File size: 11,470 Bytes
ca25718
 
 
dd8f929
 
 
 
ca25718
dd8f929
 
 
 
 
 
 
ca25718
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dd8f929
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
from typing import List, Optional, Union

import torch
from diffusers import AutoencoderKL, StableDiffusionXLPipeline, UNet2DConditionModel
from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl import (
    retrieve_timesteps,
)
from diffusers.schedulers import KarrasDiffusionSchedulers
from transformers import (
    CLIPImageProcessor,
    CLIPTextModel,
    CLIPTextModelWithProjection,
    CLIPTokenizer,
    CLIPVisionModelWithProjection,
)


def freeze_params(params):
    for param in params:
        param.requires_grad = False


class RewardStableDiffusionXL(StableDiffusionXLPipeline):
    def __init__(
        self,
        vae: AutoencoderKL,
        text_encoder: CLIPTextModel,
        text_encoder_2: CLIPTextModelWithProjection,
        tokenizer: CLIPTokenizer,
        tokenizer_2: CLIPTokenizer,
        unet: UNet2DConditionModel,
        scheduler: KarrasDiffusionSchedulers,
        image_encoder: CLIPVisionModelWithProjection = None,
        feature_extractor: CLIPImageProcessor = None,
        force_zeros_for_empty_prompt: bool = True,
        add_watermarker: bool = False,
        is_hyper: bool = False,
        memsave: bool = False,
    ):
        super().__init__(
            vae,
            text_encoder,
            text_encoder_2,
            tokenizer,
            tokenizer_2,
            unet,
            scheduler,
            image_encoder,
            feature_extractor,
            force_zeros_for_empty_prompt,
            add_watermarker,
        )
        # optionally enable memsave_torch
        if memsave:
            import memsave_torch.nn

            self.vae = memsave_torch.nn.convert_to_memory_saving(self.vae)
            self.unet = memsave_torch.nn.convert_to_memory_saving(self.unet)
            self.text_encoder = memsave_torch.nn.convert_to_memory_saving(
                self.text_encoder
            )
            self.text_encoder_2 = memsave_torch.nn.convert_to_memory_saving(
                self.text_encoder_2
            )
        # enable checkpointing
        self.unet.enable_gradient_checkpointing()
        self.vae.enable_gradient_checkpointing()
        self.text_encoder.eval()
        self.text_encoder_2.eval()
        self.unet.eval()
        self.vae.eval()
        self.is_hyper = is_hyper

        # freeze diffusion parameters
        freeze_params(self.vae.parameters())
        freeze_params(self.unet.parameters())
        freeze_params(self.text_encoder.parameters())
        freeze_params(self.text_encoder_2.parameters())

    def decode_latents_tensors(self, latents):
        latents = latents / self.vae.config.scaling_factor
        image = self.vae.decode(latents).sample
        image = (image / 2 + 0.5).clamp(0, 1)
        return image

    def apply(
        self,
        latents: torch.Tensor,
        prompt: Union[str, List[str]] = None,
        prompt_2: Optional[Union[str, List[str]]] = None,
        height: Optional[int] = None,
        width: Optional[int] = None,
        num_inference_steps: int = 1,
        guidance_scale: float = 0.0,
        timesteps: List[int] = None,
        denoising_end: Optional[float] = None,
        negative_prompt: Optional[Union[str, List[str]]] = None,
        negative_prompt_2: Optional[Union[str, List[str]]] = None,
        num_images_per_prompt: Optional[int] = 1,
        eta: float = 0.0,
        generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
    ) -> torch.Tensor:
        if self.is_hyper:
            timesteps = [800]
        # 0. Default height and width to unet
        height = height or self.default_sample_size * self.vae_scale_factor
        width = width or self.default_sample_size * self.vae_scale_factor

        original_size = (height, width)
        target_size = (height, width)

        # 1. Check inputs. Raise error if not correct
        self.check_inputs(
            prompt,
            prompt_2,
            height,
            width,
            callback_steps=1,
        )

        # 2. Define call parameters

        self._guidance_scale = guidance_scale
        self._clip_skip = 0
        self._cross_attention_kwargs = None
        self._denoising_end = denoising_end
        self._interrupt = False

        # 2. Define call parameters
        batch_size = 1
        device = self._execution_device

        # 3. Encode input prompt
        lora_scale = (
            self.cross_attention_kwargs.get("scale", None)
            if self.cross_attention_kwargs is not None
            else None
        )
        prompt_embeds = None
        negative_prompt_embeds = None
        pooled_prompt_embeds = None
        negative_pooled_prompt_embeds = None
        (
            prompt_embeds,
            negative_prompt_embeds,
            pooled_prompt_embeds,
            negative_pooled_prompt_embeds,
        ) = self.encode_prompt(
            prompt=prompt,
            prompt_2=prompt_2,
            device=device,
            num_images_per_prompt=num_images_per_prompt,
            do_classifier_free_guidance=self.do_classifier_free_guidance,
            negative_prompt=negative_prompt,
            negative_prompt_2=negative_prompt_2,
            prompt_embeds=prompt_embeds,
            negative_prompt_embeds=negative_prompt_embeds,
            pooled_prompt_embeds=pooled_prompt_embeds,
            negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
            lora_scale=lora_scale,
            clip_skip=self.clip_skip,
        )

        # 4. Prepare timesteps
        timesteps, num_inference_steps = retrieve_timesteps(
            self.scheduler, num_inference_steps, device, timesteps
        )

        num_channels_latents = self.unet.config.in_channels
        latents = self.prepare_latents(
            batch_size * num_images_per_prompt,
            num_channels_latents,
            height,
            width,
            prompt_embeds.dtype,
            device,
            generator,
            latents,
        )

        # 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
        extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)

        # 7. Prepare added time ids & embeddings
        add_text_embeds = pooled_prompt_embeds
        if self.text_encoder_2 is None:
            text_encoder_projection_dim = int(pooled_prompt_embeds.shape[-1])
        else:
            text_encoder_projection_dim = self.text_encoder_2.config.projection_dim

        add_time_ids = self._get_add_time_ids(
            original_size,
            (0, 0),
            target_size,
            dtype=prompt_embeds.dtype,
            text_encoder_projection_dim=text_encoder_projection_dim,
        )
        negative_add_time_ids = add_time_ids

        if self.do_classifier_free_guidance:
            prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
            add_text_embeds = torch.cat(
                [negative_pooled_prompt_embeds, add_text_embeds], dim=0
            )
            add_time_ids = torch.cat([negative_add_time_ids, add_time_ids], dim=0)

        prompt_embeds = prompt_embeds.to(device)
        add_text_embeds = add_text_embeds.to(device)
        add_time_ids = add_time_ids.to(device).repeat(
            batch_size * num_images_per_prompt, 1
        )

        # 8. Denoising loop
        num_warmup_steps = max(
            len(timesteps) - num_inference_steps * self.scheduler.order, 0
        )

        # 8.1 Apply denoising_end
        if (
            self.denoising_end is not None
            and isinstance(self.denoising_end, float)
            and self.denoising_end > 0
            and self.denoising_end < 1
        ):
            discrete_timestep_cutoff = int(
                round(
                    self.scheduler.config.num_train_timesteps
                    - (self.denoising_end * self.scheduler.config.num_train_timesteps)
                )
            )
            num_inference_steps = len(
                list(filter(lambda ts: ts >= discrete_timestep_cutoff, timesteps))
            )
            timesteps = timesteps[:num_inference_steps]

        # 9. Optionally get Guidance Scale Embedding
        timestep_cond = None
        if self.unet.config.time_cond_proj_dim is not None:
            guidance_scale_tensor = torch.tensor(self.guidance_scale - 1).repeat(
                batch_size * num_images_per_prompt
            )
            timestep_cond = self.get_guidance_scale_embedding(
                guidance_scale_tensor, embedding_dim=self.unet.config.time_cond_proj_dim
            ).to(device=device, dtype=latents.dtype)

        self._num_timesteps = len(timesteps)

        # 8. Denoising loop
        # 8.1 Apply denoising_end
        if (
            self.denoising_end is not None
            and isinstance(self.denoising_end, float)
            and self.denoising_end > 0
            and self.denoising_end < 1
        ):
            discrete_timestep_cutoff = int(
                round(
                    self.scheduler.config.num_train_timesteps
                    - (self.denoising_end * self.scheduler.config.num_train_timesteps)
                )
            )
            num_inference_steps = len(
                list(filter(lambda ts: ts >= discrete_timestep_cutoff, timesteps))
            )
            timesteps = timesteps[:num_inference_steps]

        # 9. Optionally get Guidance Scale Embedding
        timestep_cond = None

        self._num_timesteps = len(timesteps)
        for i, t in enumerate(timesteps):
            if self._interrupt:
                continue
            # expand the latents if we are doing classifier free guidance
            latent_model_input = (
                torch.cat([latents] * 2)
                if self.do_classifier_free_guidance
                else latents
            )

            latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)

            # predict the noise residual
            added_cond_kwargs = {
                "text_embeds": add_text_embeds,
                "time_ids": add_time_ids,
            }
            noise_pred = self.unet(
                latent_model_input,
                t,
                encoder_hidden_states=prompt_embeds,
                timestep_cond=timestep_cond,
                cross_attention_kwargs=self.cross_attention_kwargs,
                added_cond_kwargs=added_cond_kwargs,
                return_dict=False,
            )[0]

            # perform guidance
            if self.do_classifier_free_guidance:
                noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
                noise_pred = noise_pred_uncond + self.guidance_scale * (
                    noise_pred_text - noise_pred_uncond
                )

            # compute the previous noisy sample x_t -> x_t-1
            latents = self.scheduler.step(
                noise_pred, t, latents, **extra_step_kwargs, return_dict=False
            )[0]

        if self.is_hyper:
            latents = latents.to(torch.float32)
            image = self.decode_latents_tensors(latents)
            image = image.to(torch.float16)
        else:
            image = self.decode_latents_tensors(latents)

        # apply watermark if available
        if self.watermark is not None:
            image = self.watermark.apply_watermark(image)

        # Offload all models
        self.maybe_free_model_hooks()

        return image