
|
16 |
+
|
17 |
+
def resolve_data_config(model, args, default_cfg={}, verbose=True):
|
18 |
+
new_config = {}
|
19 |
+
default_cfg = default_cfg
|
20 |
+
if not default_cfg and model is not None and hasattr(model, 'default_cfg'):
|
21 |
+
default_cfg = model.default_cfg
|
22 |
+
|
23 |
+
# Resolve input/image size
|
24 |
+
# FIXME grayscale/chans arg to use different # channels?
|
25 |
+
in_chans = 3
|
26 |
+
input_size = (in_chans, 224, 224)
|
27 |
+
if args.img_size is not None:
|
28 |
+
# FIXME support passing img_size as tuple, non-square
|
29 |
+
assert isinstance(args.img_size, int)
|
30 |
+
input_size = (in_chans, args.img_size, args.img_size)
|
31 |
+
elif 'input_size' in default_cfg:
|
32 |
+
input_size = default_cfg['input_size']
|
33 |
+
new_config['input_size'] = input_size
|
34 |
+
|
35 |
+
# resolve interpolation method
|
36 |
+
new_config['interpolation'] = 'bicubic'
|
37 |
+
if args.interpolation:
|
38 |
+
new_config['interpolation'] = args.interpolation
|
39 |
+
elif 'interpolation' in default_cfg:
|
40 |
+
new_config['interpolation'] = default_cfg['interpolation']
|
41 |
+
|
42 |
+
# resolve dataset + model mean for normalization
|
43 |
+
new_config['mean'] = IMAGENET_DEFAULT_MEAN
|
44 |
+
if args.mean is not None:
|
45 |
+
mean = tuple(args.mean)
|
46 |
+
if len(mean) == 1:
|
47 |
+
mean = tuple(list(mean) * in_chans)
|
48 |
+
else:
|
49 |
+
assert len(mean) == in_chans
|
50 |
+
new_config['mean'] = mean
|
51 |
+
elif 'mean' in default_cfg:
|
52 |
+
new_config['mean'] = default_cfg['mean']
|
53 |
+
|
54 |
+
# resolve dataset + model std deviation for normalization
|
55 |
+
new_config['std'] = IMAGENET_DEFAULT_STD
|
56 |
+
if args.std is not None:
|
57 |
+
std = tuple(args.std)
|
58 |
+
if len(std) == 1:
|
59 |
+
std = tuple(list(std) * in_chans)
|
60 |
+
else:
|
61 |
+
assert len(std) == in_chans
|
62 |
+
new_config['std'] = std
|
63 |
+
elif 'std' in default_cfg:
|
64 |
+
new_config['std'] = default_cfg['std']
|
65 |
+
|
66 |
+
# resolve default crop percentage
|
67 |
+
new_config['crop_pct'] = DEFAULT_CROP_PCT
|
68 |
+
if args.crop_pct is not None:
|
69 |
+
new_config['crop_pct'] = args.crop_pct
|
70 |
+
elif 'crop_pct' in default_cfg:
|
71 |
+
new_config['crop_pct'] = default_cfg['crop_pct']
|
72 |
+
|
73 |
+
if verbose:
|
74 |
+
print('Data processing configuration for current model + dataset:')
|
75 |
+
for n, v in new_config.items():
|
76 |
+
print('\t%s: %s' % (n, str(v)))
|
77 |
+
|
78 |
+
return new_config
|
79 |
+
|
80 |
+
|
81 |
+
class ToNumpy:
|
82 |
+
|
83 |
+
def __call__(self, pil_img):
|
84 |
+
np_img = np.array(pil_img, dtype=np.uint8)
|
85 |
+
if np_img.ndim < 3:
|
86 |
+
np_img = np.expand_dims(np_img, axis=-1)
|
87 |
+
np_img = np.rollaxis(np_img, 2) # HWC to CHW
|
88 |
+
return np_img
|
89 |
+
|
90 |
+
|
91 |
+
class ToTensor:
|
92 |
+
|
93 |
+
def __init__(self, dtype=torch.float32):
|
94 |
+
self.dtype = dtype
|
95 |
+
|
96 |
+
def __call__(self, pil_img):
|
97 |
+
np_img = np.array(pil_img, dtype=np.uint8)
|
98 |
+
if np_img.ndim < 3:
|
99 |
+
np_img = np.expand_dims(np_img, axis=-1)
|
100 |
+
np_img = np.rollaxis(np_img, 2) # HWC to CHW
|
101 |
+
return torch.from_numpy(np_img).to(dtype=self.dtype)
|
102 |
+
|
103 |
+
|
104 |
+
def _pil_interp(method):
|
105 |
+
if method == 'bicubic':
|
106 |
+
return Image.BICUBIC
|
107 |
+
elif method == 'lanczos':
|
108 |
+
return Image.LANCZOS
|
109 |
+
elif method == 'hamming':
|
110 |
+
return Image.HAMMING
|
111 |
+
else:
|
112 |
+
# default bilinear, do we want to allow nearest?
|
113 |
+
return Image.BILINEAR
|
114 |
+
|
115 |
+
|
116 |
+
def transforms_imagenet_eval(
|
117 |
+
img_size=224,
|
118 |
+
crop_pct=None,
|
119 |
+
interpolation='bilinear',
|
120 |
+
use_prefetcher=False,
|
121 |
+
mean=IMAGENET_DEFAULT_MEAN,
|
122 |
+
std=IMAGENET_DEFAULT_STD):
|
123 |
+
crop_pct = crop_pct or DEFAULT_CROP_PCT
|
124 |
+
|
125 |
+
if isinstance(img_size, tuple):
|
126 |
+
assert len(img_size) == 2
|
127 |
+
if img_size[-1] == img_size[-2]:
|
128 |
+
# fall-back to older behaviour so Resize scales to shortest edge if target is square
|
129 |
+
scale_size = int(math.floor(img_size[0] / crop_pct))
|
130 |
+
else:
|
131 |
+
scale_size = tuple([int(x / crop_pct) for x in img_size])
|
132 |
+
else:
|
133 |
+
scale_size = int(math.floor(img_size / crop_pct))
|
134 |
+
|
135 |
+
tfl = [
|
136 |
+
transforms.Resize(scale_size, _pil_interp(interpolation)),
|
137 |
+
transforms.CenterCrop(img_size),
|
138 |
+
]
|
139 |
+
if use_prefetcher:
|
140 |
+
# prefetcher and collate will handle tensor conversion and norm
|
141 |
+
tfl += [ToNumpy()]
|
142 |
+
else:
|
143 |
+
tfl += [
|
144 |
+
transforms.ToTensor(),
|
145 |
+
transforms.Normalize(
|
146 |
+
mean=torch.tensor(mean),
|
147 |
+
std=torch.tensor(std))
|
148 |
+
]
|
149 |
+
|
150 |
+
return transforms.Compose(tfl)
|
ControlNet-v1-1-nightly-main/annotator/normalbae/models/submodules/efficientnet_repo/geffnet/__init__.py
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from .gen_efficientnet import *
|
2 |
+
from .mobilenetv3 import *
|
3 |
+
from .model_factory import create_model
|
4 |
+
from .config import is_exportable, is_scriptable, set_exportable, set_scriptable
|
5 |
+
from .activations import *
|
ControlNet-v1-1-nightly-main/annotator/normalbae/models/submodules/efficientnet_repo/geffnet/activations/__init__.py
ADDED
@@ -0,0 +1,137 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from geffnet import config
|
2 |
+
from geffnet.activations.activations_me import *
|
3 |
+
from geffnet.activations.activations_jit import *
|
4 |
+
from geffnet.activations.activations import *
|
5 |
+
import torch
|
6 |
+
|
7 |
+
_has_silu = 'silu' in dir(torch.nn.functional)
|
8 |
+
|
9 |
+
_ACT_FN_DEFAULT = dict(
|
10 |
+
silu=F.silu if _has_silu else swish,
|
11 |
+
swish=F.silu if _has_silu else swish,
|
12 |
+
mish=mish,
|
13 |
+
relu=F.relu,
|
14 |
+
relu6=F.relu6,
|
15 |
+
sigmoid=sigmoid,
|
16 |
+
tanh=tanh,
|
17 |
+
hard_sigmoid=hard_sigmoid,
|
18 |
+
hard_swish=hard_swish,
|
19 |
+
)
|
20 |
+
|
21 |
+
_ACT_FN_JIT = dict(
|
22 |
+
silu=F.silu if _has_silu else swish_jit,
|
23 |
+
swish=F.silu if _has_silu else swish_jit,
|
24 |
+
mish=mish_jit,
|
25 |
+
)
|
26 |
+
|
27 |
+
_ACT_FN_ME = dict(
|
28 |
+
silu=F.silu if _has_silu else swish_me,
|
29 |
+
swish=F.silu if _has_silu else swish_me,
|
30 |
+
mish=mish_me,
|
31 |
+
hard_swish=hard_swish_me,
|
32 |
+
hard_sigmoid_jit=hard_sigmoid_me,
|
33 |
+
)
|
34 |
+
|
35 |
+
_ACT_LAYER_DEFAULT = dict(
|
36 |
+
silu=nn.SiLU if _has_silu else Swish,
|
37 |
+
swish=nn.SiLU if _has_silu else Swish,
|
38 |
+
mish=Mish,
|
39 |
+
relu=nn.ReLU,
|
40 |
+
relu6=nn.ReLU6,
|
41 |
+
sigmoid=Sigmoid,
|
42 |
+
tanh=Tanh,
|
43 |
+
hard_sigmoid=HardSigmoid,
|
44 |
+
hard_swish=HardSwish,
|
45 |
+
)
|
46 |
+
|
47 |
+
_ACT_LAYER_JIT = dict(
|
48 |
+
silu=nn.SiLU if _has_silu else SwishJit,
|
49 |
+
swish=nn.SiLU if _has_silu else SwishJit,
|
50 |
+
mish=MishJit,
|
51 |
+
)
|
52 |
+
|
53 |
+
_ACT_LAYER_ME = dict(
|
54 |
+
silu=nn.SiLU if _has_silu else SwishMe,
|
55 |
+
swish=nn.SiLU if _has_silu else SwishMe,
|
56 |
+
mish=MishMe,
|
57 |
+
hard_swish=HardSwishMe,
|
58 |
+
hard_sigmoid=HardSigmoidMe
|
59 |
+
)
|
60 |
+
|
61 |
+
_OVERRIDE_FN = dict()
|
62 |
+
_OVERRIDE_LAYER = dict()
|
63 |
+
|
64 |
+
|
65 |
+
def add_override_act_fn(name, fn):
|
66 |
+
global _OVERRIDE_FN
|
67 |
+
_OVERRIDE_FN[name] = fn
|
68 |
+
|
69 |
+
|
70 |
+
def update_override_act_fn(overrides):
|
71 |
+
assert isinstance(overrides, dict)
|
72 |
+
global _OVERRIDE_FN
|
73 |
+
_OVERRIDE_FN.update(overrides)
|
74 |
+
|
75 |
+
|
76 |
+
def clear_override_act_fn():
|
77 |
+
global _OVERRIDE_FN
|
78 |
+
_OVERRIDE_FN = dict()
|
79 |
+
|
80 |
+
|
81 |
+
def add_override_act_layer(name, fn):
|
82 |
+
_OVERRIDE_LAYER[name] = fn
|
83 |
+
|
84 |
+
|
85 |
+
def update_override_act_layer(overrides):
|
86 |
+
assert isinstance(overrides, dict)
|
87 |
+
global _OVERRIDE_LAYER
|
88 |
+
_OVERRIDE_LAYER.update(overrides)
|
89 |
+
|
90 |
+
|
91 |
+
def clear_override_act_layer():
|
92 |
+
global _OVERRIDE_LAYER
|
93 |
+
_OVERRIDE_LAYER = dict()
|
94 |
+
|
95 |
+
|
96 |
+
def get_act_fn(name='relu'):
|
97 |
+
""" Activation Function Factory
|
98 |
+
Fetching activation fns by name with this function allows export or torch script friendly
|
99 |
+
functions to be returned dynamically based on current config.
|
100 |
+
"""
|
101 |
+
if name in _OVERRIDE_FN:
|
102 |
+
return _OVERRIDE_FN[name]
|
103 |
+
use_me = not (config.is_exportable() or config.is_scriptable() or config.is_no_jit())
|
104 |
+
if use_me and name in _ACT_FN_ME:
|
105 |
+
# If not exporting or scripting the model, first look for a memory optimized version
|
106 |
+
# activation with custom autograd, then fallback to jit scripted, then a Python or Torch builtin
|
107 |
+
return _ACT_FN_ME[name]
|
108 |
+
if config.is_exportable() and name in ('silu', 'swish'):
|
109 |
+
# FIXME PyTorch SiLU doesn't ONNX export, this is a temp hack
|
110 |
+
return swish
|
111 |
+
use_jit = not (config.is_exportable() or config.is_no_jit())
|
112 |
+
# NOTE: export tracing should work with jit scripted components, but I keep running into issues
|
113 |
+
if use_jit and name in _ACT_FN_JIT: # jit scripted models should be okay for export/scripting
|
114 |
+
return _ACT_FN_JIT[name]
|
115 |
+
return _ACT_FN_DEFAULT[name]
|
116 |
+
|
117 |
+
|
118 |
+
def get_act_layer(name='relu'):
|
119 |
+
""" Activation Layer Factory
|
120 |
+
Fetching activation layers by name with this function allows export or torch script friendly
|
121 |
+
functions to be returned dynamically based on current config.
|
122 |
+
"""
|
123 |
+
if name in _OVERRIDE_LAYER:
|
124 |
+
return _OVERRIDE_LAYER[name]
|
125 |
+
use_me = not (config.is_exportable() or config.is_scriptable() or config.is_no_jit())
|
126 |
+
if use_me and name in _ACT_LAYER_ME:
|
127 |
+
return _ACT_LAYER_ME[name]
|
128 |
+
if config.is_exportable() and name in ('silu', 'swish'):
|
129 |
+
# FIXME PyTorch SiLU doesn't ONNX export, this is a temp hack
|
130 |
+
return Swish
|
131 |
+
use_jit = not (config.is_exportable() or config.is_no_jit())
|
132 |
+
# NOTE: export tracing should work with jit scripted components, but I keep running into issues
|
133 |
+
if use_jit and name in _ACT_FN_JIT: # jit scripted models should be okay for export/scripting
|
134 |
+
return _ACT_LAYER_JIT[name]
|
135 |
+
return _ACT_LAYER_DEFAULT[name]
|
136 |
+
|
137 |
+
|
ControlNet-v1-1-nightly-main/annotator/normalbae/models/submodules/efficientnet_repo/geffnet/activations/activations.py
ADDED
@@ -0,0 +1,102 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
""" Activations
|
2 |
+
|
3 |
+
A collection of activations fn and modules with a common interface so that they can
|
4 |
+
easily be swapped. All have an `inplace` arg even if not used.
|
5 |
+
|
6 |
+
Copyright 2020 Ross Wightman
|
7 |
+
"""
|
8 |
+
from torch import nn as nn
|
9 |
+
from torch.nn import functional as F
|
10 |
+
|
11 |
+
|
12 |
+
def swish(x, inplace: bool = False):
|
13 |
+
"""Swish - Described originally as SiLU (https://arxiv.org/abs/1702.03118v3)
|
14 |
+
and also as Swish (https://arxiv.org/abs/1710.05941).
|
15 |
+
|
16 |
+
TODO Rename to SiLU with addition to PyTorch
|
17 |
+
"""
|
18 |
+
return x.mul_(x.sigmoid()) if inplace else x.mul(x.sigmoid())
|
19 |
+
|
20 |
+
|
21 |
+
class Swish(nn.Module):
|
22 |
+
def __init__(self, inplace: bool = False):
|
23 |
+
super(Swish, self).__init__()
|
24 |
+
self.inplace = inplace
|
25 |
+
|
26 |
+
def forward(self, x):
|
27 |
+
return swish(x, self.inplace)
|
28 |
+
|
29 |
+
|
30 |
+
def mish(x, inplace: bool = False):
|
31 |
+
"""Mish: A Self Regularized Non-Monotonic Neural Activation Function - https://arxiv.org/abs/1908.08681
|
32 |
+
"""
|
33 |
+
return x.mul(F.softplus(x).tanh())
|
34 |
+
|
35 |
+
|
36 |
+
class Mish(nn.Module):
|
37 |
+
def __init__(self, inplace: bool = False):
|
38 |
+
super(Mish, self).__init__()
|
39 |
+
self.inplace = inplace
|
40 |
+
|
41 |
+
def forward(self, x):
|
42 |
+
return mish(x, self.inplace)
|
43 |
+
|
44 |
+
|
45 |
+
def sigmoid(x, inplace: bool = False):
|
46 |
+
return x.sigmoid_() if inplace else x.sigmoid()
|
47 |
+
|
48 |
+
|
49 |
+
# PyTorch has this, but not with a consistent inplace argmument interface
|
50 |
+
class Sigmoid(nn.Module):
|
51 |
+
def __init__(self, inplace: bool = False):
|
52 |
+
super(Sigmoid, self).__init__()
|
53 |
+
self.inplace = inplace
|
54 |
+
|
55 |
+
def forward(self, x):
|
56 |
+
return x.sigmoid_() if self.inplace else x.sigmoid()
|
57 |
+
|
58 |
+
|
59 |
+
def tanh(x, inplace: bool = False):
|
60 |
+
return x.tanh_() if inplace else x.tanh()
|
61 |
+
|
62 |
+
|
63 |
+
# PyTorch has this, but not with a consistent inplace argmument interface
|
64 |
+
class Tanh(nn.Module):
|
65 |
+
def __init__(self, inplace: bool = False):
|
66 |
+
super(Tanh, self).__init__()
|
67 |
+
self.inplace = inplace
|
68 |
+
|
69 |
+
def forward(self, x):
|
70 |
+
return x.tanh_() if self.inplace else x.tanh()
|
71 |
+
|
72 |
+
|
73 |
+
def hard_swish(x, inplace: bool = False):
|
74 |
+
inner = F.relu6(x + 3.).div_(6.)
|
75 |
+
return x.mul_(inner) if inplace else x.mul(inner)
|
76 |
+
|
77 |
+
|
78 |
+
class HardSwish(nn.Module):
|
79 |
+
def __init__(self, inplace: bool = False):
|
80 |
+
super(HardSwish, self).__init__()
|
81 |
+
self.inplace = inplace
|
82 |
+
|
83 |
+
def forward(self, x):
|
84 |
+
return hard_swish(x, self.inplace)
|
85 |
+
|
86 |
+
|
87 |
+
def hard_sigmoid(x, inplace: bool = False):
|
88 |
+
if inplace:
|
89 |
+
return x.add_(3.).clamp_(0., 6.).div_(6.)
|
90 |
+
else:
|
91 |
+
return F.relu6(x + 3.) / 6.
|
92 |
+
|
93 |
+
|
94 |
+
class HardSigmoid(nn.Module):
|
95 |
+
def __init__(self, inplace: bool = False):
|
96 |
+
super(HardSigmoid, self).__init__()
|
97 |
+
self.inplace = inplace
|
98 |
+
|
99 |
+
def forward(self, x):
|
100 |
+
return hard_sigmoid(x, self.inplace)
|
101 |
+
|
102 |
+
|
ControlNet-v1-1-nightly-main/annotator/normalbae/models/submodules/efficientnet_repo/geffnet/activations/activations_jit.py
ADDED
@@ -0,0 +1,79 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
""" Activations (jit)
|
2 |
+
|
3 |
+
A collection of jit-scripted activations fn and modules with a common interface so that they can
|
4 |
+
easily be swapped. All have an `inplace` arg even if not used.
|
5 |
+
|
6 |
+
All jit scripted activations are lacking in-place variations on purpose, scripted kernel fusion does not
|
7 |
+
currently work across in-place op boundaries, thus performance is equal to or less than the non-scripted
|
8 |
+
versions if they contain in-place ops.
|
9 |
+
|
10 |
+
Copyright 2020 Ross Wightman
|
11 |
+
"""
|
12 |
+
|
13 |
+
import torch
|
14 |
+
from torch import nn as nn
|
15 |
+
from torch.nn import functional as F
|
16 |
+
|
17 |
+
__all__ = ['swish_jit', 'SwishJit', 'mish_jit', 'MishJit',
|
18 |
+
'hard_sigmoid_jit', 'HardSigmoidJit', 'hard_swish_jit', 'HardSwishJit']
|
19 |
+
|
20 |
+
|
21 |
+
@torch.jit.script
|
22 |
+
def swish_jit(x, inplace: bool = False):
|
23 |
+
"""Swish - Described originally as SiLU (https://arxiv.org/abs/1702.03118v3)
|
24 |
+
and also as Swish (https://arxiv.org/abs/1710.05941).
|
25 |
+
|
26 |
+
TODO Rename to SiLU with addition to PyTorch
|
27 |
+
"""
|
28 |
+
return x.mul(x.sigmoid())
|
29 |
+
|
30 |
+
|
31 |
+
@torch.jit.script
|
32 |
+
def mish_jit(x, _inplace: bool = False):
|
33 |
+
"""Mish: A Self Regularized Non-Monotonic Neural Activation Function - https://arxiv.org/abs/1908.08681
|
34 |
+
"""
|
35 |
+
return x.mul(F.softplus(x).tanh())
|
36 |
+
|
37 |
+
|
38 |
+
class SwishJit(nn.Module):
|
39 |
+
def __init__(self, inplace: bool = False):
|
40 |
+
super(SwishJit, self).__init__()
|
41 |
+
|
42 |
+
def forward(self, x):
|
43 |
+
return swish_jit(x)
|
44 |
+
|
45 |
+
|
46 |
+
class MishJit(nn.Module):
|
47 |
+
def __init__(self, inplace: bool = False):
|
48 |
+
super(MishJit, self).__init__()
|
49 |
+
|
50 |
+
def forward(self, x):
|
51 |
+
return mish_jit(x)
|
52 |
+
|
53 |
+
|
54 |
+
@torch.jit.script
|
55 |
+
def hard_sigmoid_jit(x, inplace: bool = False):
|
56 |
+
# return F.relu6(x + 3.) / 6.
|
57 |
+
return (x + 3).clamp(min=0, max=6).div(6.) # clamp seems ever so slightly faster?
|
58 |
+
|
59 |
+
|
60 |
+
class HardSigmoidJit(nn.Module):
|
61 |
+
def __init__(self, inplace: bool = False):
|
62 |
+
super(HardSigmoidJit, self).__init__()
|
63 |
+
|
64 |
+
def forward(self, x):
|
65 |
+
return hard_sigmoid_jit(x)
|
66 |
+
|
67 |
+
|
68 |
+
@torch.jit.script
|
69 |
+
def hard_swish_jit(x, inplace: bool = False):
|
70 |
+
# return x * (F.relu6(x + 3.) / 6)
|
71 |
+
return x * (x + 3).clamp(min=0, max=6).div(6.) # clamp seems ever so slightly faster?
|
72 |
+
|
73 |
+
|
74 |
+
class HardSwishJit(nn.Module):
|
75 |
+
def __init__(self, inplace: bool = False):
|
76 |
+
super(HardSwishJit, self).__init__()
|
77 |
+
|
78 |
+
def forward(self, x):
|
79 |
+
return hard_swish_jit(x)
|
ControlNet-v1-1-nightly-main/annotator/normalbae/models/submodules/efficientnet_repo/geffnet/activations/activations_me.py
ADDED
@@ -0,0 +1,174 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
""" Activations (memory-efficient w/ custom autograd)
|
2 |
+
|
3 |
+
A collection of activations fn and modules with a common interface so that they can
|
4 |
+
easily be swapped. All have an `inplace` arg even if not used.
|
5 |
+
|
6 |
+
These activations are not compatible with jit scripting or ONNX export of the model, please use either
|
7 |
+
the JIT or basic versions of the activations.
|
8 |
+
|
9 |
+
Copyright 2020 Ross Wightman
|
10 |
+
"""
|
11 |
+
|
12 |
+
import torch
|
13 |
+
from torch import nn as nn
|
14 |
+
from torch.nn import functional as F
|
15 |
+
|
16 |
+
|
17 |
+
__all__ = ['swish_me', 'SwishMe', 'mish_me', 'MishMe',
|
18 |
+
'hard_sigmoid_me', 'HardSigmoidMe', 'hard_swish_me', 'HardSwishMe']
|
19 |
+
|
20 |
+
|
21 |
+
@torch.jit.script
|
22 |
+
def swish_jit_fwd(x):
|
23 |
+
return x.mul(torch.sigmoid(x))
|
24 |
+
|
25 |
+
|
26 |
+
@torch.jit.script
|
27 |
+
def swish_jit_bwd(x, grad_output):
|
28 |
+
x_sigmoid = torch.sigmoid(x)
|
29 |
+
return grad_output * (x_sigmoid * (1 + x * (1 - x_sigmoid)))
|
30 |
+
|
31 |
+
|
32 |
+
class SwishJitAutoFn(torch.autograd.Function):
|
33 |
+
""" torch.jit.script optimised Swish w/ memory-efficient checkpoint
|
34 |
+
Inspired by conversation btw Jeremy Howard & Adam Pazske
|
35 |
+
https://twitter.com/jeremyphoward/status/1188251041835315200
|
36 |
+
|
37 |
+
Swish - Described originally as SiLU (https://arxiv.org/abs/1702.03118v3)
|
38 |
+
and also as Swish (https://arxiv.org/abs/1710.05941).
|
39 |
+
|
40 |
+
TODO Rename to SiLU with addition to PyTorch
|
41 |
+
"""
|
42 |
+
|
43 |
+
@staticmethod
|
44 |
+
def forward(ctx, x):
|
45 |
+
ctx.save_for_backward(x)
|
46 |
+
return swish_jit_fwd(x)
|
47 |
+
|
48 |
+
@staticmethod
|
49 |
+
def backward(ctx, grad_output):
|
50 |
+
x = ctx.saved_tensors[0]
|
51 |
+
return swish_jit_bwd(x, grad_output)
|
52 |
+
|
53 |
+
|
54 |
+
def swish_me(x, inplace=False):
|
55 |
+
return SwishJitAutoFn.apply(x)
|
56 |
+
|
57 |
+
|
58 |
+
class SwishMe(nn.Module):
|
59 |
+
def __init__(self, inplace: bool = False):
|
60 |
+
super(SwishMe, self).__init__()
|
61 |
+
|
62 |
+
def forward(self, x):
|
63 |
+
return SwishJitAutoFn.apply(x)
|
64 |
+
|
65 |
+
|
66 |
+
@torch.jit.script
|
67 |
+
def mish_jit_fwd(x):
|
68 |
+
return x.mul(torch.tanh(F.softplus(x)))
|
69 |
+
|
70 |
+
|
71 |
+
@torch.jit.script
|
72 |
+
def mish_jit_bwd(x, grad_output):
|
73 |
+
x_sigmoid = torch.sigmoid(x)
|
74 |
+
x_tanh_sp = F.softplus(x).tanh()
|
75 |
+
return grad_output.mul(x_tanh_sp + x * x_sigmoid * (1 - x_tanh_sp * x_tanh_sp))
|
76 |
+
|
77 |
+
|
78 |
+
class MishJitAutoFn(torch.autograd.Function):
|
79 |
+
""" Mish: A Self Regularized Non-Monotonic Neural Activation Function - https://arxiv.org/abs/1908.08681
|
80 |
+
A memory efficient, jit scripted variant of Mish
|
81 |
+
"""
|
82 |
+
@staticmethod
|
83 |
+
def forward(ctx, x):
|
84 |
+
ctx.save_for_backward(x)
|
85 |
+
return mish_jit_fwd(x)
|
86 |
+
|
87 |
+
@staticmethod
|
88 |
+
def backward(ctx, grad_output):
|
89 |
+
x = ctx.saved_tensors[0]
|
90 |
+
return mish_jit_bwd(x, grad_output)
|
91 |
+
|
92 |
+
|
93 |
+
def mish_me(x, inplace=False):
|
94 |
+
return MishJitAutoFn.apply(x)
|
95 |
+
|
96 |
+
|
97 |
+
class MishMe(nn.Module):
|
98 |
+
def __init__(self, inplace: bool = False):
|
99 |
+
super(MishMe, self).__init__()
|
100 |
+
|
101 |
+
def forward(self, x):
|
102 |
+
return MishJitAutoFn.apply(x)
|
103 |
+
|
104 |
+
|
105 |
+
@torch.jit.script
|
106 |
+
def hard_sigmoid_jit_fwd(x, inplace: bool = False):
|
107 |
+
return (x + 3).clamp(min=0, max=6).div(6.)
|
108 |
+
|
109 |
+
|
110 |
+
@torch.jit.script
|
111 |
+
def hard_sigmoid_jit_bwd(x, grad_output):
|
112 |
+
m = torch.ones_like(x) * ((x >= -3.) & (x <= 3.)) / 6.
|
113 |
+
return grad_output * m
|
114 |
+
|
115 |
+
|
116 |
+
class HardSigmoidJitAutoFn(torch.autograd.Function):
|
117 |
+
@staticmethod
|
118 |
+
def forward(ctx, x):
|
119 |
+
ctx.save_for_backward(x)
|
120 |
+
return hard_sigmoid_jit_fwd(x)
|
121 |
+
|
122 |
+
@staticmethod
|
123 |
+
def backward(ctx, grad_output):
|
124 |
+
x = ctx.saved_tensors[0]
|
125 |
+
return hard_sigmoid_jit_bwd(x, grad_output)
|
126 |
+
|
127 |
+
|
128 |
+
def hard_sigmoid_me(x, inplace: bool = False):
|
129 |
+
return HardSigmoidJitAutoFn.apply(x)
|
130 |
+
|
131 |
+
|
132 |
+
class HardSigmoidMe(nn.Module):
|
133 |
+
def __init__(self, inplace: bool = False):
|
134 |
+
super(HardSigmoidMe, self).__init__()
|
135 |
+
|
136 |
+
def forward(self, x):
|
137 |
+
return HardSigmoidJitAutoFn.apply(x)
|
138 |
+
|
139 |
+
|
140 |
+
@torch.jit.script
|
141 |
+
def hard_swish_jit_fwd(x):
|
142 |
+
return x * (x + 3).clamp(min=0, max=6).div(6.)
|
143 |
+
|
144 |
+
|
145 |
+
@torch.jit.script
|
146 |
+
def hard_swish_jit_bwd(x, grad_output):
|
147 |
+
m = torch.ones_like(x) * (x >= 3.)
|
148 |
+
m = torch.where((x >= -3.) & (x <= 3.), x / 3. + .5, m)
|
149 |
+
return grad_output * m
|
150 |
+
|
151 |
+
|
152 |
+
class HardSwishJitAutoFn(torch.autograd.Function):
|
153 |
+
"""A memory efficient, jit-scripted HardSwish activation"""
|
154 |
+
@staticmethod
|
155 |
+
def forward(ctx, x):
|
156 |
+
ctx.save_for_backward(x)
|
157 |
+
return hard_swish_jit_fwd(x)
|
158 |
+
|
159 |
+
@staticmethod
|
160 |
+
def backward(ctx, grad_output):
|
161 |
+
x = ctx.saved_tensors[0]
|
162 |
+
return hard_swish_jit_bwd(x, grad_output)
|
163 |
+
|
164 |
+
|
165 |
+
def hard_swish_me(x, inplace=False):
|
166 |
+
return HardSwishJitAutoFn.apply(x)
|
167 |
+
|
168 |
+
|
169 |
+
class HardSwishMe(nn.Module):
|
170 |
+
def __init__(self, inplace: bool = False):
|
171 |
+
super(HardSwishMe, self).__init__()
|
172 |
+
|
173 |
+
def forward(self, x):
|
174 |
+
return HardSwishJitAutoFn.apply(x)
|
ControlNet-v1-1-nightly-main/annotator/normalbae/models/submodules/efficientnet_repo/geffnet/config.py
ADDED
@@ -0,0 +1,123 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
""" Global layer config state
|
2 |
+
"""
|
3 |
+
from typing import Any, Optional
|
4 |
+
|
5 |
+
__all__ = [
|
6 |
+
'is_exportable', 'is_scriptable', 'is_no_jit', 'layer_config_kwargs',
|
7 |
+
'set_exportable', 'set_scriptable', 'set_no_jit', 'set_layer_config'
|
8 |
+
]
|
9 |
+
|
10 |
+
# Set to True if prefer to have layers with no jit optimization (includes activations)
|
11 |
+
_NO_JIT = False
|
12 |
+
|
13 |
+
# Set to True if prefer to have activation layers with no jit optimization
|
14 |
+
# NOTE not currently used as no difference between no_jit and no_activation jit as only layers obeying
|
15 |
+
# the jit flags so far are activations. This will change as more layers are updated and/or added.
|
16 |
+
_NO_ACTIVATION_JIT = False
|
17 |
+
|
18 |
+
# Set to True if exporting a model with Same padding via ONNX
|
19 |
+
_EXPORTABLE = False
|
20 |
+
|
21 |
+
# Set to True if wanting to use torch.jit.script on a model
|
22 |
+
_SCRIPTABLE = False
|
23 |
+
|
24 |
+
|
25 |
+
def is_no_jit():
|
26 |
+
return _NO_JIT
|
27 |
+
|
28 |
+
|
29 |
+
class set_no_jit:
|
30 |
+
def __init__(self, mode: bool) -> None:
|
31 |
+
global _NO_JIT
|
32 |
+
self.prev = _NO_JIT
|
33 |
+
_NO_JIT = mode
|
34 |
+
|
35 |
+
def __enter__(self) -> None:
|
36 |
+
pass
|
37 |
+
|
38 |
+
def __exit__(self, *args: Any) -> bool:
|
39 |
+
global _NO_JIT
|
40 |
+
_NO_JIT = self.prev
|
41 |
+
return False
|
42 |
+
|
43 |
+
|
44 |
+
def is_exportable():
|
45 |
+
return _EXPORTABLE
|
46 |
+
|
47 |
+
|
48 |
+
class set_exportable:
|
49 |
+
def __init__(self, mode: bool) -> None:
|
50 |
+
global _EXPORTABLE
|
51 |
+
self.prev = _EXPORTABLE
|
52 |
+
_EXPORTABLE = mode
|
53 |
+
|
54 |
+
def __enter__(self) -> None:
|
55 |
+
pass
|
56 |
+
|
57 |
+
def __exit__(self, *args: Any) -> bool:
|
58 |
+
global _EXPORTABLE
|
59 |
+
_EXPORTABLE = self.prev
|
60 |
+
return False
|
61 |
+
|
62 |
+
|
63 |
+
def is_scriptable():
|
64 |
+
return _SCRIPTABLE
|
65 |
+
|
66 |
+
|
67 |
+
class set_scriptable:
|
68 |
+
def __init__(self, mode: bool) -> None:
|
69 |
+
global _SCRIPTABLE
|
70 |
+
self.prev = _SCRIPTABLE
|
71 |
+
_SCRIPTABLE = mode
|
72 |
+
|
73 |
+
def __enter__(self) -> None:
|
74 |
+
pass
|
75 |
+
|
76 |
+
def __exit__(self, *args: Any) -> bool:
|
77 |
+
global _SCRIPTABLE
|
78 |
+
_SCRIPTABLE = self.prev
|
79 |
+
return False
|
80 |
+
|
81 |
+
|
82 |
+
class set_layer_config:
|
83 |
+
""" Layer config context manager that allows setting all layer config flags at once.
|
84 |
+
If a flag arg is None, it will not change the current value.
|
85 |
+
"""
|
86 |
+
def __init__(
|
87 |
+
self,
|
88 |
+
scriptable: Optional[bool] = None,
|
89 |
+
exportable: Optional[bool] = None,
|
90 |
+
no_jit: Optional[bool] = None,
|
91 |
+
no_activation_jit: Optional[bool] = None):
|
92 |
+
global _SCRIPTABLE
|
93 |
+
global _EXPORTABLE
|
94 |
+
global _NO_JIT
|
95 |
+
global _NO_ACTIVATION_JIT
|
96 |
+
self.prev = _SCRIPTABLE, _EXPORTABLE, _NO_JIT, _NO_ACTIVATION_JIT
|
97 |
+
if scriptable is not None:
|
98 |
+
_SCRIPTABLE = scriptable
|
99 |
+
if exportable is not None:
|
100 |
+
_EXPORTABLE = exportable
|
101 |
+
if no_jit is not None:
|
102 |
+
_NO_JIT = no_jit
|
103 |
+
if no_activation_jit is not None:
|
104 |
+
_NO_ACTIVATION_JIT = no_activation_jit
|
105 |
+
|
106 |
+
def __enter__(self) -> None:
|
107 |
+
pass
|
108 |
+
|
109 |
+
def __exit__(self, *args: Any) -> bool:
|
110 |
+
global _SCRIPTABLE
|
111 |
+
global _EXPORTABLE
|
112 |
+
global _NO_JIT
|
113 |
+
global _NO_ACTIVATION_JIT
|
114 |
+
_SCRIPTABLE, _EXPORTABLE, _NO_JIT, _NO_ACTIVATION_JIT = self.prev
|
115 |
+
return False
|
116 |
+
|
117 |
+
|
118 |
+
def layer_config_kwargs(kwargs):
|
119 |
+
""" Consume config kwargs and return contextmgr obj """
|
120 |
+
return set_layer_config(
|
121 |
+
scriptable=kwargs.pop('scriptable', None),
|
122 |
+
exportable=kwargs.pop('exportable', None),
|
123 |
+
no_jit=kwargs.pop('no_jit', None))
|
ControlNet-v1-1-nightly-main/annotator/normalbae/models/submodules/efficientnet_repo/geffnet/conv2d_layers.py
ADDED
@@ -0,0 +1,304 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
""" Conv2D w/ SAME padding, CondConv, MixedConv
|
2 |
+
|
3 |
+
A collection of conv layers and padding helpers needed by EfficientNet, MixNet, and
|
4 |
+
MobileNetV3 models that maintain weight compatibility with original Tensorflow models.
|
5 |
+
|
6 |
+
Copyright 2020 Ross Wightman
|
7 |
+
"""
|
8 |
+
import collections.abc
|
9 |
+
import math
|
10 |
+
from functools import partial
|
11 |
+
from itertools import repeat
|
12 |
+
from typing import Tuple, Optional
|
13 |
+
|
14 |
+
import numpy as np
|
15 |
+
import torch
|
16 |
+
import torch.nn as nn
|
17 |
+
import torch.nn.functional as F
|
18 |
+
|
19 |
+
from .config import *
|
20 |
+
|
21 |
+
|
22 |
+
# From PyTorch internals
|
23 |
+
def _ntuple(n):
|
24 |
+
def parse(x):
|
25 |
+
if isinstance(x, collections.abc.Iterable):
|
26 |
+
return x
|
27 |
+
return tuple(repeat(x, n))
|
28 |
+
return parse
|
29 |
+
|
30 |
+
|
31 |
+
_single = _ntuple(1)
|
32 |
+
_pair = _ntuple(2)
|
33 |
+
_triple = _ntuple(3)
|
34 |
+
_quadruple = _ntuple(4)
|
35 |
+
|
36 |
+
|
37 |
+
def _is_static_pad(kernel_size, stride=1, dilation=1, **_):
|
38 |
+
return stride == 1 and (dilation * (kernel_size - 1)) % 2 == 0
|
39 |
+
|
40 |
+
|
41 |
+
def _get_padding(kernel_size, stride=1, dilation=1, **_):
|
42 |
+
padding = ((stride - 1) + dilation * (kernel_size - 1)) // 2
|
43 |
+
return padding
|
44 |
+
|
45 |
+
|
46 |
+
def _calc_same_pad(i: int, k: int, s: int, d: int):
|
47 |
+
return max((-(i // -s) - 1) * s + (k - 1) * d + 1 - i, 0)
|
48 |
+
|
49 |
+
|
50 |
+
def _same_pad_arg(input_size, kernel_size, stride, dilation):
|
51 |
+
ih, iw = input_size
|
52 |
+
kh, kw = kernel_size
|
53 |
+
pad_h = _calc_same_pad(ih, kh, stride[0], dilation[0])
|
54 |
+
pad_w = _calc_same_pad(iw, kw, stride[1], dilation[1])
|
55 |
+
return [pad_w // 2, pad_w - pad_w // 2, pad_h // 2, pad_h - pad_h // 2]
|
56 |
+
|
57 |
+
|
58 |
+
def _split_channels(num_chan, num_groups):
|
59 |
+
split = [num_chan // num_groups for _ in range(num_groups)]
|
60 |
+
split[0] += num_chan - sum(split)
|
61 |
+
return split
|
62 |
+
|
63 |
+
|
64 |
+
def conv2d_same(
|
65 |
+
x, weight: torch.Tensor, bias: Optional[torch.Tensor] = None, stride: Tuple[int, int] = (1, 1),
|
66 |
+
padding: Tuple[int, int] = (0, 0), dilation: Tuple[int, int] = (1, 1), groups: int = 1):
|
67 |
+
ih, iw = x.size()[-2:]
|
68 |
+
kh, kw = weight.size()[-2:]
|
69 |
+
pad_h = _calc_same_pad(ih, kh, stride[0], dilation[0])
|
70 |
+
pad_w = _calc_same_pad(iw, kw, stride[1], dilation[1])
|
71 |
+
x = F.pad(x, [pad_w // 2, pad_w - pad_w // 2, pad_h // 2, pad_h - pad_h // 2])
|
72 |
+
return F.conv2d(x, weight, bias, stride, (0, 0), dilation, groups)
|
73 |
+
|
74 |
+
|
75 |
+
class Conv2dSame(nn.Conv2d):
|
76 |
+
""" Tensorflow like 'SAME' convolution wrapper for 2D convolutions
|
77 |
+
"""
|
78 |
+
|
79 |
+
# pylint: disable=unused-argument
|
80 |
+
def __init__(self, in_channels, out_channels, kernel_size, stride=1,
|
81 |
+
padding=0, dilation=1, groups=1, bias=True):
|
82 |
+
super(Conv2dSame, self).__init__(
|
83 |
+
in_channels, out_channels, kernel_size, stride, 0, dilation, groups, bias)
|
84 |
+
|
85 |
+
def forward(self, x):
|
86 |
+
return conv2d_same(x, self.weight, self.bias, self.stride, self.padding, self.dilation, self.groups)
|
87 |
+
|
88 |
+
|
89 |
+
class Conv2dSameExport(nn.Conv2d):
|
90 |
+
""" ONNX export friendly Tensorflow like 'SAME' convolution wrapper for 2D convolutions
|
91 |
+
|
92 |
+
NOTE: This does not currently work with torch.jit.script
|
93 |
+
"""
|
94 |
+
|
95 |
+
# pylint: disable=unused-argument
|
96 |
+
def __init__(self, in_channels, out_channels, kernel_size, stride=1,
|
97 |
+
padding=0, dilation=1, groups=1, bias=True):
|
98 |
+
super(Conv2dSameExport, self).__init__(
|
99 |
+
in_channels, out_channels, kernel_size, stride, 0, dilation, groups, bias)
|
100 |
+
self.pad = None
|
101 |
+
self.pad_input_size = (0, 0)
|
102 |
+
|
103 |
+
def forward(self, x):
|
104 |
+
input_size = x.size()[-2:]
|
105 |
+
if self.pad is None:
|
106 |
+
pad_arg = _same_pad_arg(input_size, self.weight.size()[-2:], self.stride, self.dilation)
|
107 |
+
self.pad = nn.ZeroPad2d(pad_arg)
|
108 |
+
self.pad_input_size = input_size
|
109 |
+
|
110 |
+
if self.pad is not None:
|
111 |
+
x = self.pad(x)
|
112 |
+
return F.conv2d(
|
113 |
+
x, self.weight, self.bias, self.stride, self.padding, self.dilation, self.groups)
|
114 |
+
|
115 |
+
|
116 |
+
def get_padding_value(padding, kernel_size, **kwargs):
|
117 |
+
dynamic = False
|
118 |
+
if isinstance(padding, str):
|
119 |
+
# for any string padding, the padding will be calculated for you, one of three ways
|
120 |
+
padding = padding.lower()
|
121 |
+
if padding == 'same':
|
122 |
+
# TF compatible 'SAME' padding, has a performance and GPU memory allocation impact
|
123 |
+
if _is_static_pad(kernel_size, **kwargs):
|
124 |
+
# static case, no extra overhead
|
125 |
+
padding = _get_padding(kernel_size, **kwargs)
|
126 |
+
else:
|
127 |
+
# dynamic padding
|
128 |
+
padding = 0
|
129 |
+
dynamic = True
|
130 |
+
elif padding == 'valid':
|
131 |
+
# 'VALID' padding, same as padding=0
|
132 |
+
padding = 0
|
133 |
+
else:
|
134 |
+
# Default to PyTorch style 'same'-ish symmetric padding
|
135 |
+
padding = _get_padding(kernel_size, **kwargs)
|
136 |
+
return padding, dynamic
|
137 |
+
|
138 |
+
|
139 |
+
def create_conv2d_pad(in_chs, out_chs, kernel_size, **kwargs):
|
140 |
+
padding = kwargs.pop('padding', '')
|
141 |
+
kwargs.setdefault('bias', False)
|
142 |
+
padding, is_dynamic = get_padding_value(padding, kernel_size, **kwargs)
|
143 |
+
if is_dynamic:
|
144 |
+
if is_exportable():
|
145 |
+
assert not is_scriptable()
|
146 |
+
return Conv2dSameExport(in_chs, out_chs, kernel_size, **kwargs)
|
147 |
+
else:
|
148 |
+
return Conv2dSame(in_chs, out_chs, kernel_size, **kwargs)
|
149 |
+
else:
|
150 |
+
return nn.Conv2d(in_chs, out_chs, kernel_size, padding=padding, **kwargs)
|
151 |
+
|
152 |
+
|
153 |
+
class MixedConv2d(nn.ModuleDict):
|
154 |
+
""" Mixed Grouped Convolution
|
155 |
+
Based on MDConv and GroupedConv in MixNet impl:
|
156 |
+
https://github.com/tensorflow/tpu/blob/master/models/official/mnasnet/mixnet/custom_layers.py
|
157 |
+
"""
|
158 |
+
|
159 |
+
def __init__(self, in_channels, out_channels, kernel_size=3,
|
160 |
+
stride=1, padding='', dilation=1, depthwise=False, **kwargs):
|
161 |
+
super(MixedConv2d, self).__init__()
|
162 |
+
|
163 |
+
kernel_size = kernel_size if isinstance(kernel_size, list) else [kernel_size]
|
164 |
+
num_groups = len(kernel_size)
|
165 |
+
in_splits = _split_channels(in_channels, num_groups)
|
166 |
+
out_splits = _split_channels(out_channels, num_groups)
|
167 |
+
self.in_channels = sum(in_splits)
|
168 |
+
self.out_channels = sum(out_splits)
|
169 |
+
for idx, (k, in_ch, out_ch) in enumerate(zip(kernel_size, in_splits, out_splits)):
|
170 |
+
conv_groups = out_ch if depthwise else 1
|
171 |
+
self.add_module(
|
172 |
+
str(idx),
|
173 |
+
create_conv2d_pad(
|
174 |
+
in_ch, out_ch, k, stride=stride,
|
175 |
+
padding=padding, dilation=dilation, groups=conv_groups, **kwargs)
|
176 |
+
)
|
177 |
+
self.splits = in_splits
|
178 |
+
|
179 |
+
def forward(self, x):
|
180 |
+
x_split = torch.split(x, self.splits, 1)
|
181 |
+
x_out = [conv(x_split[i]) for i, conv in enumerate(self.values())]
|
182 |
+
x = torch.cat(x_out, 1)
|
183 |
+
return x
|
184 |
+
|
185 |
+
|
186 |
+
def get_condconv_initializer(initializer, num_experts, expert_shape):
|
187 |
+
def condconv_initializer(weight):
|
188 |
+
"""CondConv initializer function."""
|
189 |
+
num_params = np.prod(expert_shape)
|
190 |
+
if (len(weight.shape) != 2 or weight.shape[0] != num_experts or
|
191 |
+
weight.shape[1] != num_params):
|
192 |
+
raise (ValueError(
|
193 |
+
'CondConv variables must have shape [num_experts, num_params]'))
|
194 |
+
for i in range(num_experts):
|
195 |
+
initializer(weight[i].view(expert_shape))
|
196 |
+
return condconv_initializer
|
197 |
+
|
198 |
+
|
199 |
+
class CondConv2d(nn.Module):
|
200 |
+
""" Conditional Convolution
|
201 |
+
Inspired by: https://github.com/tensorflow/tpu/blob/master/models/official/efficientnet/condconv/condconv_layers.py
|
202 |
+
|
203 |
+
Grouped convolution hackery for parallel execution of the per-sample kernel filters inspired by this discussion:
|
204 |
+
https://github.com/pytorch/pytorch/issues/17983
|
205 |
+
"""
|
206 |
+
__constants__ = ['bias', 'in_channels', 'out_channels', 'dynamic_padding']
|
207 |
+
|
208 |
+
def __init__(self, in_channels, out_channels, kernel_size=3,
|
209 |
+
stride=1, padding='', dilation=1, groups=1, bias=False, num_experts=4):
|
210 |
+
super(CondConv2d, self).__init__()
|
211 |
+
|
212 |
+
self.in_channels = in_channels
|
213 |
+
self.out_channels = out_channels
|
214 |
+
self.kernel_size = _pair(kernel_size)
|
215 |
+
self.stride = _pair(stride)
|
216 |
+
padding_val, is_padding_dynamic = get_padding_value(
|
217 |
+
padding, kernel_size, stride=stride, dilation=dilation)
|
218 |
+
self.dynamic_padding = is_padding_dynamic # if in forward to work with torchscript
|
219 |
+
self.padding = _pair(padding_val)
|
220 |
+
self.dilation = _pair(dilation)
|
221 |
+
self.groups = groups
|
222 |
+
self.num_experts = num_experts
|
223 |
+
|
224 |
+
self.weight_shape = (self.out_channels, self.in_channels // self.groups) + self.kernel_size
|
225 |
+
weight_num_param = 1
|
226 |
+
for wd in self.weight_shape:
|
227 |
+
weight_num_param *= wd
|
228 |
+
self.weight = torch.nn.Parameter(torch.Tensor(self.num_experts, weight_num_param))
|
229 |
+
|
230 |
+
if bias:
|
231 |
+
self.bias_shape = (self.out_channels,)
|
232 |
+
self.bias = torch.nn.Parameter(torch.Tensor(self.num_experts, self.out_channels))
|
233 |
+
else:
|
234 |
+
self.register_parameter('bias', None)
|
235 |
+
|
236 |
+
self.reset_parameters()
|
237 |
+
|
238 |
+
def reset_parameters(self):
|
239 |
+
init_weight = get_condconv_initializer(
|
240 |
+
partial(nn.init.kaiming_uniform_, a=math.sqrt(5)), self.num_experts, self.weight_shape)
|
241 |
+
init_weight(self.weight)
|
242 |
+
if self.bias is not None:
|
243 |
+
fan_in = np.prod(self.weight_shape[1:])
|
244 |
+
bound = 1 / math.sqrt(fan_in)
|
245 |
+
init_bias = get_condconv_initializer(
|
246 |
+
partial(nn.init.uniform_, a=-bound, b=bound), self.num_experts, self.bias_shape)
|
247 |
+
init_bias(self.bias)
|
248 |
+
|
249 |
+
def forward(self, x, routing_weights):
|
250 |
+
B, C, H, W = x.shape
|
251 |
+
weight = torch.matmul(routing_weights, self.weight)
|
252 |
+
new_weight_shape = (B * self.out_channels, self.in_channels // self.groups) + self.kernel_size
|
253 |
+
weight = weight.view(new_weight_shape)
|
254 |
+
bias = None
|
255 |
+
if self.bias is not None:
|
256 |
+
bias = torch.matmul(routing_weights, self.bias)
|
257 |
+
bias = bias.view(B * self.out_channels)
|
258 |
+
# move batch elements with channels so each batch element can be efficiently convolved with separate kernel
|
259 |
+
x = x.view(1, B * C, H, W)
|
260 |
+
if self.dynamic_padding:
|
261 |
+
out = conv2d_same(
|
262 |
+
x, weight, bias, stride=self.stride, padding=self.padding,
|
263 |
+
dilation=self.dilation, groups=self.groups * B)
|
264 |
+
else:
|
265 |
+
out = F.conv2d(
|
266 |
+
x, weight, bias, stride=self.stride, padding=self.padding,
|
267 |
+
dilation=self.dilation, groups=self.groups * B)
|
268 |
+
out = out.permute([1, 0, 2, 3]).view(B, self.out_channels, out.shape[-2], out.shape[-1])
|
269 |
+
|
270 |
+
# Literal port (from TF definition)
|
271 |
+
# x = torch.split(x, 1, 0)
|
272 |
+
# weight = torch.split(weight, 1, 0)
|
273 |
+
# if self.bias is not None:
|
274 |
+
# bias = torch.matmul(routing_weights, self.bias)
|
275 |
+
# bias = torch.split(bias, 1, 0)
|
276 |
+
# else:
|
277 |
+
# bias = [None] * B
|
278 |
+
# out = []
|
279 |
+
# for xi, wi, bi in zip(x, weight, bias):
|
280 |
+
# wi = wi.view(*self.weight_shape)
|
281 |
+
# if bi is not None:
|
282 |
+
# bi = bi.view(*self.bias_shape)
|
283 |
+
# out.append(self.conv_fn(
|
284 |
+
# xi, wi, bi, stride=self.stride, padding=self.padding,
|
285 |
+
# dilation=self.dilation, groups=self.groups))
|
286 |
+
# out = torch.cat(out, 0)
|
287 |
+
return out
|
288 |
+
|
289 |
+
|
290 |
+
def select_conv2d(in_chs, out_chs, kernel_size, **kwargs):
|
291 |
+
assert 'groups' not in kwargs # only use 'depthwise' bool arg
|
292 |
+
if isinstance(kernel_size, list):
|
293 |
+
assert 'num_experts' not in kwargs # MixNet + CondConv combo not supported currently
|
294 |
+
# We're going to use only lists for defining the MixedConv2d kernel groups,
|
295 |
+
# ints, tuples, other iterables will continue to pass to normal conv and specify h, w.
|
296 |
+
m = MixedConv2d(in_chs, out_chs, kernel_size, **kwargs)
|
297 |
+
else:
|
298 |
+
depthwise = kwargs.pop('depthwise', False)
|
299 |
+
groups = out_chs if depthwise else 1
|
300 |
+
if 'num_experts' in kwargs and kwargs['num_experts'] > 0:
|
301 |
+
m = CondConv2d(in_chs, out_chs, kernel_size, groups=groups, **kwargs)
|
302 |
+
else:
|
303 |
+
m = create_conv2d_pad(in_chs, out_chs, kernel_size, groups=groups, **kwargs)
|
304 |
+
return m
|