File size: 13,717 Bytes
ca25718
 
 
 
dd8f929
ca25718
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dd8f929
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
from typing import List, Optional, Union

import torch
from diffusers import PixArtAlphaPipeline
from diffusers.pipelines.pixart_alpha.pipeline_pixart_alpha import retrieve_timesteps


def freeze_params(params):
    for param in params:
        param.requires_grad = False


class RewardPixartPipeline(PixArtAlphaPipeline):
    def __init__(
        self, tokenizer, text_encoder, transformer, scheduler, vae, memsave=False
    ):
        super().__init__(
            tokenizer,
            text_encoder,
            vae,
            transformer,
            scheduler,
        )
        # optionally enable memsave_torch
        if memsave:
            import memsave_torch.nn

            self.vae = memsave_torch.nn.convert_to_memory_saving(self.vae)
            self.text_encoder = memsave_torch.nn.convert_to_memory_saving(
                self.text_encoder
            )
        self.text_encoder.gradient_checkpointing_enable()
        self.vae.enable_gradient_checkpointing()
        self.text_encoder.eval()
        self.vae.eval()
        freeze_params(self.vae.parameters())
        freeze_params(self.text_encoder.parameters())

    def apply(
        self,
        latents: torch.Tensor = None,
        prompt: Union[str, List[str]] = None,
        negative_prompt: str = "",
        num_inference_steps: int = 20,
        timesteps: List[int] = [400],
        sigmas: List[float] = None,
        guidance_scale: float = 1.0,
        num_images_per_prompt: Optional[int] = 1,
        height: Optional[int] = 512,
        width: Optional[int] = 512,
        eta: float = 0.0,
        generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
        prompt_embeds: Optional[torch.FloatTensor] = None,
        prompt_attention_mask: Optional[torch.FloatTensor] = None,
        negative_prompt_embeds: Optional[torch.FloatTensor] = None,
        negative_prompt_attention_mask: Optional[torch.FloatTensor] = None,
        callback_steps: int = 1,
        clean_caption: bool = False,
        use_resolution_binning: bool = True,
        max_sequence_length: int = 120,
        **kwargs,
    ):
        # 1. Check inputs. Raise error if not correct
        height = height or self.transformer.config.sample_size * self.vae_scale_factor
        width = width or self.transformer.config.sample_size * self.vae_scale_factor
        if use_resolution_binning:
            if self.transformer.config.sample_size == 128:
                aspect_ratio_bin = ASPECT_RATIO_1024_BIN
            elif self.transformer.config.sample_size == 64:
                aspect_ratio_bin = ASPECT_RATIO_512_BIN
            elif self.transformer.config.sample_size == 32:
                aspect_ratio_bin = ASPECT_RATIO_256_BIN
            else:
                raise ValueError("Invalid sample size")
            orig_height, orig_width = height, width
            height, width = self.image_processor.classify_height_width_bin(
                height, width, ratios=aspect_ratio_bin
            )

        self.check_inputs(
            prompt,
            height,
            width,
            negative_prompt,
            callback_steps,
            prompt_embeds,
            negative_prompt_embeds,
            prompt_attention_mask,
            negative_prompt_attention_mask,
        )

        # 2. Default height and width to transformer
        if prompt is not None and isinstance(prompt, str):
            batch_size = 1
        elif prompt is not None and isinstance(prompt, list):
            batch_size = len(prompt)
        else:
            batch_size = prompt_embeds.shape[0]

        device = self._execution_device

        # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
        # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
        # corresponds to doing no classifier free guidance.
        do_classifier_free_guidance = guidance_scale > 1.0

        # 3. Encode input prompt
        (
            prompt_embeds,
            prompt_attention_mask,
            negative_prompt_embeds,
            negative_prompt_attention_mask,
        ) = self.encode_prompt(
            prompt,
            do_classifier_free_guidance,
            negative_prompt=negative_prompt,
            num_images_per_prompt=num_images_per_prompt,
            device=device,
            prompt_embeds=prompt_embeds,
            negative_prompt_embeds=negative_prompt_embeds,
            prompt_attention_mask=prompt_attention_mask,
            negative_prompt_attention_mask=negative_prompt_attention_mask,
            clean_caption=clean_caption,
            max_sequence_length=max_sequence_length,
        )
        if do_classifier_free_guidance:
            prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
            prompt_attention_mask = torch.cat(
                [negative_prompt_attention_mask, prompt_attention_mask], dim=0
            )

        # 4. Prepare timesteps
        timesteps, num_inference_steps = retrieve_timesteps(
            self.scheduler, num_inference_steps, device, timesteps, sigmas
        )

        # 5. Prepare latents.
        latent_channels = self.transformer.config.in_channels
        latents = self.prepare_latents(
            batch_size * num_images_per_prompt,
            latent_channels,
            height,
            width,
            prompt_embeds.dtype,
            device,
            generator,
            latents,
        )

        # 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
        extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)

        # 6.1 Prepare micro-conditions.
        added_cond_kwargs = {"resolution": None, "aspect_ratio": None}
        if self.transformer.config.sample_size == 128:
            resolution = torch.tensor([height, width]).repeat(
                batch_size * num_images_per_prompt, 1
            )
            aspect_ratio = torch.tensor([float(height / width)]).repeat(
                batch_size * num_images_per_prompt, 1
            )
            resolution = resolution.to(dtype=prompt_embeds.dtype, device=device)
            aspect_ratio = aspect_ratio.to(dtype=prompt_embeds.dtype, device=device)

            if do_classifier_free_guidance:
                resolution = torch.cat([resolution, resolution], dim=0)
                aspect_ratio = torch.cat([aspect_ratio, aspect_ratio], dim=0)

            added_cond_kwargs = {"resolution": resolution, "aspect_ratio": aspect_ratio}

        # 7. Denoising loop
        num_warmup_steps = max(
            len(timesteps) - num_inference_steps * self.scheduler.order, 0
        )

        for i, t in enumerate(timesteps):
            latent_model_input = (
                torch.cat([latents] * 2) if do_classifier_free_guidance else latents
            )
            latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)

            current_timestep = t
            if not torch.is_tensor(current_timestep):
                # TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can
                # This would be a good case for the `match` statement (Python 3.10+)
                is_mps = latent_model_input.device.type == "mps"
                if isinstance(current_timestep, float):
                    dtype = torch.float32 if is_mps else torch.float64
                else:
                    dtype = torch.int32 if is_mps else torch.int64
                current_timestep = torch.tensor(
                    [current_timestep], dtype=dtype, device=latent_model_input.device
                )
            elif len(current_timestep.shape) == 0:
                current_timestep = current_timestep[None].to(latent_model_input.device)
            # broadcast to batch dimension in a way that's compatible with ONNX/Core ML
            current_timestep = current_timestep.expand(latent_model_input.shape[0])

            # predict noise model_output
            noise_pred = self.transformer(
                latent_model_input,
                encoder_hidden_states=prompt_embeds,
                encoder_attention_mask=prompt_attention_mask,
                timestep=current_timestep,
                added_cond_kwargs=added_cond_kwargs,
                return_dict=False,
            )[0]

            # perform guidance
            if do_classifier_free_guidance:
                noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
                noise_pred = noise_pred_uncond + guidance_scale * (
                    noise_pred_text - noise_pred_uncond
                )

            # learned sigma
            if self.transformer.config.out_channels // 2 == latent_channels:
                noise_pred = noise_pred.chunk(2, dim=1)[0]
            else:
                noise_pred = noise_pred

            # compute previous image: x_t -> x_t-1
            if num_inference_steps == 1:
                # For DMD one step sampling: https://arxiv.org/abs/2311.18828
                latents = self.scheduler.step(
                    noise_pred, t, latents, **extra_step_kwargs
                ).pred_original_sample

        image = self.vae.decode(
            latents / self.vae.config.scaling_factor, return_dict=False
        )[0]
        if use_resolution_binning:
            image = self.image_processor.resize_and_crop_tensor(
                image, orig_width, orig_height
            )

        image = (image / 2 + 0.5).clamp(0, 1)

        # Offload all models
        self.maybe_free_model_hooks()
        return image


ASPECT_RATIO_2048_BIN = {
    "0.25": [1024.0, 4096.0],
    "0.26": [1024.0, 3968.0],
    "0.27": [1024.0, 3840.0],
    "0.28": [1024.0, 3712.0],
    "0.32": [1152.0, 3584.0],
    "0.33": [1152.0, 3456.0],
    "0.35": [1152.0, 3328.0],
    "0.4": [1280.0, 3200.0],
    "0.42": [1280.0, 3072.0],
    "0.48": [1408.0, 2944.0],
    "0.5": [1408.0, 2816.0],
    "0.52": [1408.0, 2688.0],
    "0.57": [1536.0, 2688.0],
    "0.6": [1536.0, 2560.0],
    "0.68": [1664.0, 2432.0],
    "0.72": [1664.0, 2304.0],
    "0.78": [1792.0, 2304.0],
    "0.82": [1792.0, 2176.0],
    "0.88": [1920.0, 2176.0],
    "0.94": [1920.0, 2048.0],
    "1.0": [2048.0, 2048.0],
    "1.07": [2048.0, 1920.0],
    "1.13": [2176.0, 1920.0],
    "1.21": [2176.0, 1792.0],
    "1.29": [2304.0, 1792.0],
    "1.38": [2304.0, 1664.0],
    "1.46": [2432.0, 1664.0],
    "1.67": [2560.0, 1536.0],
    "1.75": [2688.0, 1536.0],
    "2.0": [2816.0, 1408.0],
    "2.09": [2944.0, 1408.0],
    "2.4": [3072.0, 1280.0],
    "2.5": [3200.0, 1280.0],
    "2.89": [3328.0, 1152.0],
    "3.0": [3456.0, 1152.0],
    "3.11": [3584.0, 1152.0],
    "3.62": [3712.0, 1024.0],
    "3.75": [3840.0, 1024.0],
    "3.88": [3968.0, 1024.0],
    "4.0": [4096.0, 1024.0],
}

ASPECT_RATIO_256_BIN = {
    "0.25": [128.0, 512.0],
    "0.28": [128.0, 464.0],
    "0.32": [144.0, 448.0],
    "0.33": [144.0, 432.0],
    "0.35": [144.0, 416.0],
    "0.4": [160.0, 400.0],
    "0.42": [160.0, 384.0],
    "0.48": [176.0, 368.0],
    "0.5": [176.0, 352.0],
    "0.52": [176.0, 336.0],
    "0.57": [192.0, 336.0],
    "0.6": [192.0, 320.0],
    "0.68": [208.0, 304.0],
    "0.72": [208.0, 288.0],
    "0.78": [224.0, 288.0],
    "0.82": [224.0, 272.0],
    "0.88": [240.0, 272.0],
    "0.94": [240.0, 256.0],
    "1.0": [256.0, 256.0],
    "1.07": [256.0, 240.0],
    "1.13": [272.0, 240.0],
    "1.21": [272.0, 224.0],
    "1.29": [288.0, 224.0],
    "1.38": [288.0, 208.0],
    "1.46": [304.0, 208.0],
    "1.67": [320.0, 192.0],
    "1.75": [336.0, 192.0],
    "2.0": [352.0, 176.0],
    "2.09": [368.0, 176.0],
    "2.4": [384.0, 160.0],
    "2.5": [400.0, 160.0],
    "3.0": [432.0, 144.0],
    "4.0": [512.0, 128.0],
}

ASPECT_RATIO_1024_BIN = {
    "0.25": [512.0, 2048.0],
    "0.28": [512.0, 1856.0],
    "0.32": [576.0, 1792.0],
    "0.33": [576.0, 1728.0],
    "0.35": [576.0, 1664.0],
    "0.4": [640.0, 1600.0],
    "0.42": [640.0, 1536.0],
    "0.48": [704.0, 1472.0],
    "0.5": [704.0, 1408.0],
    "0.52": [704.0, 1344.0],
    "0.57": [768.0, 1344.0],
    "0.6": [768.0, 1280.0],
    "0.68": [832.0, 1216.0],
    "0.72": [832.0, 1152.0],
    "0.78": [896.0, 1152.0],
    "0.82": [896.0, 1088.0],
    "0.88": [960.0, 1088.0],
    "0.94": [960.0, 1024.0],
    "1.0": [1024.0, 1024.0],
    "1.07": [1024.0, 960.0],
    "1.13": [1088.0, 960.0],
    "1.21": [1088.0, 896.0],
    "1.29": [1152.0, 896.0],
    "1.38": [1152.0, 832.0],
    "1.46": [1216.0, 832.0],
    "1.67": [1280.0, 768.0],
    "1.75": [1344.0, 768.0],
    "2.0": [1408.0, 704.0],
    "2.09": [1472.0, 704.0],
    "2.4": [1536.0, 640.0],
    "2.5": [1600.0, 640.0],
    "3.0": [1728.0, 576.0],
    "4.0": [2048.0, 512.0],
}

ASPECT_RATIO_512_BIN = {
    "0.25": [256.0, 1024.0],
    "0.28": [256.0, 928.0],
    "0.32": [288.0, 896.0],
    "0.33": [288.0, 864.0],
    "0.35": [288.0, 832.0],
    "0.4": [320.0, 800.0],
    "0.42": [320.0, 768.0],
    "0.48": [352.0, 736.0],
    "0.5": [352.0, 704.0],
    "0.52": [352.0, 672.0],
    "0.57": [384.0, 672.0],
    "0.6": [384.0, 640.0],
    "0.68": [416.0, 608.0],
    "0.72": [416.0, 576.0],
    "0.78": [448.0, 576.0],
    "0.82": [448.0, 544.0],
    "0.88": [480.0, 544.0],
    "0.94": [480.0, 512.0],
    "1.0": [512.0, 512.0],
    "1.07": [512.0, 480.0],
    "1.13": [544.0, 480.0],
    "1.21": [544.0, 448.0],
    "1.29": [576.0, 448.0],
    "1.38": [576.0, 416.0],
    "1.46": [608.0, 416.0],
    "1.67": [640.0, 384.0],
    "1.75": [672.0, 384.0],
    "2.0": [704.0, 352.0],
    "2.09": [736.0, 352.0],
    "2.4": [768.0, 320.0],
    "2.5": [800.0, 320.0],
    "3.0": [864.0, 288.0],
    "4.0": [1024.0, 256.0],
}