File size: 12,155 Bytes
545659d
 
82e8e66
545659d
123829d
545659d
 
 
98ce923
545659d
722a74e
 
545659d
a0e06d8
6925966
 
545659d
 
 
f6913f3
 
ac2a5c7
6925966
ac2a5c7
 
 
52145da
6925966
 
f6913f3
 
 
 
 
 
545659d
10b0245
 
123829d
10b0245
123829d
2f95367
3f4959e
3bf2d11
2abae72
0c01bdf
5e79f53
 
545659d
 
 
 
98ce923
545659d
 
123829d
0501944
545659d
cbdb616
 
545659d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
645ddd1
 
4696931
 
545659d
 
 
 
 
f4cc18c
 
fdbb8b2
 
 
545659d
fdbb8b2
545659d
fdbb8b2
 
545659d
fdbb8b2
 
f6913f3
 
ac2a5c7
545659d
 
 
 
ac2a5c7
e3d2855
 
545659d
096998b
545659d
 
82e8e66
98ce923
545659d
 
 
 
 
f28cd01
e3d2855
 
58be8ed
 
 
764046f
58be8ed
 
 
 
 
545659d
fdbb8b2
 
545659d
 
 
 
8f7fb40
eee9496
047eeea
ceec5fa
047eeea
f6913f3
 
 
ac2a5c7
545659d
fdbb8b2
f6913f3
 
893bff0
722a74e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
df82fab
722a74e
7139a06
 
722a74e
 
 
 
 
2dca0e2
 
 
722a74e
 
47178d9
722a74e
47178d9
722a74e
893bff0
2e36d14
893bff0
69188ad
e05605e
4fdc6b1
47178d9
 
 
a0e06d8
722a74e
 
 
 
 
 
7210b32
a0e06d8
3ceba42
900284f
 
3ceba42
 
 
900284f
a0e06d8
722a74e
 
77b4467
722a74e
564b181
a0e06d8
722a74e
545659d
ed652cd
 
 
 
545659d
 
 
 
 
 
 
 
 
 
 
5e79f53
545659d
 
dddfbb8
 
69188ad
545659d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5e79f53
 
 
545659d
 
 
 
 
 
 
c3b945b
ed652cd
f7824e3
5a7c81b
c3b945b
69188ad
 
722a74e
c3b945b
be68ce1
6925966
 
b925b7e
c3b945b
cb5ba84
545659d
 
cb5ba84
545659d
 
 
722a74e
69188ad
545659d
d694431
545659d
d694431
722a74e
545659d
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
import gradio as gr
import cv2
from PIL import Image
import numpy as np
from transformers import pipeline
import os
import torch
import torch.nn.functional as F
from torchvision import transforms
from torchvision.transforms import Compose
import trimesh
from geometry import create_triangles
import tempfile
from functools import partial
import spaces
from zipfile import ZipFile

from depth_anything.dpt import DepthAnything
from depth_anything.util.transform import Resize, NormalizeImage, PrepareForNet
from moviepy.editor import *

def zip_files(files_in, files_out):
    with ZipFile("depth_result.zip", "w") as zipObj:
        for idx, file in enumerate(files_in):
            zipObj.write(file, file.split("/")[-1])
        for idx, file in enumerate(files_out):
            zipObj.write(file, file.split("/")[-1])
    return "depth_result.zip"

def create_video(frames, fps, type):
    print("building video result")
    clip = ImageSequenceClip(frames, fps=fps)
    clip.write_videofile(type + "_result.mp4", fps=fps)
    
    return type + "_result.mp4"

@torch.no_grad()
def predict_depth(model, image):
    return model(image)["depth"]

@spaces.GPU
def make_video(video_path, outdir='./vis_video_depth', encoder='vits'):
    if encoder not in ["vitl","vitb","vits"]:
        encoder = "vits"

    mapper = {"vits":"small","vitb":"base","vitl":"large"}
    # DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu'
    # model = DepthAnything.from_pretrained('LiheYoung/depth_anything_vitl14').to(DEVICE).eval()
    # Define path for temporary processed frames
    temp_frame_dir = tempfile.mkdtemp()
    
    margin_width = 50
    to_tensor_transform = transforms.ToTensor()

    DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu'
    # depth_anything = DepthAnything.from_pretrained('LiheYoung/depth_anything_{}14'.format(encoder)).to(DEVICE).eval()
    depth_anything = pipeline(task = "depth-estimation", model=f"nielsr/depth-anything-{mapper[encoder]}")
    
    # total_params = sum(param.numel() for param in depth_anything.parameters())
    # print('Total parameters: {:.2f}M'.format(total_params / 1e6))
    
    transform = Compose([
        Resize(
            width=518,
            height=518,
            resize_target=False,
            keep_aspect_ratio=True,
            ensure_multiple_of=14,
            resize_method='lower_bound',
            image_interpolation_method=cv2.INTER_CUBIC,
        ),
        NormalizeImage(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
        PrepareForNet(),
    ])

    if os.path.isfile(video_path):
        if video_path.endswith('txt'):
            with open(video_path, 'r') as f:
                lines = f.read().splitlines()
        else:
            filenames = [video_path]
    else:
        filenames = os.listdir(video_path)
        filenames = [os.path.join(video_path, filename) for filename in filenames if not filename.startswith('.')]
        filenames.sort()
    
    # os.makedirs(outdir, exist_ok=True)
    
    for k, filename in enumerate(filenames):
        file_size = os.path.getsize(filename)/1024/1024
        if file_size > 128.0:
            print(f'File size of {filename} larger than 128Mb, sorry!')
            return filename
        print('Progress {:}/{:},'.format(k+1, len(filenames)), 'Processing', filename)
        
        raw_video = cv2.VideoCapture(filename)
        frame_width, frame_height = int(raw_video.get(cv2.CAP_PROP_FRAME_WIDTH)), int(raw_video.get(cv2.CAP_PROP_FRAME_HEIGHT))
        frame_rate = int(raw_video.get(cv2.CAP_PROP_FPS))
        if frame_rate < 1:
            frame_rate = 1
        cframes = int(raw_video.get(cv2.CAP_PROP_FRAME_COUNT))
        print(f'frames: {cframes}, fps: {frame_rate}')
        # output_width = frame_width * 2 + margin_width
        
        #filename = os.path.basename(filename)
        # output_path = os.path.join(outdir, filename[:filename.rfind('.')] + '_video_depth.mp4')
        #with tempfile.NamedTemporaryFile(delete=False, suffix='.mp4') as tmpfile:
        #    output_path = tmpfile.name
        #out = cv2.VideoWriter(output_path, cv2.VideoWriter_fourcc(*"avc1"), frame_rate, (output_width, frame_height))
        #fourcc = cv2.VideoWriter_fourcc(*'mp4v')
        #out = cv2.VideoWriter(output_path, fourcc, frame_rate, (output_width, frame_height))
        count=0
        depth_frames = []
        orig_frames = []
        while raw_video.isOpened():
            ret, raw_frame = raw_video.read()
            if not ret:
                break

            frame = cv2.cvtColor(raw_frame, cv2.COLOR_BGR2RGB) / 255.0
            frame_pil =  Image.fromarray((frame * 255).astype(np.uint8))
            frame = transform({'image': frame})['image']
            
            frame = torch.from_numpy(frame).unsqueeze(0).to(DEVICE)
            
            
            depth = to_tensor_transform(predict_depth(depth_anything, frame_pil))

            depth = F.interpolate(depth[None], (frame_height, frame_width), mode='bilinear', align_corners=False)[0, 0]
            depth = (depth - depth.min()) / (depth.max() - depth.min()) * 255.0
            
            depth = depth.cpu().numpy().astype(np.uint8)
            depth_color = cv2.applyColorMap(depth, cv2.COLORMAP_BONE)
            depth_gray = cv2.cvtColor(depth_color, cv2.COLOR_RGBA2GRAY)
            depth_color = cv2.cvtColor(depth_gray, cv2.COLOR_GRAY2RGB)

            # Remove white border around map:
            # define lower and upper limits of white
            white_lo = np.array([250,250,250])
            white_hi = np.array([255,255,255])
            # mask image to only select white
            mask = cv2.inRange(depth_color, white_lo, white_hi)
            # change image to black where we found white
            depth_color[mask>0] = (0,0,0)
            
            # split_region = np.ones((frame_height, margin_width, 3), dtype=np.uint8) * 255
            # combined_frame = cv2.hconcat([raw_frame, split_region, depth_color])
            
            # out.write(combined_frame)
            # frame_path = os.path.join(temp_frame_dir, f"frame_{count:05d}.png")
            # cv2.imwrite(frame_path, combined_frame)
            
            cv2.imwrite(f"f{count}.jpg", raw_frame)
            orig_frames.append(f"f{count}.jpg")
            cv2.imwrite(f"f{count}_dmap.jpg", depth_color)
            depth_frames.append(f"f{count}_dmap.jpg")
            count += 1

        final_vid = create_video(depth_frames, frame_rate, "depth")
        final_zip = zip_files(orig_frames, depth_frames)
        raw_video.release()
        # out.release()
        cv2.destroyAllWindows()
        
        return final_vid, final_zip, orig_frames[0], depth_frames[0] #output_path

def depth_edges_mask(depth):
    """Returns a mask of edges in the depth map.
    Args:
    depth: 2D numpy array of shape (H, W) with dtype float32.
    Returns:
    mask: 2D numpy array of shape (H, W) with dtype bool.
    """
    # Compute the x and y gradients of the depth map.
    depth_dx, depth_dy = np.gradient(depth)
    # Compute the gradient magnitude.
    depth_grad = np.sqrt(depth_dx ** 2 + depth_dy ** 2)
    # Compute the edge mask.
    mask = depth_grad > 0.05
    return mask

def pano_depth_to_world_points(depth):
    """
    360 depth to world points
    given 2D depth is an equirectangular projection of a spherical image
    Treat depth as radius
    longitude : -pi to pi
    latitude : -pi/2 to pi/2
    """

    # Convert depth to radius
    radius = 255 - depth.flatten()

    lon = np.linspace(0, np.pi*2, depth.shape[1])
    lat = np.linspace(0, np.pi, depth.shape[0])
    lon, lat = np.meshgrid(lon, lat)
    lon = lon.flatten()
    lat = lat.flatten()

    # Convert to cartesian coordinates
    x = radius * np.cos(lon) * np.sin(lat)
    y = radius * np.cos(lat)
    z = radius * np.sin(lon) * np.sin(lat)

    pts3d = np.stack([x, y, z], axis=1)
    uv = np.stack([lon, lat], axis=1)

    return [pts3d, uv]

def rgb2gray(rgb):
    return np.dot(rgb[...,:3], [0.333, 0.333, 0.333])

def get_mesh(image, depth):
    gdepth = rgb2gray(depth)
    print('depth to gray - ok')
    points = pano_depth_to_world_points(gdepth)
    pts3d = points[0]
    uv = points[1]
    print('radius from depth - ok')

    # Create a trimesh mesh from the points
    # Each pixel is connected to its 4 neighbors
    # colors are the RGB values of the image

    verts = pts3d.reshape(-1, 3)
    triangles = create_triangles(image.shape[0], image.shape[1])
    print('triangles - ok')
    colors = image.reshape(-1, 3)
    #mesh = trimesh.Trimesh(vertices=verts, faces=triangles, vertex_colors=colors)
    mesh = trimesh.PointCloud(verts, colors=colors)
    #material = trimesh.visual.texture.SimpleMaterial(image=image)
    #texture = trimesh.visual.TextureVisuals(uv=uv, image=image, material=material)
    #mesh.visual = texture
    scene = trimesh.Scene([mesh])
    print('mesh - ok')

    # Save as glb
    glb_file = tempfile.NamedTemporaryFile(suffix='.glb', delete=False)
    glb_path = glb_file.name
    scene.export(glb_path)
    print('file - ok')
    return glb_path

def loadurl(url):
    return url


css = """
#img-display-container {
    max-height: 100vh;
    }
#img-display-input {
    max-height: 80vh;
    }
#img-display-output {
    max-height: 80vh;
    }
"""


title = "# Depth Anything Video Demo"
description = """Depth Anything on full video files.  
Please refer to our [paper](https://arxiv.org/abs/2401.10891), [project page](https://depth-anything.github.io), or [github](https://github.com/LiheYoung/Depth-Anything) for more details.  
Mesh rendering from [ZoeDepth](https://huggingface.co/spaces/shariqfarooq/ZoeDepth) ([github](https://github.com/isl-org/ZoeDepth/tree/main/ui))."""

transform = Compose([
        Resize(
            width=518,
            height=518,
            resize_target=False,
            keep_aspect_ratio=True,
            ensure_multiple_of=14,
            resize_method='lower_bound',
            image_interpolation_method=cv2.INTER_CUBIC,
        ),
        NormalizeImage(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
        PrepareForNet(),
])

# @torch.no_grad()
# def predict_depth(model, image):
#     return model(image)

with gr.Blocks(css=css) as demo:
    gr.Markdown(title)
    gr.Markdown(description)
    gr.Markdown("### Video Depth Prediction demo")

    with gr.Row():
        with gr.Column():
            input_url = gr.Textbox(value="./examples/streetview.mp4", label="URL")
            input_video = gr.Video(label="Input Video", format="mp4")
            input_url.change(fn=loadurl, inputs=[input_url], outputs=[input_video])
            submit = gr.Button("Submit")
            output_frame = gr.Image(label="Frame", type='numpy')
            output_depth = gr.Image(label="Depth", type='numpy')
            render = gr.Button("Render")
        with gr.Column():
            model_type = gr.Dropdown([("small", "vits"), ("base", "vitb"), ("large", "vitl")], type="value", value="vits", label='Model Type')
            processed_video = gr.Video(label="Output Video", format="mp4")
            processed_zip = gr.File(label="Output Archive")
            result = gr.Model3D(label="3D Mesh", clear_color=[0.0, 0.0, 0.0, 0.0], camera_position=[0, 90, 0])
    
    def on_submit(uploaded_video,model_type):
                
        # Process the video and get the path of the output video
        output_video_path = make_video(uploaded_video,encoder=model_type)

        return output_video_path

    submit.click(on_submit, inputs=[input_video, model_type], outputs=[processed_video, processed_zip, output_frame, output_depth])
    render.click(partial(get_mesh), inputs=[output_frame, output_depth], outputs=[result])

    example_files = os.listdir('examples')
    example_files.sort()
    example_files = [os.path.join('examples', filename) for filename in example_files]
    examples = gr.Examples(examples=example_files, inputs=[input_video], outputs=[processed_video, processed_zip, output_frame, output_depth], fn=on_submit, cache_examples=True)
    

if __name__ == '__main__':
    demo.queue().launch()