fffiloni's picture
Update app.py
672cfcb
raw
history blame
2.95 kB
import gradio as gr
from huggingface_hub import login
import os
hf_token = os.environ.get("HF_TOKEN")
login(token=hf_token)
from diffusers import ControlNetModel, StableDiffusionXLControlNetPipeline, AutoencoderKL
from diffusers.utils import load_image
from PIL import Image
import torch
import numpy as np
import cv2
controlnet = ControlNetModel.from_pretrained(
"diffusers/controlnet-canny-sdxl-1.0",
torch_dtype=torch.float16
)
#vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16)
pipe = StableDiffusionXLControlNetPipeline.from_pretrained(
"stabilityai/stable-diffusion-xl-base-1.0",
controlnet=controlnet,
#vae=vae,
torch_dtype=torch.float16,
variant="fp16",
use_safetensors=True
)
pipe.to("cuda")
generator = torch.Generator(device="cuda")
#pipe.enable_model_cpu_offload()
def infer(model_name, image_in, prompt, controlnet_conditioning_scale, guidance_scale, seed):
custom_model = model_name
# This is where you load your trained weights
pipe.load_lora_weights(custom_model, weight_name="pytorch_lora_weights.safetensors", use_auth_token=True)
prompt = prompt
negative_prompt = "extra digit, fewer digits, cropped, worst quality, low quality, glitch, deformed, mutated, ugly, disfigured"
image = load_image(image_in)
#controlnet_conditioning_scale = 0.25 # recommended for good generalization
image = np.array(image)
image = cv2.Canny(image, 100, 200)
image = image[:, :, None]
image = np.concatenate([image, image, image], axis=2)
image = Image.fromarray(image)
lora_scale= 0.9
images = pipe(
prompt,
negative_prompt=negative_prompt,
image=image,
controlnet_conditioning_scale=controlnet_conditioning_scale,
guidance_scale = guidance_scale,
num_inference_steps=50,
generator=generator.manual_seed(seed),
cross_attention_kwargs={"scale": lora_scale}
).images
images[0].save(f"hug_lab.png")
return f"hug_lab.png"
with gr.Blocks() as demo:
with gr.Column():
model_name = gr.Textbox(label="Model to use", placeholder="username/my_model")
image_in = gr.Image(source="upload", type="filepath")
prompt = gr.Textbox(label="Prompt")
guidance_scale = gr.Slider(label="Guidance Scale", minimum=1.0, maximum=10.0, step=0.1, value=7.5, type="float")
controlnet_conditioning_scale = gr.Slider(label="Controlnet conditioning Scale", minimum=0.1, maximum=0.9, step=0.01, value=0.5, type="float")
seed = gr.Slider(label="seed", minimum=0, maximum=500000, step=1, value=42)
submit_btn = gr.Button("Submit")
result = gr.Image(label="Result")
submit_btn.click(
fn = infer,
inputs = [model_name, image_in, prompt, controlnet_conditioning_scale, guidance_scale, seed],
outputs = [result]
)
demo.queue().launch()