Freak-ppa's picture
Upload 72 files
6d5e45b verified
raw
history blame
16.1 kB
import re
import torch
import os
import folder_paths
from comfy.clip_vision import clip_preprocess, Output
import comfy.utils
import comfy.model_management as model_management
try:
import torchvision.transforms.v2 as T
except ImportError:
import torchvision.transforms as T
def get_clipvision_file(preset):
preset = preset.lower()
clipvision_list = folder_paths.get_filename_list("clip_vision")
if preset.startswith("vit-g"):
pattern = r'(ViT.bigG.14.*39B.b160k|ipadapter.*sdxl|sdxl.*model\.(bin|safetensors))'
elif preset.startswith("kolors"):
pattern = r'(clip.vit.large.patch14.336\.(bin|safetensors))'
else:
pattern = r'(ViT.H.14.*s32B.b79K|ipadapter.*sd15|sd1.?5.*model\.(bin|safetensors))'
clipvision_file = [e for e in clipvision_list if re.search(pattern, e, re.IGNORECASE)]
clipvision_file = folder_paths.get_full_path("clip_vision", clipvision_file[0]) if clipvision_file else None
return clipvision_file
def get_ipadapter_file(preset, is_sdxl):
preset = preset.lower()
ipadapter_list = folder_paths.get_filename_list("ipadapter")
is_insightface = False
lora_pattern = None
if preset.startswith("light"):
if is_sdxl:
raise Exception("light model is not supported for SDXL")
pattern = r'sd15.light.v11\.(safetensors|bin)$'
# if v11 is not found, try with the old version
if not [e for e in ipadapter_list if re.search(pattern, e, re.IGNORECASE)]:
pattern = r'sd15.light\.(safetensors|bin)$'
elif preset.startswith("standard"):
if is_sdxl:
pattern = r'ip.adapter.sdxl.vit.h\.(safetensors|bin)$'
else:
pattern = r'ip.adapter.sd15\.(safetensors|bin)$'
elif preset.startswith("vit-g"):
if is_sdxl:
pattern = r'ip.adapter.sdxl\.(safetensors|bin)$'
else:
pattern = r'sd15.vit.g\.(safetensors|bin)$'
elif preset.startswith("plus ("):
if is_sdxl:
pattern = r'plus.sdxl.vit.h\.(safetensors|bin)$'
else:
pattern = r'ip.adapter.plus.sd15\.(safetensors|bin)$'
elif preset.startswith("plus face"):
if is_sdxl:
pattern = r'plus.face.sdxl.vit.h\.(safetensors|bin)$'
else:
pattern = r'plus.face.sd15\.(safetensors|bin)$'
elif preset.startswith("full"):
if is_sdxl:
raise Exception("full face model is not supported for SDXL")
pattern = r'full.face.sd15\.(safetensors|bin)$'
elif preset.startswith("faceid portrait ("):
if is_sdxl:
pattern = r'portrait.sdxl\.(safetensors|bin)$'
else:
pattern = r'portrait.v11.sd15\.(safetensors|bin)$'
# if v11 is not found, try with the old version
if not [e for e in ipadapter_list if re.search(pattern, e, re.IGNORECASE)]:
pattern = r'portrait.sd15\.(safetensors|bin)$'
is_insightface = True
elif preset.startswith("faceid portrait unnorm"):
if is_sdxl:
pattern = r'portrait.sdxl.unnorm\.(safetensors|bin)$'
else:
raise Exception("portrait unnorm model is not supported for SD1.5")
is_insightface = True
elif preset == "faceid":
if is_sdxl:
pattern = r'faceid.sdxl\.(safetensors|bin)$'
lora_pattern = r'faceid.sdxl.lora\.safetensors$'
else:
pattern = r'faceid.sd15\.(safetensors|bin)$'
lora_pattern = r'faceid.sd15.lora\.safetensors$'
is_insightface = True
elif preset.startswith("faceid plus -"):
if is_sdxl:
raise Exception("faceid plus model is not supported for SDXL")
pattern = r'faceid.plus.sd15\.(safetensors|bin)$'
lora_pattern = r'faceid.plus.sd15.lora\.safetensors$'
is_insightface = True
elif preset.startswith("faceid plus v2"):
if is_sdxl:
pattern = r'faceid.plusv2.sdxl\.(safetensors|bin)$'
lora_pattern = r'faceid.plusv2.sdxl.lora\.safetensors$'
else:
pattern = r'faceid.plusv2.sd15\.(safetensors|bin)$'
lora_pattern = r'faceid.plusv2.sd15.lora\.safetensors$'
is_insightface = True
# Community's models
elif preset.startswith("composition"):
if is_sdxl:
pattern = r'plus.composition.sdxl\.safetensors$'
else:
pattern = r'plus.composition.sd15\.safetensors$'
elif preset.startswith("kolors"):
if is_sdxl:
pattern = r'(ip_adapter_plus_general|kolors.ip.adapter.plus)\.(safetensors|bin)$'
else:
raise Exception("Only supported for Kolors model")
else:
raise Exception(f"invalid type '{preset}'")
ipadapter_file = [e for e in ipadapter_list if re.search(pattern, e, re.IGNORECASE)]
ipadapter_file = folder_paths.get_full_path("ipadapter", ipadapter_file[0]) if ipadapter_file else None
return ipadapter_file, is_insightface, lora_pattern
def get_lora_file(pattern):
lora_list = folder_paths.get_filename_list("loras")
lora_file = [e for e in lora_list if re.search(pattern, e, re.IGNORECASE)]
lora_file = folder_paths.get_full_path("loras", lora_file[0]) if lora_file else None
return lora_file
def ipadapter_model_loader(file):
model = comfy.utils.load_torch_file(file, safe_load=True)
if file.lower().endswith(".safetensors"):
st_model = {"image_proj": {}, "ip_adapter": {}}
for key in model.keys():
if key.startswith("image_proj."):
st_model["image_proj"][key.replace("image_proj.", "")] = model[key]
elif key.startswith("ip_adapter."):
st_model["ip_adapter"][key.replace("ip_adapter.", "")] = model[key]
model = st_model
del st_model
if not "ip_adapter" in model.keys() or not model["ip_adapter"]:
raise Exception("invalid IPAdapter model {}".format(file))
if 'plusv2' in file.lower():
model["faceidplusv2"] = True
if 'unnorm' in file.lower():
model["portraitunnorm"] = True
return model
def insightface_loader(provider):
try:
from insightface.app import FaceAnalysis
except ImportError as e:
raise Exception(e)
path = os.path.join(folder_paths.models_dir, "insightface")
model = FaceAnalysis(name="buffalo_l", root=path, providers=[provider + 'ExecutionProvider',])
model.prepare(ctx_id=0, det_size=(640, 640))
return model
def split_tiles(embeds, num_split):
_, H, W, _ = embeds.shape
out = []
for x in embeds:
x = x.unsqueeze(0)
h, w = H // num_split, W // num_split
x_split = torch.cat([x[:, i*h:(i+1)*h, j*w:(j+1)*w, :] for i in range(num_split) for j in range(num_split)], dim=0)
out.append(x_split)
x_split = torch.stack(out, dim=0)
return x_split
def merge_hiddenstates(x, tiles):
chunk_size = tiles*tiles
x = x.split(chunk_size)
out = []
for embeds in x:
num_tiles = embeds.shape[0]
tile_size = int((embeds.shape[1]-1) ** 0.5)
grid_size = int(num_tiles ** 0.5)
# Extract class tokens
class_tokens = embeds[:, 0, :] # Save class tokens: [num_tiles, embeds[-1]]
avg_class_token = class_tokens.mean(dim=0, keepdim=True).unsqueeze(0) # Average token, shape: [1, 1, embeds[-1]]
patch_embeds = embeds[:, 1:, :] # Shape: [num_tiles, tile_size^2, embeds[-1]]
reshaped = patch_embeds.reshape(grid_size, grid_size, tile_size, tile_size, embeds.shape[-1])
merged = torch.cat([torch.cat([reshaped[i, j] for j in range(grid_size)], dim=1)
for i in range(grid_size)], dim=0)
merged = merged.unsqueeze(0) # Shape: [1, grid_size*tile_size, grid_size*tile_size, embeds[-1]]
# Pool to original size
pooled = torch.nn.functional.adaptive_avg_pool2d(merged.permute(0, 3, 1, 2), (tile_size, tile_size)).permute(0, 2, 3, 1)
flattened = pooled.reshape(1, tile_size*tile_size, embeds.shape[-1])
# Add back the class token
with_class = torch.cat([avg_class_token, flattened], dim=1) # Shape: original shape
out.append(with_class)
out = torch.cat(out, dim=0)
return out
def merge_embeddings(x, tiles): # TODO: this needs so much testing that I don't even
chunk_size = tiles*tiles
x = x.split(chunk_size)
out = []
for embeds in x:
num_tiles = embeds.shape[0]
grid_size = int(num_tiles ** 0.5)
tile_size = int(embeds.shape[1] ** 0.5)
reshaped = embeds.reshape(grid_size, grid_size, tile_size, tile_size)
# Merge the tiles
merged = torch.cat([torch.cat([reshaped[i, j] for j in range(grid_size)], dim=1)
for i in range(grid_size)], dim=0)
merged = merged.unsqueeze(0) # Shape: [1, grid_size*tile_size, grid_size*tile_size]
# Pool to original size
pooled = torch.nn.functional.adaptive_avg_pool2d(merged, (tile_size, tile_size)) # pool to [1, tile_size, tile_size]
pooled = pooled.flatten(1) # flatten to [1, tile_size^2]
out.append(pooled)
out = torch.cat(out, dim=0)
return out
def encode_image_masked(clip_vision, image, mask=None, batch_size=0, tiles=1, ratio=1.0, clipvision_size=224):
# full image embeds
embeds = encode_image_masked_(clip_vision, image, mask, batch_size, clipvision_size=clipvision_size)
tiles = min(tiles, 16)
if tiles > 1:
# split in tiles
image_split = split_tiles(image, tiles)
# get the embeds for each tile
embeds_split = Output()
for i in image_split:
encoded = encode_image_masked_(clip_vision, i, mask, batch_size, clipvision_size=clipvision_size)
if not hasattr(embeds_split, "image_embeds"):
#embeds_split["last_hidden_state"] = encoded["last_hidden_state"]
embeds_split["image_embeds"] = encoded["image_embeds"]
embeds_split["penultimate_hidden_states"] = encoded["penultimate_hidden_states"]
else:
#embeds_split["last_hidden_state"] = torch.cat((embeds_split["last_hidden_state"], encoded["last_hidden_state"]), dim=0)
embeds_split["image_embeds"] = torch.cat((embeds_split["image_embeds"], encoded["image_embeds"]), dim=0)
embeds_split["penultimate_hidden_states"] = torch.cat((embeds_split["penultimate_hidden_states"], encoded["penultimate_hidden_states"]), dim=0)
#embeds_split['last_hidden_state'] = merge_hiddenstates(embeds_split['last_hidden_state'])
embeds_split["image_embeds"] = merge_embeddings(embeds_split["image_embeds"], tiles)
embeds_split["penultimate_hidden_states"] = merge_hiddenstates(embeds_split["penultimate_hidden_states"], tiles)
#embeds['last_hidden_state'] = torch.cat([embeds_split['last_hidden_state'], embeds['last_hidden_state']])
if embeds['image_embeds'].shape[0] > 1: # if we have more than one image we need to average the embeddings for consistency
embeds['image_embeds'] = embeds['image_embeds']*ratio + embeds_split['image_embeds']*(1-ratio)
embeds['penultimate_hidden_states'] = embeds['penultimate_hidden_states']*ratio + embeds_split['penultimate_hidden_states']*(1-ratio)
#embeds['image_embeds'] = (embeds['image_embeds']*ratio + embeds_split['image_embeds']) / 2
#embeds['penultimate_hidden_states'] = (embeds['penultimate_hidden_states']*ratio + embeds_split['penultimate_hidden_states']) / 2
else: # otherwise we can concatenate them, they can be averaged later
embeds['image_embeds'] = torch.cat([embeds['image_embeds']*ratio, embeds_split['image_embeds']])
embeds['penultimate_hidden_states'] = torch.cat([embeds['penultimate_hidden_states']*ratio, embeds_split['penultimate_hidden_states']])
#del embeds_split
return embeds
def encode_image_masked_(clip_vision, image, mask=None, batch_size=0, clipvision_size=224):
model_management.load_model_gpu(clip_vision.patcher)
outputs = Output()
if batch_size == 0:
batch_size = image.shape[0]
elif batch_size > image.shape[0]:
batch_size = image.shape[0]
image_batch = torch.split(image, batch_size, dim=0)
for img in image_batch:
img = img.to(clip_vision.load_device)
pixel_values = clip_preprocess(img, size=clipvision_size).float()
# TODO: support for multiple masks
if mask is not None:
pixel_values = pixel_values * mask.to(clip_vision.load_device)
out = clip_vision.model(pixel_values=pixel_values, intermediate_output=-2)
if not hasattr(outputs, "last_hidden_state"):
outputs["last_hidden_state"] = out[0].to(model_management.intermediate_device())
outputs["image_embeds"] = out[2].to(model_management.intermediate_device())
outputs["penultimate_hidden_states"] = out[1].to(model_management.intermediate_device())
else:
outputs["last_hidden_state"] = torch.cat((outputs["last_hidden_state"], out[0].to(model_management.intermediate_device())), dim=0)
outputs["image_embeds"] = torch.cat((outputs["image_embeds"], out[2].to(model_management.intermediate_device())), dim=0)
outputs["penultimate_hidden_states"] = torch.cat((outputs["penultimate_hidden_states"], out[1].to(model_management.intermediate_device())), dim=0)
del img, pixel_values, out
torch.cuda.empty_cache()
return outputs
def tensor_to_size(source, dest_size):
if isinstance(dest_size, torch.Tensor):
dest_size = dest_size.shape[0]
source_size = source.shape[0]
if source_size < dest_size:
shape = [dest_size - source_size] + [1]*(source.dim()-1)
source = torch.cat((source, source[-1:].repeat(shape)), dim=0)
elif source_size > dest_size:
source = source[:dest_size]
return source
def min_(tensor_list):
# return the element-wise min of the tensor list.
x = torch.stack(tensor_list)
mn = x.min(axis=0)[0]
return torch.clamp(mn, min=0)
def max_(tensor_list):
# return the element-wise max of the tensor list.
x = torch.stack(tensor_list)
mx = x.max(axis=0)[0]
return torch.clamp(mx, max=1)
# From https://github.com/Jamy-L/Pytorch-Contrast-Adaptive-Sharpening/
def contrast_adaptive_sharpening(image, amount):
img = T.functional.pad(image, (1, 1, 1, 1)).cpu()
a = img[..., :-2, :-2]
b = img[..., :-2, 1:-1]
c = img[..., :-2, 2:]
d = img[..., 1:-1, :-2]
e = img[..., 1:-1, 1:-1]
f = img[..., 1:-1, 2:]
g = img[..., 2:, :-2]
h = img[..., 2:, 1:-1]
i = img[..., 2:, 2:]
# Computing contrast
cross = (b, d, e, f, h)
mn = min_(cross)
mx = max_(cross)
diag = (a, c, g, i)
mn2 = min_(diag)
mx2 = max_(diag)
mx = mx + mx2
mn = mn + mn2
# Computing local weight
inv_mx = torch.reciprocal(mx)
amp = inv_mx * torch.minimum(mn, (2 - mx))
# scaling
amp = torch.sqrt(amp)
w = - amp * (amount * (1/5 - 1/8) + 1/8)
div = torch.reciprocal(1 + 4*w)
output = ((b + d + f + h)*w + e) * div
output = torch.nan_to_num(output)
output = output.clamp(0, 1)
return output
def tensor_to_image(tensor):
image = tensor.mul(255).clamp(0, 255).byte().cpu()
image = image[..., [2, 1, 0]].numpy()
return image
def image_to_tensor(image):
tensor = torch.clamp(torch.from_numpy(image).float() / 255., 0, 1)
tensor = tensor[..., [2, 1, 0]]
return tensor