Freak-ppa's picture
Upload 1452 files
b33b762 verified
raw
history blame
4.43 kB
import torch
import numpy as np
import comfy.model_management as model_management
import comfy.utils
# Requires comfyui_controlnet_aux funcsions and classes
from ..utils import common_annotator_call, MAX_RESOLUTION
def get_intensity_mask(image_array, lower_bound, upper_bound):
mask = image_array[:, :, 0]
mask = np.where((mask >= lower_bound) & (mask <= upper_bound), mask, 0)
mask = np.expand_dims(mask, 2).repeat(3, axis=2)
return mask
def combine_layers(base_layer, top_layer):
mask = top_layer.astype(bool)
temp = 1 - (1 - top_layer) * (1 - base_layer)
result = base_layer * (~mask) + temp * mask
return result
class AnyLinePreprocessor:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"image": ("IMAGE",),
"merge_with_lineart": (["lineart_standard", "lineart_realisitic", "lineart_anime", "manga_line"], {"default": "lineart_standard"}),
"resolution": ("INT", {"default": 1280, "min": 512, "max": MAX_RESOLUTION, "step": 8})
},
"optional": {
"lineart_lower_bound": ("FLOAT", {"default": 0, "min": 0, "max": 1, "step": 0.01}),
"lineart_upper_bound": ("FLOAT", {"default": 1, "min": 0, "max": 1, "step": 0.01}),
"object_min_size": ("INT", {"default": 36, "min": 1, "max": MAX_RESOLUTION}),
"object_connectivity": ("INT", {"default": 1, "min": 1, "max": MAX_RESOLUTION}),
}
}
RETURN_TYPES = ("IMAGE",)
RETURN_NAMES = ("image",)
FUNCTION = "get_anyline"
CATEGORY = "ControlNet Preprocessors/Line Extractors"
def __init__(self):
self.device = model_management.get_torch_device()
def get_anyline(self, image, merge_with_lineart, resolution, lineart_lower_bound=0, lineart_upper_bound=1, object_min_size=36, object_connectivity=1):
from controlnet_aux.teed import TEDDetector
from skimage import morphology
pbar = comfy.utils.ProgressBar(3)
# Process the image with MTEED model
mteed_model = TEDDetector.from_pretrained("TheMistoAI/MistoLine", "MTEED.pth", subfolder="Anyline").to(self.device)
mteed_result = common_annotator_call(mteed_model, image, resolution=resolution, show_pbar=False)
mteed_result = mteed_result.numpy()
del mteed_model
pbar.update(1)
# Process the image with the lineart standard preprocessor
if merge_with_lineart == "lineart_standard":
from controlnet_aux.lineart_standard import LineartStandardDetector
lineart_standard_detector = LineartStandardDetector()
lineart_result = common_annotator_call(lineart_standard_detector, image, guassian_sigma=2, intensity_threshold=3, resolution=resolution, show_pbar=False).numpy()
del lineart_standard_detector
else:
from controlnet_aux.lineart import LineartDetector
from controlnet_aux.lineart_anime import LineartAnimeDetector
from controlnet_aux.manga_line import LineartMangaDetector
lineart_detector = dict(lineart_realisitic=LineartDetector, lineart_anime=LineartAnimeDetector, manga_line=LineartMangaDetector)[merge_with_lineart]
lineart_detector = lineart_detector.from_pretrained().to(self.device)
lineart_result = common_annotator_call(lineart_detector, image, resolution=resolution, show_pbar=False).numpy()
del lineart_detector
pbar.update(1)
final_result = []
for i in range(len(image)):
_lineart_result = get_intensity_mask(lineart_result[i], lower_bound=lineart_lower_bound, upper_bound=lineart_upper_bound)
_cleaned = morphology.remove_small_objects(_lineart_result.astype(bool), min_size=object_min_size, connectivity=object_connectivity)
_lineart_result = _lineart_result * _cleaned
_mteed_result = mteed_result[i]
# Combine the results
final_result.append(torch.from_numpy(combine_layers(_mteed_result, _lineart_result)))
pbar.update(1)
return (torch.stack(final_result),)
NODE_CLASS_MAPPINGS = {
"AnyLineArtPreprocessor_aux": AnyLinePreprocessor
}
NODE_DISPLAY_NAME_MAPPINGS = {
"AnyLineArtPreprocessor_aux": "AnyLine Lineart"
}