dalle-mini / dev /README.md
boris's picture
fix: typo
7067c27
|
raw
history blame
4 kB
# Development Instructions for TPU
## Setup
- Apply to the [TRC program](https://sites.research.google/trc/) for free TPU credits if you're elligible.
- Follow the [Cloud TPU VM User's Guide](https://cloud.google.com/tpu/docs/users-guide-tpu-vm) to set up gcloud.
- Verify `gcloud config list`, in particular account, project & zone.
- Create a TPU VM per the guide and connect to it.
When needing a larger disk:
- Create a balanced persistent disk (SSD, so pricier than default HDD but much faster): `gcloud compute disks create DISK_NAME --size SIZE_IN_GB --type pd-balanced`
- Attach the disk to your instance by adding `--data-disk source=REF` per ["Adding a persistent disk to a TPU VM" guide](https://cloud.google.com/tpu/docs/setup-persistent-disk), eg `gcloud alpha compute tpus tpu-vm create INSTANCE_NAME --accelerator-type=v3-8 --version=v2-alpha --data-disk source=projects/tpu-toys/zones/europe-west4-a/disks/DISK_NAME`
- Format the partition as described in the guide.
- Make sure to set up automatic remount of disk at restart.
## Connect VS Code
- Find external IP in the UI or with `gcloud alpha compute tpus tpu-vm describe INSTANCE_NAME`
- Verify you can connect in terminal with `ssh EXTERNAL_IP -i ~/.ssh/google_compute_engine`
- Add the same command as ssh host in VS Code.
- Check config file
```
Host INSTANCE_NAME
HostName EXTERNAL_IP
IdentityFile ~/.ssh/google_compute_engine
```
## Environment configuration
### Use virtual environments (optional)
We recommend using virtual environments (such as conda, venv or pyenv-virtualenv).
If you want to use `pyenv` and `pyenv-virtualenv`:
- Installation
- [Set up build environment](https://github.com/pyenv/pyenv/wiki#suggested-build-environment)
- Use [pyenv-installer](https://github.com/pyenv/pyenv-installer): `curl https://pyenv.run | bash`
- bash set-up:
```bash
echo '\n'\
'# pyenv setup \n'\
'export PYENV_ROOT="$HOME/.pyenv" \n'\
'export PATH="$PYENV_ROOT/bin:$PATH" \n'\
'eval "$(pyenv init --path)" \n'\
'eval "$(pyenv init -)" \n'\
'eval "$(pyenv virtualenv-init -)"' >> ~/.bashrc
```
- Usage
- Install a python version: `pyenv install X.X.X`
- Create a virtual environment: `pyenv virtualenv 3.9.6 dalle_env`
- Activate: `pyenv activate dalle_env`
Note: you can auto-activate your environment at a location with `echo dalle_env >> .python-version`
### Tools
- Git
- `git config --global user.email "[email protected]"
- `git config --global user.name "First Last"
- Github CLI
- See [installation instructions](https://github.com/cli/cli/blob/trunk/docs/install_linux.md)
- `gh auth login`
- Direnv
- Install direnv: `sudo apt-get update && sudo apt-get install direnv`
- bash set-up:
```bash
echo -e '\n'\
'# direnv setup \n'\
'eval "$(direnv hook bash)" \n' >> ~/.bashrc
```
### Set up repo
- Clone repo: `gh repo clone borisdayma/dalle-mini`
- If using `pyenv-virtualenv`, auto-activate env: `echo dalle_env >> .python-version`
## Environment
- Install the following (use it later to update our dev requirements.txt)
```
requests
pillow
jupyterlab
ipywidgets
-e ../datasets[streaming]
-e ../transformers
-e ../webdataset
# JAX
--find-links https://storage.googleapis.com/jax-releases/libtpu_releases.html
jax[tpu]>=0.2.16
flax
```
- `transformers-cli login`
---
- set `HF_HOME="/mnt/disks/persist/cache/huggingface"` in `/etc/environment` and ensure you have required permissions, then restart.
## Working with datasets or models
- Install [Git LFS](https://github.com/git-lfs/git-lfs/wiki/Installation)
- Clone a dataset without large files: `GIT_LFS_SKIP_SMUDGE=1 git clone https://huggingface.co/datasets/.../...`
- Use a local [credential store](https://git-scm.com/book/en/v2/Git-Tools-Credential-Storage) for caching credentials
- Track specific extentions: `git lfs track "*.ext"`
- See files tracked with LFS with `git lfs ls-files`