Spaces:
Runtime error
Runtime error
import re | |
import torch | |
import os | |
import folder_paths | |
from comfy.clip_vision import clip_preprocess, Output | |
import comfy.utils | |
import comfy.model_management as model_management | |
try: | |
import torchvision.transforms.v2 as T | |
except ImportError: | |
import torchvision.transforms as T | |
def get_clipvision_file(preset): | |
preset = preset.lower() | |
clipvision_list = folder_paths.get_filename_list("clip_vision") | |
if preset.startswith("vit-g"): | |
pattern = r'(ViT.bigG.14.*39B.b160k|ipadapter.*sdxl|sdxl.*model\.(bin|safetensors))' | |
elif preset.startswith("kolors"): | |
pattern = r'(clip.vit.large.patch14.336\.(bin|safetensors))' | |
else: | |
pattern = r'(ViT.H.14.*s32B.b79K|ipadapter.*sd15|sd1.?5.*model\.(bin|safetensors))' | |
clipvision_file = [e for e in clipvision_list if re.search(pattern, e, re.IGNORECASE)] | |
clipvision_file = folder_paths.get_full_path("clip_vision", clipvision_file[0]) if clipvision_file else None | |
return clipvision_file | |
def get_ipadapter_file(preset, is_sdxl): | |
preset = preset.lower() | |
ipadapter_list = folder_paths.get_filename_list("ipadapter") | |
is_insightface = False | |
lora_pattern = None | |
if preset.startswith("light"): | |
if is_sdxl: | |
raise Exception("light model is not supported for SDXL") | |
pattern = r'sd15.light.v11\.(safetensors|bin)$' | |
# if v11 is not found, try with the old version | |
if not [e for e in ipadapter_list if re.search(pattern, e, re.IGNORECASE)]: | |
pattern = r'sd15.light\.(safetensors|bin)$' | |
elif preset.startswith("standard"): | |
if is_sdxl: | |
pattern = r'ip.adapter.sdxl.vit.h\.(safetensors|bin)$' | |
else: | |
pattern = r'ip.adapter.sd15\.(safetensors|bin)$' | |
elif preset.startswith("vit-g"): | |
if is_sdxl: | |
pattern = r'ip.adapter.sdxl\.(safetensors|bin)$' | |
else: | |
pattern = r'sd15.vit.g\.(safetensors|bin)$' | |
elif preset.startswith("plus ("): | |
if is_sdxl: | |
pattern = r'plus.sdxl.vit.h\.(safetensors|bin)$' | |
else: | |
pattern = r'ip.adapter.plus.sd15\.(safetensors|bin)$' | |
elif preset.startswith("plus face"): | |
if is_sdxl: | |
pattern = r'plus.face.sdxl.vit.h\.(safetensors|bin)$' | |
else: | |
pattern = r'plus.face.sd15\.(safetensors|bin)$' | |
elif preset.startswith("full"): | |
if is_sdxl: | |
raise Exception("full face model is not supported for SDXL") | |
pattern = r'full.face.sd15\.(safetensors|bin)$' | |
elif preset.startswith("faceid portrait ("): | |
if is_sdxl: | |
pattern = r'portrait.sdxl\.(safetensors|bin)$' | |
else: | |
pattern = r'portrait.v11.sd15\.(safetensors|bin)$' | |
# if v11 is not found, try with the old version | |
if not [e for e in ipadapter_list if re.search(pattern, e, re.IGNORECASE)]: | |
pattern = r'portrait.sd15\.(safetensors|bin)$' | |
is_insightface = True | |
elif preset.startswith("faceid portrait unnorm"): | |
if is_sdxl: | |
pattern = r'portrait.sdxl.unnorm\.(safetensors|bin)$' | |
else: | |
raise Exception("portrait unnorm model is not supported for SD1.5") | |
is_insightface = True | |
elif preset == "faceid": | |
if is_sdxl: | |
pattern = r'faceid.sdxl\.(safetensors|bin)$' | |
lora_pattern = r'faceid.sdxl.lora\.safetensors$' | |
else: | |
pattern = r'faceid.sd15\.(safetensors|bin)$' | |
lora_pattern = r'faceid.sd15.lora\.safetensors$' | |
is_insightface = True | |
elif preset.startswith("faceid plus -"): | |
if is_sdxl: | |
raise Exception("faceid plus model is not supported for SDXL") | |
pattern = r'faceid.plus.sd15\.(safetensors|bin)$' | |
lora_pattern = r'faceid.plus.sd15.lora\.safetensors$' | |
is_insightface = True | |
elif preset.startswith("faceid plus v2"): | |
if is_sdxl: | |
pattern = r'faceid.plusv2.sdxl\.(safetensors|bin)$' | |
lora_pattern = r'faceid.plusv2.sdxl.lora\.safetensors$' | |
else: | |
pattern = r'faceid.plusv2.sd15\.(safetensors|bin)$' | |
lora_pattern = r'faceid.plusv2.sd15.lora\.safetensors$' | |
is_insightface = True | |
# Community's models | |
elif preset.startswith("composition"): | |
if is_sdxl: | |
pattern = r'plus.composition.sdxl\.safetensors$' | |
else: | |
pattern = r'plus.composition.sd15\.safetensors$' | |
elif preset.startswith("kolors"): | |
if is_sdxl: | |
pattern = r'(ip_adapter_plus_general|kolors.ip.adapter.plus)\.(safetensors|bin)$' | |
else: | |
raise Exception("Only supported for Kolors model") | |
else: | |
raise Exception(f"invalid type '{preset}'") | |
ipadapter_file = [e for e in ipadapter_list if re.search(pattern, e, re.IGNORECASE)] | |
ipadapter_file = folder_paths.get_full_path("ipadapter", ipadapter_file[0]) if ipadapter_file else None | |
return ipadapter_file, is_insightface, lora_pattern | |
def get_lora_file(pattern): | |
lora_list = folder_paths.get_filename_list("loras") | |
lora_file = [e for e in lora_list if re.search(pattern, e, re.IGNORECASE)] | |
lora_file = folder_paths.get_full_path("loras", lora_file[0]) if lora_file else None | |
return lora_file | |
def ipadapter_model_loader(file): | |
model = comfy.utils.load_torch_file(file, safe_load=True) | |
if file.lower().endswith(".safetensors"): | |
st_model = {"image_proj": {}, "ip_adapter": {}} | |
for key in model.keys(): | |
if key.startswith("image_proj."): | |
st_model["image_proj"][key.replace("image_proj.", "")] = model[key] | |
elif key.startswith("ip_adapter."): | |
st_model["ip_adapter"][key.replace("ip_adapter.", "")] = model[key] | |
model = st_model | |
del st_model | |
if not "ip_adapter" in model.keys() or not model["ip_adapter"]: | |
raise Exception("invalid IPAdapter model {}".format(file)) | |
if 'plusv2' in file.lower(): | |
model["faceidplusv2"] = True | |
if 'unnorm' in file.lower(): | |
model["portraitunnorm"] = True | |
return model | |
def insightface_loader(provider): | |
try: | |
from insightface.app import FaceAnalysis | |
except ImportError as e: | |
raise Exception(e) | |
path = os.path.join(folder_paths.models_dir, "insightface") | |
model = FaceAnalysis(name="buffalo_l", root=path, providers=[provider + 'ExecutionProvider',]) | |
model.prepare(ctx_id=0, det_size=(640, 640)) | |
return model | |
def split_tiles(embeds, num_split): | |
_, H, W, _ = embeds.shape | |
out = [] | |
for x in embeds: | |
x = x.unsqueeze(0) | |
h, w = H // num_split, W // num_split | |
x_split = torch.cat([x[:, i*h:(i+1)*h, j*w:(j+1)*w, :] for i in range(num_split) for j in range(num_split)], dim=0) | |
out.append(x_split) | |
x_split = torch.stack(out, dim=0) | |
return x_split | |
def merge_hiddenstates(x, tiles): | |
chunk_size = tiles*tiles | |
x = x.split(chunk_size) | |
out = [] | |
for embeds in x: | |
num_tiles = embeds.shape[0] | |
tile_size = int((embeds.shape[1]-1) ** 0.5) | |
grid_size = int(num_tiles ** 0.5) | |
# Extract class tokens | |
class_tokens = embeds[:, 0, :] # Save class tokens: [num_tiles, embeds[-1]] | |
avg_class_token = class_tokens.mean(dim=0, keepdim=True).unsqueeze(0) # Average token, shape: [1, 1, embeds[-1]] | |
patch_embeds = embeds[:, 1:, :] # Shape: [num_tiles, tile_size^2, embeds[-1]] | |
reshaped = patch_embeds.reshape(grid_size, grid_size, tile_size, tile_size, embeds.shape[-1]) | |
merged = torch.cat([torch.cat([reshaped[i, j] for j in range(grid_size)], dim=1) | |
for i in range(grid_size)], dim=0) | |
merged = merged.unsqueeze(0) # Shape: [1, grid_size*tile_size, grid_size*tile_size, embeds[-1]] | |
# Pool to original size | |
pooled = torch.nn.functional.adaptive_avg_pool2d(merged.permute(0, 3, 1, 2), (tile_size, tile_size)).permute(0, 2, 3, 1) | |
flattened = pooled.reshape(1, tile_size*tile_size, embeds.shape[-1]) | |
# Add back the class token | |
with_class = torch.cat([avg_class_token, flattened], dim=1) # Shape: original shape | |
out.append(with_class) | |
out = torch.cat(out, dim=0) | |
return out | |
def merge_embeddings(x, tiles): # TODO: this needs so much testing that I don't even | |
chunk_size = tiles*tiles | |
x = x.split(chunk_size) | |
out = [] | |
for embeds in x: | |
num_tiles = embeds.shape[0] | |
grid_size = int(num_tiles ** 0.5) | |
tile_size = int(embeds.shape[1] ** 0.5) | |
reshaped = embeds.reshape(grid_size, grid_size, tile_size, tile_size) | |
# Merge the tiles | |
merged = torch.cat([torch.cat([reshaped[i, j] for j in range(grid_size)], dim=1) | |
for i in range(grid_size)], dim=0) | |
merged = merged.unsqueeze(0) # Shape: [1, grid_size*tile_size, grid_size*tile_size] | |
# Pool to original size | |
pooled = torch.nn.functional.adaptive_avg_pool2d(merged, (tile_size, tile_size)) # pool to [1, tile_size, tile_size] | |
pooled = pooled.flatten(1) # flatten to [1, tile_size^2] | |
out.append(pooled) | |
out = torch.cat(out, dim=0) | |
return out | |
def encode_image_masked(clip_vision, image, mask=None, batch_size=0, tiles=1, ratio=1.0, clipvision_size=224): | |
# full image embeds | |
embeds = encode_image_masked_(clip_vision, image, mask, batch_size, clipvision_size=clipvision_size) | |
tiles = min(tiles, 16) | |
if tiles > 1: | |
# split in tiles | |
image_split = split_tiles(image, tiles) | |
# get the embeds for each tile | |
embeds_split = Output() | |
for i in image_split: | |
encoded = encode_image_masked_(clip_vision, i, mask, batch_size, clipvision_size=clipvision_size) | |
if not hasattr(embeds_split, "image_embeds"): | |
#embeds_split["last_hidden_state"] = encoded["last_hidden_state"] | |
embeds_split["image_embeds"] = encoded["image_embeds"] | |
embeds_split["penultimate_hidden_states"] = encoded["penultimate_hidden_states"] | |
else: | |
#embeds_split["last_hidden_state"] = torch.cat((embeds_split["last_hidden_state"], encoded["last_hidden_state"]), dim=0) | |
embeds_split["image_embeds"] = torch.cat((embeds_split["image_embeds"], encoded["image_embeds"]), dim=0) | |
embeds_split["penultimate_hidden_states"] = torch.cat((embeds_split["penultimate_hidden_states"], encoded["penultimate_hidden_states"]), dim=0) | |
#embeds_split['last_hidden_state'] = merge_hiddenstates(embeds_split['last_hidden_state']) | |
embeds_split["image_embeds"] = merge_embeddings(embeds_split["image_embeds"], tiles) | |
embeds_split["penultimate_hidden_states"] = merge_hiddenstates(embeds_split["penultimate_hidden_states"], tiles) | |
#embeds['last_hidden_state'] = torch.cat([embeds_split['last_hidden_state'], embeds['last_hidden_state']]) | |
if embeds['image_embeds'].shape[0] > 1: # if we have more than one image we need to average the embeddings for consistency | |
embeds['image_embeds'] = embeds['image_embeds']*ratio + embeds_split['image_embeds']*(1-ratio) | |
embeds['penultimate_hidden_states'] = embeds['penultimate_hidden_states']*ratio + embeds_split['penultimate_hidden_states']*(1-ratio) | |
#embeds['image_embeds'] = (embeds['image_embeds']*ratio + embeds_split['image_embeds']) / 2 | |
#embeds['penultimate_hidden_states'] = (embeds['penultimate_hidden_states']*ratio + embeds_split['penultimate_hidden_states']) / 2 | |
else: # otherwise we can concatenate them, they can be averaged later | |
embeds['image_embeds'] = torch.cat([embeds['image_embeds']*ratio, embeds_split['image_embeds']]) | |
embeds['penultimate_hidden_states'] = torch.cat([embeds['penultimate_hidden_states']*ratio, embeds_split['penultimate_hidden_states']]) | |
#del embeds_split | |
return embeds | |
def encode_image_masked_(clip_vision, image, mask=None, batch_size=0, clipvision_size=224): | |
model_management.load_model_gpu(clip_vision.patcher) | |
outputs = Output() | |
if batch_size == 0: | |
batch_size = image.shape[0] | |
elif batch_size > image.shape[0]: | |
batch_size = image.shape[0] | |
image_batch = torch.split(image, batch_size, dim=0) | |
for img in image_batch: | |
img = img.to(clip_vision.load_device) | |
pixel_values = clip_preprocess(img, size=clipvision_size).float() | |
# TODO: support for multiple masks | |
if mask is not None: | |
pixel_values = pixel_values * mask.to(clip_vision.load_device) | |
out = clip_vision.model(pixel_values=pixel_values, intermediate_output=-2) | |
if not hasattr(outputs, "last_hidden_state"): | |
outputs["last_hidden_state"] = out[0].to(model_management.intermediate_device()) | |
outputs["image_embeds"] = out[2].to(model_management.intermediate_device()) | |
outputs["penultimate_hidden_states"] = out[1].to(model_management.intermediate_device()) | |
else: | |
outputs["last_hidden_state"] = torch.cat((outputs["last_hidden_state"], out[0].to(model_management.intermediate_device())), dim=0) | |
outputs["image_embeds"] = torch.cat((outputs["image_embeds"], out[2].to(model_management.intermediate_device())), dim=0) | |
outputs["penultimate_hidden_states"] = torch.cat((outputs["penultimate_hidden_states"], out[1].to(model_management.intermediate_device())), dim=0) | |
del img, pixel_values, out | |
torch.cuda.empty_cache() | |
return outputs | |
def tensor_to_size(source, dest_size): | |
if isinstance(dest_size, torch.Tensor): | |
dest_size = dest_size.shape[0] | |
source_size = source.shape[0] | |
if source_size < dest_size: | |
shape = [dest_size - source_size] + [1]*(source.dim()-1) | |
source = torch.cat((source, source[-1:].repeat(shape)), dim=0) | |
elif source_size > dest_size: | |
source = source[:dest_size] | |
return source | |
def min_(tensor_list): | |
# return the element-wise min of the tensor list. | |
x = torch.stack(tensor_list) | |
mn = x.min(axis=0)[0] | |
return torch.clamp(mn, min=0) | |
def max_(tensor_list): | |
# return the element-wise max of the tensor list. | |
x = torch.stack(tensor_list) | |
mx = x.max(axis=0)[0] | |
return torch.clamp(mx, max=1) | |
# From https://github.com/Jamy-L/Pytorch-Contrast-Adaptive-Sharpening/ | |
def contrast_adaptive_sharpening(image, amount): | |
img = T.functional.pad(image, (1, 1, 1, 1)).cpu() | |
a = img[..., :-2, :-2] | |
b = img[..., :-2, 1:-1] | |
c = img[..., :-2, 2:] | |
d = img[..., 1:-1, :-2] | |
e = img[..., 1:-1, 1:-1] | |
f = img[..., 1:-1, 2:] | |
g = img[..., 2:, :-2] | |
h = img[..., 2:, 1:-1] | |
i = img[..., 2:, 2:] | |
# Computing contrast | |
cross = (b, d, e, f, h) | |
mn = min_(cross) | |
mx = max_(cross) | |
diag = (a, c, g, i) | |
mn2 = min_(diag) | |
mx2 = max_(diag) | |
mx = mx + mx2 | |
mn = mn + mn2 | |
# Computing local weight | |
inv_mx = torch.reciprocal(mx) | |
amp = inv_mx * torch.minimum(mn, (2 - mx)) | |
# scaling | |
amp = torch.sqrt(amp) | |
w = - amp * (amount * (1/5 - 1/8) + 1/8) | |
div = torch.reciprocal(1 + 4*w) | |
output = ((b + d + f + h)*w + e) * div | |
output = torch.nan_to_num(output) | |
output = output.clamp(0, 1) | |
return output | |
def tensor_to_image(tensor): | |
image = tensor.mul(255).clamp(0, 255).byte().cpu() | |
image = image[..., [2, 1, 0]].numpy() | |
return image | |
def image_to_tensor(image): | |
tensor = torch.clamp(torch.from_numpy(image).float() / 255., 0, 1) | |
tensor = tensor[..., [2, 1, 0]] | |
return tensor | |