freealise's picture
Update app.py
8380995 verified
import gradio as gr
import cv2
from PIL import Image
import numpy as np
#from transformers import pipeline
import os
import torch
import torch.nn.functional as F
from torchvision import transforms
from torchvision.transforms import Compose
#import open3d as o3d
import tempfile
from functools import partial
import spaces
from zipfile import ZipFile
from vincenty import vincenty
import json
#import DracoPy
from collections import Counter
import mediapy
#from depth_anything.dpt import DepthAnything
#from depth_anything.util.transform import Resize, NormalizeImage, PrepareForNet
from huggingface_hub import hf_hub_download
from huggingface_hub import snapshot_download
snapshot_download(repo_id="depth-anything/Depth-Anything-V2", repo_type="space", local_dir="./", allow_patterns=["*.py"], ignore_patterns=["app.py"])
from depth_anything_v2.dpt import DepthAnythingV2
DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu'
model_configs = {
'vits': {'encoder': 'vits', 'features': 64, 'out_channels': [48, 96, 192, 384]},
'vitb': {'encoder': 'vitb', 'features': 128, 'out_channels': [96, 192, 384, 768]},
'vitl': {'encoder': 'vitl', 'features': 256, 'out_channels': [256, 512, 1024, 1024]},
'vitg': {'encoder': 'vitg', 'features': 384, 'out_channels': [1536, 1536, 1536, 1536]}
}
encoder2name = {
'vits': 'Small',
'vitb': 'Base',
'vitl': 'Large',
'vitg': 'Giant', # we are undergoing company review procedures to release our giant model checkpoint
}
edge = []
gradient = None
params = { "fnum":0, "l":16 }
dcolor = []
pcolors = []
frame_selected = 0
frames = []
depths = []
masks = []
locations = []
mesh = []
mesh_n = []
scene = None
def zip_files(files_in, files_out):
with ZipFile("depth_result.zip", "w") as zipObj:
for idx, file in enumerate(files_in):
zipObj.write(file, file.split("/")[-1])
for idx, file in enumerate(files_out):
zipObj.write(file, file.split("/")[-1])
return "depth_result.zip"
def create_video(frames, fps, type):
print("building video result")
imgs = []
for j, img in enumerate(frames):
imgs.append(cv2.cvtColor(cv2.imread(img).astype(np.uint8), cv2.COLOR_BGR2RGB))
mediapy.write_video(type + "_result.mp4", imgs, fps=fps)
return type + "_result.mp4"
@torch.no_grad()
#@spaces.GPU
def predict_depth(image, model):
return model.infer_image(image)
#def predict_depth(model, image):
# return model(image)["depth"]
def make_video(video_path, outdir='./vis_video_depth', encoder='vits', remove_bg=False, maxc=16, maxd=16, lt="slider"):
if encoder not in ["vitl","vitb","vits","vitg"]:
encoder = "vits"
model_name = encoder2name[encoder]
model = DepthAnythingV2(**model_configs[encoder])
filepath = hf_hub_download(repo_id=f"depth-anything/Depth-Anything-V2-{model_name}", filename=f"depth_anything_v2_{encoder}.pth", repo_type="model")
state_dict = torch.load(filepath, map_location="cpu")
model.load_state_dict(state_dict)
model = model.to(DEVICE).eval()
#mapper = {"vits":"small","vitb":"base","vitl":"large"}
# DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu'
# model = DepthAnything.from_pretrained('LiheYoung/depth_anything_vitl14').to(DEVICE).eval()
# Define path for temporary processed frames
#temp_frame_dir = tempfile.mkdtemp()
#margin_width = 50
#to_tensor_transform = transforms.ToTensor()
#DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu'
# depth_anything = DepthAnything.from_pretrained('LiheYoung/depth_anything_{}14'.format(encoder)).to(DEVICE).eval()
#depth_anything = pipeline(task = "depth-estimation", model=f"nielsr/depth-anything-{mapper[encoder]}")
# total_params = sum(param.numel() for param in depth_anything.parameters())
# print('Total parameters: {:.2f}M'.format(total_params / 1e6))
#transform = Compose([
# Resize(
# width=518,
# height=518,
# resize_target=False,
# keep_aspect_ratio=True,
# ensure_multiple_of=14,
# resize_method='lower_bound',
# image_interpolation_method=cv2.INTER_CUBIC,
# ),
# NormalizeImage(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
# PrepareForNet(),
#])
if os.path.isfile(video_path):
if video_path.endswith('txt'):
with open(video_path, 'r') as f:
lines = f.read().splitlines()
else:
filenames = [video_path]
else:
filenames = os.listdir(video_path)
filenames = [os.path.join(video_path, filename) for filename in filenames if not filename.startswith('.')]
filenames.sort()
# os.makedirs(outdir, exist_ok=True)
for k, filename in enumerate(filenames):
file_size = os.path.getsize(filename)/1024/1024
if file_size > 128.0:
print(f'File size of {filename} larger than 128Mb, sorry!')
return filename
print('Progress {:}/{:},'.format(k+1, len(filenames)), 'Processing', filename)
raw_video = cv2.VideoCapture(filename)
frame_width, frame_height = int(raw_video.get(cv2.CAP_PROP_FRAME_WIDTH)), int(raw_video.get(cv2.CAP_PROP_FRAME_HEIGHT))
frame_rate = int(raw_video.get(cv2.CAP_PROP_FPS))
if frame_rate < 1:
frame_rate = 1
cframes = int(raw_video.get(cv2.CAP_PROP_FRAME_COUNT))
print(f'frames: {cframes}, fps: {frame_rate}')
# output_width = frame_width * 2 + margin_width
#filename = os.path.basename(filename)
# output_path = os.path.join(outdir, filename[:filename.rfind('.')] + '_video_depth.mp4')
#with tempfile.NamedTemporaryFile(delete=False, suffix='.mp4') as tmpfile:
# output_path = tmpfile.name
#out = cv2.VideoWriter(output_path, cv2.VideoWriter_fourcc(*"avc1"), frame_rate, (output_width, frame_height))
#fourcc = cv2.VideoWriter_fourcc(*'mp4v')
#out = cv2.VideoWriter(output_path, fourcc, frame_rate, (output_width, frame_height))
global masks
count = 0
n = 0
depth_frames = []
orig_frames = []
thumbnail_old = []
while raw_video.isOpened():
ret, raw_frame = raw_video.read()
if not ret:
break
else:
print(count)
frame = cv2.cvtColor(raw_frame, cv2.COLOR_BGR2RGB) / 255.0
frame_pil = Image.fromarray((frame * 255).astype(np.uint8))
#frame = transform({'image': frame})['image']
#frame = torch.from_numpy(frame).unsqueeze(0).to(DEVICE)
raw_frame_bg = cv2.medianBlur(raw_frame, 255)
#
depth = predict_depth(raw_frame[:, :, ::-1], model)
depth_gray = ((depth - depth.min()) / (depth.max() - depth.min()) * 255.0).astype(np.uint8)
#
#depth = to_tensor_transform(predict_depth(depth_anything, frame_pil))
#depth = F.interpolate(depth[None], (frame_height, frame_width), mode='bilinear', align_corners=False)[0, 0]
#depth = (depth - depth.min()) / (depth.max() - depth.min()) * 255.0
#depth = depth.cpu().numpy().astype(np.uint8)
#depth_color = cv2.applyColorMap(depth, cv2.COLORMAP_BONE)
#depth_gray = cv2.cvtColor(depth_color, cv2.COLOR_RGBA2GRAY)
# Remove white border around map:
# define lower and upper limits of white
#white_lo = np.array([250,250,250])
#white_hi = np.array([255,255,255])
# mask image to only select white
mask = cv2.inRange(depth_gray[0:int(depth_gray.shape[0]/8*6.5)-1, 0:depth_gray.shape[1]], 250, 255)
# change image to black where we found white
depth_gray[0:int(depth_gray.shape[0]/8*6.5)-1, 0:depth_gray.shape[1]][mask>0] = 0
mask = cv2.inRange(depth_gray[int(depth_gray.shape[0]/8*6.5):depth_gray.shape[0], 0:depth_gray.shape[1]], 160, 255)
depth_gray[int(depth_gray.shape[0]/8*6.5):depth_gray.shape[0], 0:depth_gray.shape[1]][mask>0] = 160
depth_color = cv2.cvtColor(depth_gray, cv2.COLOR_GRAY2BGR)
# split_region = np.ones((frame_height, margin_width, 3), dtype=np.uint8) * 255
# combined_frame = cv2.hconcat([raw_frame, split_region, depth_color])
# out.write(combined_frame)
# frame_path = os.path.join(temp_frame_dir, f"frame_{count:05d}.png")
# cv2.imwrite(frame_path, combined_frame)
#raw_frame = cv2.cvtColor(raw_frame, cv2.COLOR_BGR2BGRA)
#raw_frame[:, :, 3] = 255
if remove_bg == False:
thumbnail = cv2.cvtColor(cv2.resize(raw_frame, (16,32)), cv2.COLOR_BGR2GRAY).flatten()
if len(thumbnail_old) > 0:
diff = thumbnail - thumbnail_old
#print(diff)
c = Counter(diff)
value, cc = c.most_common()[0]
if value == 0 and cc > int(16*32*0.8):
count += 1
continue
thumbnail_old = thumbnail
else:
#actual fg video is made out of odd (scene) and even (bg) frames stacked separately in same file
if count >= 0: #int(cframes/2):
#n = count-int(cframes/2)
depth_color_bg = cv2.medianBlur(depth_color, 255)
raw_frame_bg = cv2.medianBlur(raw_frame, 255)
diff_d = np.abs(depth_color.astype(np.int16)-depth_color_bg.astype(np.int16))
diff_c = np.abs(raw_frame.astype(np.int16)-raw_frame_bg.astype(np.int16))
#print('-most common')
#c = Counter(diff_d.flatten())
#value, cc = c.most_common()[0]
#print(value)
#print(cc)
#c = Counter(diff_c.flatten())
#value, cc = c.most_common()[0]
#print(value)
#print(cc)
print('-')
if lt == "median":
md_d = int(np.median(diff_d))
md_c = int(np.median(diff_c))
print('-median')
print(md_d)
print(md_c)
mask_bg_shadow = cv2.inRange(diff_d, np.array([0,0,0]), np.array([md_d,md_d,md_d]))
mask_bg_no_shadow = cv2.inRange(diff_c, np.array([0,0,0]), np.array([md_c,md_c,md_c]))
elif lt == "average":
avg_d = int(np.average(diff_d))
avg_c = int(np.average(diff_c))
print('-average')
print(avg_d)
print(avg_c)
mask_bg_shadow = cv2.inRange(diff_d, np.array([0,0,0]), np.array([avg_d,avg_d,avg_d]))
mask_bg_no_shadow = cv2.inRange(diff_c, np.array([0,0,0]), np.array([avg_c,avg_c,avg_c]))
elif lt == "slider":
mask_bg_shadow = cv2.inRange(diff_d, np.array([0,0,0]), np.array([maxd,maxd,maxd]))
mask_bg_no_shadow = cv2.inRange(diff_c, np.array([0,0,0]), np.array([maxc,maxc,maxc]))
#mask_no_shadow = cv2.bitwise_not(mask_shadow)
#stereo = cv2.StereoBM.create(numDisparities=16, blockSize=15)
#disparity = stereo.compute(raw_frame_l, raw_frame_r)
m = cv2.inRange(raw_frame, np.array([240,240,240]), np.array([255,255,255]))
raw_frame[m>0] = (239,239,239)
m = cv2.inRange(raw_frame, np.array([0,0,0]), np.array([15,15,15]))
raw_frame[m>0] = (16,16,16)
raw_frame[mask_bg_shadow>0] = (raw_frame[mask_bg_shadow>0] / 17).astype(np.uint8)
raw_frame[mask_bg_no_shadow>0] = (255,255,255)
else:
break
cv2.imwrite(f"f{count}.png", raw_frame)
orig_frames.append(f"f{count}.png")
cv2.imwrite(f"f{count}_dmap.png", depth_color)
depth_frames.append(f"f{count}_dmap.png")
cv2.imwrite(f"f{count}_mask.png", depth_gray)
masks.append(f"f{count}_mask.png")
count += 1
if remove_bg == True:
final_vid = create_video(orig_frames, frame_rate, "orig")
else:
final_vid = create_video(depth_frames, frame_rate, "depth")
final_zip = zip_files(orig_frames, depth_frames)
raw_video.release()
# out.release()
cv2.destroyAllWindows()
global gradient
global frame_selected
global depths
global frames
frames = orig_frames
depths = depth_frames
if depth_color.shape[0] == 2048: #height
gradient = cv2.imread('./gradient_large.png').astype(np.uint8)
elif depth_color.shape[0] == 1024:
gradient = cv2.imread('./gradient.png').astype(np.uint8)
else:
gradient = cv2.imread('./gradient_small.png').astype(np.uint8)
return final_vid, final_zip, frames, masks[frame_selected], depths #output_path
def depth_edges_mask(depth):
"""Returns a mask of edges in the depth map.
Args:
depth: 2D numpy array of shape (H, W) with dtype float32.
Returns:
mask: 2D numpy array of shape (H, W) with dtype bool.
"""
# Compute the x and y gradients of the depth map.
depth_dx, depth_dy = np.gradient(depth)
# Compute the gradient magnitude.
depth_grad = np.sqrt(depth_dx ** 2 + depth_dy ** 2)
# Compute the edge mask.
mask = depth_grad > 0.05
return mask
def pano_depth_to_world_points(depth):
"""
360 depth to world points
given 2D depth is an equirectangular projection of a spherical image
Treat depth as radius
longitude : -pi to pi
latitude : -pi/2 to pi/2
"""
# Convert depth to radius
radius = (255 - depth.flatten())
lon = np.linspace(0, np.pi*2, depth.shape[1])
lat = np.linspace(0, np.pi, depth.shape[0])
lon, lat = np.meshgrid(lon, lat)
lon = lon.flatten()
lat = lat.flatten()
pts3d = [[0,0,0]]
uv = [[0,0]]
nl = [[0,0,0]]
for i in range(0, 1): #(0,2)
for j in range(0, 1): #(0,2)
#rnd_lon = (np.random.rand(depth.shape[0]*depth.shape[1]) - 0.5) / 8
#rnd_lat = (np.random.rand(depth.shape[0]*depth.shape[1]) - 0.5) / 8
d_lon = lon + i/2 * np.pi*2 / depth.shape[1]
d_lat = lat + j/2 * np.pi / depth.shape[0]
nx = np.cos(d_lon) * np.sin(d_lat)
ny = np.cos(d_lat)
nz = np.sin(d_lon) * np.sin(d_lat)
# Convert to cartesian coordinates
x = radius * nx
y = radius * ny
z = radius * nz
pts = np.stack([x, y, z], axis=1)
uvs = np.stack([lon/np.pi/2, lat/np.pi], axis=1)
nls = np.stack([-nx, -ny, -nz], axis=1)
pts3d = np.concatenate((pts3d, pts), axis=0)
uv = np.concatenate((uv, uvs), axis=0)
nl = np.concatenate((nl, nls), axis=0)
#print(f'i: {i}, j: {j}')
j = j+1
i = i+1
return [pts3d, uv, nl]
def rgb2gray(rgb):
return np.dot(rgb[...,:3], [0.333, 0.333, 0.333])
def get_mesh(image, depth, blur_data, loadall):
global depths
global pcolors
global frame_selected
global mesh
global mesh_n
global scene
if loadall == False:
mesh = []
mesh_n = []
fnum = frame_selected
#print(image[fnum][0])
#print(depth["composite"])
depthc = cv2.imread(depths[frame_selected], cv2.IMREAD_UNCHANGED).astype(np.uint8)
blur_img = blur_image(cv2.imread(image[fnum][0], cv2.IMREAD_UNCHANGED).astype(np.uint8), depthc, blur_data)
gdepth = cv2.cvtColor(depthc, cv2.COLOR_RGB2GRAY) #rgb2gray(depthc)
print('depth to gray - ok')
points = pano_depth_to_world_points(gdepth)
pts3d = points[0]
uv = points[1]
nl = points[2]
print('radius from depth - ok')
# Create a trimesh mesh from the points
# Each pixel is connected to its 4 neighbors
# colors are the RGB values of the image
uvs = uv.reshape(-1, 2)
#print(uvs)
#verts = pts3d.reshape(-1, 3)
verts = [[0,0,0]]
normals = nl.reshape(-1, 3)
rgba = cv2.cvtColor(blur_img, cv2.COLOR_RGB2RGBA)
colors = rgba.reshape(-1, 4)
clrs = [[128,128,128,0]]
#for i in range(0,1): #(0,4)
#clrs = np.concatenate((clrs, colors), axis=0)
#i = i+1
#verts, clrs
#pcd = o3d.geometry.TriangleMesh.create_tetrahedron()
#pcd.compute_vertex_normals()
#pcd.paint_uniform_color((1.0, 1.0, 1.0))
#mesh.append(pcd)
#print(mesh[len(mesh)-1])
if not str(fnum) in mesh_n:
mesh_n.append(str(fnum))
print('mesh - ok')
# Save as glb
glb_file = tempfile.NamedTemporaryFile(suffix='.glb', delete=False)
#o3d.io.write_triangle_mesh(glb_file.name, pcd)
print('file - ok')
return "./TriangleWithoutIndices.gltf", glb_file.name, ",".join(mesh_n)
def blur_image(image, depth, blur_data):
blur_a = blur_data.split()
print(f'blur data {blur_data}')
blur_frame = image.copy()
j = 0
while j < 256:
i = 255 - j
blur_lo = np.array([i,i,i])
blur_hi = np.array([i+1,i+1,i+1])
blur_mask = cv2.inRange(depth, blur_lo, blur_hi)
print(f'kernel size {int(blur_a[j])}')
blur = cv2.GaussianBlur(image, (int(blur_a[j]), int(blur_a[j])), 0)
blur_frame[blur_mask>0] = blur[blur_mask>0]
j = j + 1
return blur_frame
def loadfile(f):
return f
def show_json(txt):
data = json.loads(txt)
print(txt)
i=0
while i < len(data[2]):
data[2][i] = data[2][i]["image"]["path"]
data[4][i] = data[4][i]["path"]
i=i+1
return data[0]["video"]["path"], data[1]["path"], data[2], data[3]["background"]["path"], data[4], data[5]
def select_frame(d, evt: gr.SelectData):
global dcolor
global frame_selected
global masks
global edge
if evt.index != frame_selected:
edge = []
mask = cv2.imread(depths[frame_selected]).astype(np.uint8)
cv2.imwrite(masks[frame_selected], cv2.cvtColor(mask, cv2.COLOR_RGB2GRAY))
frame_selected = evt.index
if len(dcolor) == 0:
bg = [127, 127, 127, 255]
else:
bg = "[" + str(dcolor[frame_selected])[1:-1] + ", 255]"
return masks[frame_selected], frame_selected, bg
def switch_rows(v):
global frames
global depths
if v == True:
print(depths[0])
return depths
else:
print(frames[0])
return frames
def optimize(v, d):
global pcolors
global dcolor
global frame_selected
global frames
global depths
if v == True:
ddepth = cv2.CV_16S
kernel_size = 3
l = 16
dcolor = []
for k, f in enumerate(frames):
frame = cv2.imread(frames[k]).astype(np.uint8)
# convert to np.float32
f = np.float32(frame.reshape((-1,3)))
# define criteria, number of clusters(K) and apply kmeans()
criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 4, 1.0)
ret,label,center=cv2.kmeans(f,l,None,criteria,4,cv2.KMEANS_RANDOM_CENTERS)
# Now convert back into uint8, and make original image
center = np.uint8(center)
res = center[label.flatten()]
frame = res.reshape((frame.shape))
depth = cv2.imread(depths[k]).astype(np.uint8)
mask = cv2.cvtColor(depth, cv2.COLOR_RGB2GRAY)
dcolor.append(bincount(frame[mask==0]))
print(dcolor[k])
clrs = Image.fromarray(frame.astype(np.uint8)).convert('RGB').getcolors()
i=0
while i<len(clrs):
clrs[i] = list(clrs[i][1])
clrs[i].append(255)
i=i+1
print(clrs)
pcolors = clrs
#mask = cv2.convertScaleAbs(cv2.Laplacian(cv2.cvtColor(frame, cv2.COLOR_RGB2GRAY), ddepth, ksize=kernel_size))
#mask[mask>0] = 255
#frame[mask==0] = (0, 0, 0)
cv2.imwrite(frames[k], frame)
#depth[mask==0] = (255,255,255)
mask = cv2.inRange(frame, np.array([dcolor[k][0]-8, dcolor[k][1]-8, dcolor[k][2]-8]), np.array([dcolor[k][0]+8, dcolor[k][1]+8, dcolor[k][2]+8]))
depth[mask>0] = (255,255,255)
depth[depth.shape[0]-1:depth.shape[0], 0:depth.shape[1]] = (160, 160, 160)
depth[0:1, 0:depth.shape[1]] = (0, 0, 0)
cv2.imwrite(depths[k], depth)
if d == False:
return frames, "[" + str(dcolor[frame_selected])[1:-1] + ", 255]"
else:
return depths, "[" + str(dcolor[frame_selected])[1:-1] + ", 255]"
def bincount(a):
a2D = a.reshape(-1,a.shape[-1])
col_range = (256, 256, 256) # generically : a2D.max(0)+1
a1D = np.ravel_multi_index(a2D.T, col_range)
return list(reversed(np.unravel_index(np.bincount(a1D).argmax(), col_range)))
def reset_mask():
global frame_selected
global masks
global depths
global edge
edge = []
mask = cv2.imread(depths[frame_selected]).astype(np.uint8)
cv2.imwrite(masks[frame_selected], cv2.cvtColor(mask, cv2.COLOR_RGB2GRAY))
return masks[frame_selected], depths
def apply_mask(d, b):
global frames
global frame_selected
global masks
global depths
global edge
edge = []
mask = cv2.cvtColor(d["layers"][0], cv2.COLOR_RGBA2GRAY)
mask[mask<255] = 0
b = b*2+1
dilation = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (2 * b + 1, 2 * b + 1), (b, b))
mask = cv2.dilate(mask, dilation)
mask_b = cv2.GaussianBlur(mask, (b,b), 0)
b = b*2+1
dilation = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (2 * b + 1, 2 * b + 1), (b, b))
dmask = cv2.dilate(mask, dilation)
dmask_b = cv2.GaussianBlur(dmask, (b,b), 0)
for k, mk in enumerate(masks):
if k != frame_selected and k < len(depths):
cv2.imwrite(masks[k], dmask)
frame = cv2.imread(frames[k], cv2.IMREAD_UNCHANGED).astype(np.uint8)
frame[:, :, 3] = dmask_b
cv2.imwrite(frames[k], frame)
frame = cv2.imread(frames[frame_selected], cv2.IMREAD_UNCHANGED).astype(np.uint8)
frame[:, :, 3] = 255 - mask_b
cv2.imwrite(frames[frame_selected], frame)
cv2.imwrite(masks[frame_selected], mask) #d["background"]
return masks[frame_selected], depths, frames
def draw_mask(l, t, v, d, evt: gr.EventData):
global depths
global params
global frame_selected
global masks
global gradient
global edge
points = json.loads(v)
pts = np.array(points, np.int32)
pts = pts.reshape((-1,1,2))
if len(edge) == 0 or params["fnum"] != frame_selected or params["l"] != l:
if len(edge) > 0:
d["background"] = cv2.imread(depths[frame_selected]).astype(np.uint8)
if d["background"].shape[0] == 2048: #height
gradient = cv2.imread('./gradient_large.png').astype(np.uint8)
elif d["background"].shape[0] == 1024:
gradient = cv2.imread('./gradient.png').astype(np.uint8)
else:
gradient = cv2.imread('./gradient_small.png').astype(np.uint8)
bg = cv2.cvtColor(d["background"], cv2.COLOR_RGBA2GRAY)
diff = np.abs(bg.astype(np.int16)-cv2.cvtColor(gradient, cv2.COLOR_RGBA2GRAY).astype(np.int16)).astype(np.uint8)
mask = cv2.inRange(diff, 0, t)
#kernel = np.ones((c,c),np.float32)/(c*c)
#mask = cv2.filter2D(mask,-1,kernel)
dilation = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (15-(t*2+1), 15-(t*2+1)), (t, t))
mask = cv2.dilate(mask, dilation)
#indices = np.arange(0,256) # List of all colors
#divider = np.linspace(0,255,l+1)[1] # we get a divider
#quantiz = np.intp(np.linspace(0,255,l)) # we get quantization colors
#color_levels = np.clip(np.intp(indices/divider),0,l-1) # color levels 0,1,2..
#palette = quantiz[color_levels]
#for i in range(l):
# bg[(bg >= i*255/l) & (bg < (i+1)*255/l)] = i*255/(l-1)
#bg = cv2.convertScaleAbs(palette[bg]).astype(np.uint8) # Converting image back to uint
res = np.float32(bg.reshape((-1,1)))
criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 4, 1.0)
ret,label,center=cv2.kmeans(res,l,None,criteria,4,cv2.KMEANS_PP_CENTERS)
center = np.uint8(center)
res = center[label.flatten()]
bg = res.reshape((bg.shape))
bg[mask>0] = 0
bg[bg==255] = 0
params["fnum"] = frame_selected
params["l"] = l
d["layers"][0] = cv2.cvtColor(bg, cv2.COLOR_GRAY2RGBA)
edge = bg.copy()
else:
bg = edge.copy()
x = points[len(points)-1][0]
y = points[len(points)-1][1]
#int(t*256/l)
mask = cv2.floodFill(bg, None, (x, y), 1, 0, 256, (4 | cv2.FLOODFILL_FIXED_RANGE))[2] #(4 | cv2.FLOODFILL_FIXED_RANGE | cv2.FLOODFILL_MASK_ONLY | 255 << 8)
# 255 << 8 tells to fill with the value 255)
mask = mask[1:mask.shape[0]-1, 1:mask.shape[1]-1]
d["layers"][0][mask>0] = (255,255,255,255)
return gr.ImageEditor(value=d)
def findNormals(format):
global depths
d_im = cv2.cvtColor(cv2.imread(depths[frame_selected]).astype(np.uint8), cv2.COLOR_BGR2GRAY)
zy, zx = np.gradient(d_im)
# You may also consider using Sobel to get a joint Gaussian smoothing and differentation
# to reduce noise
#zx = cv2.Sobel(d_im, cv2.CV_64F, 1, 0, ksize=5)
#zy = cv2.Sobel(d_im, cv2.CV_64F, 0, 1, ksize=5)
if format == "opengl":
zy = -zy
normal = np.dstack((np.ones_like(d_im), -zy, -zx))
n = np.linalg.norm(normal, axis=2)
normal[:, :, 0] /= n
normal[:, :, 1] /= n
normal[:, :, 2] /= n
# offset and rescale values to be in 0-255
normal += 1
normal /= 2
normal *= 255
return (normal[:, :, ::-1]).astype(np.uint8)
load_model="""
async(c, o, b, p, d, n, m)=>{
var intv = setInterval(function(){
if (document.getElementById("iframe3D")===null || typeof document.getElementById("iframe3D")==="undefined") {
try {
if (typeof BABYLON !== "undefined" && BABYLON.Engine && BABYLON.Engine.LastCreatedScene) {
BABYLON.Engine.LastCreatedScene.onAfterRenderObservable.add(function() { //onDataLoadedObservable
var then = new Date().getTime();
var now, delta;
const interval = 1000 / 25;
const tolerance = 0.1;
BABYLON.Engine.LastCreatedScene.getEngine().stopRenderLoop();
BABYLON.Engine.LastCreatedScene.getEngine().runRenderLoop(function () {
now = new Date().getTime();
delta = now - then;
then = now - (delta % interval);
if (delta >= interval - tolerance) {
BABYLON.Engine.LastCreatedScene.render();
}
});
var bg = JSON.parse(document.getElementById("bgcolor").getElementsByTagName("textarea")[0].value);
BABYLON.Engine.LastCreatedScene.getEngine().setHardwareScalingLevel(1.0);
for (var i=0; i<bg.length; i++) {
bg[i] /= 255;
}
BABYLON.Engine.LastCreatedScene.clearColor = new BABYLON.Color4(bg[0], bg[1], bg[2], bg[3]);
BABYLON.Engine.LastCreatedScene.ambientColor = new BABYLON.Color4(255,255,255,255);
//BABYLON.Engine.LastCreatedScene.autoClear = false;
//BABYLON.Engine.LastCreatedScene.autoClearDepthAndStencil = false;
for (var i=0; i<BABYLON.Engine.LastCreatedScene.getNodes().length; i++) {
if (BABYLON.Engine.LastCreatedScene.getNodes()[i].material) {
BABYLON.Engine.LastCreatedScene.getNodes()[i].material.pointSize = Math.ceil(Math.log2(Math.PI/document.getElementById("zoom").value));
}
}
BABYLON.Engine.LastCreatedScene.getAnimationRatio();
//BABYLON.Engine.LastCreatedScene.activeCamera.inertia = 0.0;
});
if (!BABYLON.Engine.LastCreatedScene.activeCamera.metadata) {
BABYLON.Engine.LastCreatedScene.activeCamera.metadata = {
pipeline: new BABYLON.DefaultRenderingPipeline("default", true, BABYLON.Engine.LastCreatedScene, [BABYLON.Engine.LastCreatedScene.activeCamera])
}
}
BABYLON.Engine.LastCreatedScene.activeCamera.metadata.pipeline.samples = 4;
BABYLON.Engine.LastCreatedScene.activeCamera.metadata.pipeline.imageProcessing.contrast = 1.0;
BABYLON.Engine.LastCreatedScene.activeCamera.metadata.pipeline.imageProcessing.exposure = 1.0;
BABYLON.Engine.LastCreatedScene.activeCamera.fov = document.getElementById("zoom").value;
document.getElementById("model3D").getElementsByTagName("canvas")[0].style.filter = "blur(" + Math.ceil(Math.log2(Math.PI/document.getElementById("zoom").value))/2.0*Math.sqrt(2.0) + "px)";
document.getElementById("model3D").getElementsByTagName("canvas")[0].oncontextmenu = function(e){e.preventDefault();}
document.getElementById("model3D").getElementsByTagName("canvas")[0].ondrag = function(e){e.preventDefault();}
if (o.indexOf(""+n) < 0) {
if (o != "") { o += ","; }
o += n;
}
//alert(o);
var o_ = o.split(",");
var q = BABYLON.Engine.LastCreatedScene.meshes;
for(i = 0; i < q.length; i++) {
let mesh = q[i];
mesh.dispose(false, true);
}
var dome = [];
for (var j=0; j<o_.length; j++) {
o_[j] = parseInt(o_[j]);
dome[j] = new BABYLON.PhotoDome("dome"+j, p[o_[j]].image.url,
{
resolution: 16,
size: 512
}, BABYLON.Engine.LastCreatedScene);
var q = BABYLON.Engine.LastCreatedScene.meshes[BABYLON.Engine.LastCreatedScene.meshes.length-2]._children;
for(i = 0; i < q.length; i++) {
let mesh = q[i];
mesh.dispose(false, true);
}
//BABYLON.Engine.LastCreatedScene.meshes[BABYLON.Engine.LastCreatedScene.meshes.length-1].material.needDepthPrePass = true;
//BABYLON.Engine.LastCreatedScene.meshes[BABYLON.Engine.LastCreatedScene.meshes.length-1].scaling.z = -1;
BABYLON.Engine.LastCreatedScene.meshes[BABYLON.Engine.LastCreatedScene.meshes.length-1].alphaIndex = o_.length-j;
BABYLON.Engine.LastCreatedScene.meshes[BABYLON.Engine.LastCreatedScene.meshes.length-1].material.diffuseTexture.hasAlpha = true;
BABYLON.Engine.LastCreatedScene.meshes[BABYLON.Engine.LastCreatedScene.meshes.length-1].material.useAlphaFromDiffuseTexture = true;
BABYLON.Engine.LastCreatedScene.meshes[BABYLON.Engine.LastCreatedScene.meshes.length-1].applyDisplacementMap(m[o_[j]].url, 0, 255, function(m){try{alert(BABYLON.Engine.Version);}catch(e){alert(e);}}, null, null, true, function(e){alert(e);});
}
clearInterval(intv);
}
} catch(e) {alert(e);}
} else if (BABYLON || BABYLON == null) {
try {
BABYLON = null;
if (document.getElementById("model3D").getElementsByTagName("canvas")[0]) {
document.getElementById("model3D").getElementsByTagName("canvas")[0].remove();
}
document.getElementById("iframe3D").src = "index.htm";
document.getElementById("iframe3D").onload = function() {
if (o.indexOf(""+n) < 0) {
if (o != "") { o += ","; }
o += n;
}
alert(o);
var o_ = o.split(",");
document.getElementById("iframe3D").contentDocument.getElementById("coords").value = c;
document.getElementById("iframe3D").contentDocument.getElementById("order").value = o;
document.getElementById("iframe3D").contentDocument.getElementById("bgcolor").value = b;
document.getElementById("iframe3D").contentDocument.getElementById("bgimage").value = "";
document.getElementById("iframe3D").contentDocument.getElementById("bgdepth").value = "";
for (var j=0; j<o_.length; j++) {
o_[j] = parseInt(o_[j]);
alert(o_[j]);
document.getElementById("iframe3D").contentDocument.getElementById("bgimage").value += p[o_[j]].image.url + ",";
document.getElementById("iframe3D").contentDocument.getElementById("bgdepth").value += m[o_[j]].url + ",";
}
}
toggleDisplay("model");
clearInterval(intv);
} catch(e) {alert(e)}
}
}, 40);
}
"""
js = """
async()=>{
console.log('Hi');
const chart = document.getElementById('chart');
const blur_in = document.getElementById('blur_in').getElementsByTagName('textarea')[0];
var md = false;
var xold = 128;
var yold = 32;
var a = new Array(256);
var l;
for (var i=0; i<256; i++) {
const hr = document.createElement('hr');
hr.style.backgroundColor = 'hsl(0,0%,' + (100-i/256*100) + '%)';
chart.appendChild(hr);
}
function resetLine() {
a.fill(1);
for (var i=0; i<256; i++) {
chart.childNodes[i].style.height = a[i] + 'px';
chart.childNodes[i].style.marginTop = '32px';
}
}
resetLine();
window.resetLine = resetLine;
function pointerDown(x, y) {
md = true;
xold = parseInt(x - chart.getBoundingClientRect().x);
yold = parseInt(y - chart.getBoundingClientRect().y);
chart.title = xold + ',' + yold;
}
window.pointerDown = pointerDown;
function pointerUp() {
md = false;
var evt = document.createEvent('Event');
evt.initEvent('input', true, false);
blur_in.dispatchEvent(evt);
chart.title = '';
}
window.pointerUp = pointerUp;
function lerp(y1, y2, mu) { return y1*(1-mu)+y2*mu; }
function drawLine(x, y) {
x = parseInt(x - chart.getBoundingClientRect().x);
y = parseInt(y - chart.getBoundingClientRect().y);
if (md === true && y >= 0 && y < 64 && x >= 0 && x < 256) {
if (y < 32) {
a[x] = Math.abs(32-y)*2 + 1;
chart.childNodes[x].style.height = a[x] + 'px';
chart.childNodes[x].style.marginTop = y + 'px';
for (var i=Math.min(xold, x)+1; i<Math.max(xold, x); i++) {
l = parseInt(lerp( yold, y, (i-xold)/(x-xold) ));
if (l < 32) {
a[i] = Math.abs(32-l)*2 + 1;
chart.childNodes[i].style.height = a[i] + 'px';
chart.childNodes[i].style.marginTop = l + 'px';
} else if (l < 64) {
a[i] = Math.abs(l-32)*2 + 1;
chart.childNodes[i].style.height = a[i] + 'px';
chart.childNodes[i].style.marginTop = (64-l) + 'px';
}
}
} else if (y < 64) {
a[x] = Math.abs(y-32)*2 + 1;
chart.childNodes[x].style.height = a[x] + 'px';
chart.childNodes[x].style.marginTop = (64-y) + 'px';
for (var i=Math.min(xold, x)+1; i<Math.max(xold, x); i++) {
l = parseInt(lerp( yold, y, (i-xold)/(x-xold) ));
if (l < 32) {
a[i] = Math.abs(32-l)*2 + 1;
chart.childNodes[i].style.height = a[i] + 'px';
chart.childNodes[i].style.marginTop = l + 'px';
} else if (l < 64) {
a[i] = Math.abs(l-32)*2 + 1;
chart.childNodes[i].style.height = a[i] + 'px';
chart.childNodes[i].style.marginTop = (64-l) + 'px';
}
}
}
blur_in.value = a.join(' ');
xold = x;
yold = y;
chart.title = xold + ',' + yold;
}
}
window.drawLine = drawLine;
}
"""
css = """
#img-display-container {
max-height: 100vh;
}
#img-display-input {
max-height: 80vh;
}
#img-display-output {
max-height: 80vh;
}
"""
title = "# Depth Anything V2 Video"
description = """**Depth Anything V2** on full video files.
Please refer to our [paper](https://arxiv.org/abs/2406.09414), [project page](https://depth-anything-v2.github.io), and [github](https://github.com/DepthAnything/Depth-Anything-V2) for more details."""
#transform = Compose([
# Resize(
# width=518,
# height=518,
# resize_target=False,
# keep_aspect_ratio=True,
# ensure_multiple_of=14,
# resize_method='lower_bound',
# image_interpolation_method=cv2.INTER_CUBIC,
# ),
# NormalizeImage(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
# PrepareForNet(),
#])
# @torch.no_grad()
# def predict_depth(model, image):
# return model(image)
with gr.Blocks(css=css, js=js) as demo:
gr.Markdown(title)
gr.Markdown(description)
gr.Markdown("### Video Depth Prediction demo")
with gr.Row():
with gr.Column():
input_json = gr.Textbox(elem_id="json_in", value="{}", label="JSON", interactive=False)
input_url = gr.Textbox(elem_id="url_in", value="./examples/streetview.mp4", label="URL")
input_video = gr.Video(label="Input Video", format="mp4")
input_url.input(fn=loadfile, inputs=[input_url], outputs=[input_video])
submit = gr.Button("Submit")
output_frame = gr.Gallery(label="Frames", preview=True, columns=8192, interactive=False)
output_switch = gr.Checkbox(label="Show depths")
output_depth = gr.Files(label="Depths", interactive=False)
output_switch.input(fn=switch_rows, inputs=[output_switch], outputs=[output_frame])
optimize_switch = gr.Checkbox(label="Optimize")
bgcolor = gr.Textbox(elem_id="bgcolor", value="[127, 127, 127, 255]", label="Background color", interactive=False)
optimize_switch.input(fn=optimize, inputs=[optimize_switch, output_switch], outputs=[output_frame, bgcolor])
output_mask = gr.ImageEditor(layers=False, sources=('upload', 'clipboard'), show_download_button=True, type="numpy", interactive=True, transforms=(None,), eraser=gr.Eraser(), brush=gr.Brush(default_size=0, colors=['black', '#505050', '#a0a0a0', 'white']), elem_id="image_edit")
with gr.Row():
selector = gr.HTML(value="""
<a href='#' id='selector' onclick='if (this.style.fontWeight!=\"bold\") {
this.style.fontWeight=\"bold\";
document.getElementById(\"image_edit\").getElementsByTagName(\"canvas\")[0].oncontextmenu = function(e){e.preventDefault();}
document.getElementById(\"image_edit\").getElementsByTagName(\"canvas\")[0].ondrag = function(e){e.preventDefault();}
document.getElementById(\"image_edit\").getElementsByTagName(\"canvas\")[0].onclick = function(e) {
var x = parseInt((e.clientX-e.target.getBoundingClientRect().x)*e.target.width/e.target.getBoundingClientRect().width);
var y = parseInt((e.clientY-e.target.getBoundingClientRect().y)*e.target.height/e.target.getBoundingClientRect().height);
var p = document.getElementById(\"mouse\").getElementsByTagName(\"textarea\")[0].value.slice(1, -1);
if (p != \"\") { p += \", \"; }
p += \"[\" + x + \", \" + y + \"]\";
document.getElementById(\"mouse\").getElementsByTagName(\"textarea\")[0].value = \"[\" + p + \"]\";
var evt = document.createEvent(\"Event\");
evt.initEvent(\"input\", true, false);
document.getElementById(\"mouse\").getElementsByTagName(\"textarea\")[0].dispatchEvent(evt);
}
document.getElementById(\"image_edit\").getElementsByTagName(\"canvas\")[0].onpointerdown = function(e) {
document.getElementById(\"mouse\").getElementsByTagName(\"textarea\")[0].style.borderColor = \"#a0a0a0\";
}
document.getElementById(\"image_edit\").getElementsByTagName(\"canvas\")[0].onpointerup = function(e) {
document.getElementById(\"mouse\").getElementsByTagName(\"textarea\")[0].style.borderColor = \"#ffffff\";
}
} else {
this.style.fontWeight=\"normal\";
document.getElementById(\"image_edit\").getElementsByTagName(\"canvas\")[0].onclick = null;
}' title='Select point' style='text-decoration:none;color:white;'>⊹ Select point</a> <a href='#' id='clear_select' onclick='
document.getElementById(\"mouse\").getElementsByTagName(\"textarea\")[0].value = \"[]\";
' title='Clear selection' style='text-decoration:none;color:white;'>✕ Clear</a>""")
apply = gr.Button("Apply", size='sm')
reset = gr.Button("Reset", size='sm')
with gr.Accordion(label="Edge", open=False):
levels = gr.Slider(label="Color levels", value=16, maximum=32, minimum=2, step=1)
tolerance = gr.Slider(label="Tolerance", value=1, maximum=7, minimum=0, step=1)
bsize = gr.Slider(label="Border size", value=15, maximum=256, minimum=1, step=2)
mouse = gr.Textbox(elem_id="mouse", value="""[]""", interactive=False)
mouse.input(fn=draw_mask, show_progress="minimal", inputs=[levels, tolerance, mouse, output_mask], outputs=[output_mask])
apply.click(fn=apply_mask, inputs=[output_mask, bsize], outputs=[output_mask, output_depth, output_frame])
reset.click(fn=reset_mask, inputs=None, outputs=[output_mask, output_depth])
normals_out = gr.Image(label="Normal map", interactive=False)
format_normals = gr.Radio(choices=["directx", "opengl"])
find_normals = gr.Button("Find normals")
find_normals.click(fn=findNormals, inputs=[format_normals], outputs=[normals_out])
with gr.Column():
model_type = gr.Dropdown([("small", "vits"), ("base", "vitb"), ("large", "vitl"), ("giant", "vitg")], type="value", value="vits", label='Model Type')
remove_bg = gr.Checkbox(label="Remove background")
with gr.Accordion(label="Background removal settings", open=False):
with gr.Tab(label="Maximums"):
max_c = gr.Slider(minimum=0, maximum=255, step=1, value=12, label="Color diff")
max_d = gr.Slider(minimum=0, maximum=255, step=1, value=12, label="Depth diff")
lt = gr.Radio(label="Maximum is", choices=["average", "median", "slider"], value="slider")
processed_video = gr.Video(label="Output Video", format="mp4", interactive=False)
processed_zip = gr.File(label="Output Archive", interactive=False)
result = gr.Model3D(label="3D Mesh", clear_color=[0.5, 0.5, 0.5, 0.0], camera_position=[0, 90, 0], zoom_speed=2.0, pan_speed=2.0, interactive=True, elem_id="model3D") #, display_mode="point_cloud"
chart_c = gr.HTML(elem_id="chart_c", value="""<div id='chart' onpointermove='window.drawLine(event.clientX, event.clientY);' onpointerdown='window.pointerDown(event.clientX, event.clientY);' onpointerup='window.pointerUp();' onpointerleave='window.pointerUp();' onpointercancel='window.pointerUp();' onclick='window.resetLine();'></div>
<style>
body {
user-select: none;
}
#chart hr {
width: 1px;
height: 1px;
clear: none;
border: 0;
padding:0;
display: inline-block;
position: relative;
vertical-align: top;
margin-top:32px;
}
#chart {
padding:0;
margin:0;
width:256px;
height:64px;
background-color:#808080;
touch-action: none;
}
</style>
""")
average = gr.HTML(value="""<label for='average'>Average</label><input id='average' type='range' style='width:256px;height:1em;' value='1' min='1' max='15' step='2' onclick='
var pts_a = document.getElementById(\"blur_in\").getElementsByTagName(\"textarea\")[0].value.split(\" \");
for (var i=0; i<256; i++) {
var avg = 0;
var div = this.value;
for (var j = i-parseInt(this.value/2); j <= i+parseInt(this.value/2); j++) {
if (pts_a[j]) {
avg += parseInt(pts_a[j]);
} else if (div > 1) {
div--;
}
}
pts_a[i] = Math.round((avg / div - 1) / 2) * 2 + 1;
document.getElementById(\"chart\").childNodes[i].style.height = pts_a[i] + \"px\";
document.getElementById(\"chart\").childNodes[i].style.marginTop = (64-pts_a[i])/2 + \"px\";
}
document.getElementById(\"blur_in\").getElementsByTagName(\"textarea\")[0].value = pts_a.join(\" \");
var evt = document.createEvent(\"Event\");
evt.initEvent(\"input\", true, false);
document.getElementById(\"blur_in\").getElementsByTagName(\"textarea\")[0].dispatchEvent(evt);
' oninput='
this.parentNode.childNodes[2].innerText = this.value;
' onchange='this.click();'/><span>1</span>""")
with gr.Accordion(label="Blur levels", open=False):
blur_in = gr.Textbox(elem_id="blur_in", label="Kernel size", show_label=False, interactive=False, value="1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1")
with gr.Accordion(label="Locations", open=False):
offset = gr.HTML(value="""<input type='text' id='kbrd' onpointerdown='this.style.color = \"white\";' onpointerup='this.style.color = \"auto\";' onpointermove='
try {
if (this.style.color!=\"auto\" && BABYLON) {
if (!BABYLON.Engine.LastCreatedScene.activeCamera.metadata) {
var evt = document.createEvent(\"Event\");
evt.initEvent(\"click\", true, false);
document.getElementById(\"reset_cam\").dispatchEvent(evt);
}
event.preventDefault();
if (BABYLON.Engine.LastCreatedScene.getNodes()[parseInt(document.getElementById(\"fnum\").getElementsByTagName(\"input\")[0].value)+1].rotationQuaternion) {
BABYLON.Engine.LastCreatedScene.getNodes()[parseInt(document.getElementById(\"fnum\").getElementsByTagName(\"input\")[0].value)+1].rotationQuaternion = null;
}
const dir = BABYLON.Engine.LastCreatedScene.activeCamera.getForwardRay().direction;
dir.y = 0; dir.normalize();
const angle = BABYLON.Vector3.GetAngleBetweenVectors(dir, BABYLON.Vector3.Forward(), BABYLON.Vector3.Up());
const x = event.clientX-this.getBoundingClientRect().x-128;
const y = event.clientY-this.getBoundingClientRect().y-64;
const angle_ = Math.atan2(y, x);
const r = Math.sqrt(Math.pow(y,2) + Math.pow(x,2));
BABYLON.Engine.LastCreatedScene.getNodes()[parseInt(document.getElementById(\"fnum\").getElementsByTagName(\"input\")[0].value)+1].position.z = r * Math.sin(-angle_-angle);
BABYLON.Engine.LastCreatedScene.getNodes()[parseInt(document.getElementById(\"fnum\").getElementsByTagName(\"input\")[0].value)+1].position.x = r * Math.cos(-angle_-angle);
}
} catch(e) {alert(e)}
' onkeydown='
if (BABYLON) {
if (!BABYLON.Engine.LastCreatedScene.activeCamera.metadata) {
var evt = document.createEvent(\"Event\");
evt.initEvent(\"click\", true, false);
document.getElementById(\"reset_cam\").dispatchEvent(evt);
}
event.preventDefault();
if (BABYLON.Engine.LastCreatedScene.getNodes()[parseInt(document.getElementById(\"fnum\").getElementsByTagName(\"input\")[0].value)+1].rotationQuaternion) {
BABYLON.Engine.LastCreatedScene.getNodes()[parseInt(document.getElementById(\"fnum\").getElementsByTagName(\"input\")[0].value)+1].rotationQuaternion = null;
}
try {
const dir = BABYLON.Engine.LastCreatedScene.activeCamera.getForwardRay().direction;
dir.y = 0; dir.normalize();
const angle = BABYLON.Vector3.GetAngleBetweenVectors(dir, BABYLON.Vector3.Forward(), BABYLON.Vector3.Up());
switch(event.key) {
case \"w\":
BABYLON.Engine.LastCreatedScene.getNodes()[parseInt(document.getElementById(\"fnum\").getElementsByTagName(\"input\")[0].value)+1].position.y += 1;
this.value = \"w ⬆ x\";
break;
case \"x\":
BABYLON.Engine.LastCreatedScene.getNodes()[parseInt(document.getElementById(\"fnum\").getElementsByTagName(\"input\")[0].value)+1].position.y -= 1;
this.value = \"w ⬇ x\";
break;
case \"a\":
const x = -1; const y = 0;
const angle_ = Math.atan2(y, x);
BABYLON.Engine.LastCreatedScene.getNodes()[parseInt(document.getElementById(\"fnum\").getElementsByTagName(\"input\")[0].value)+1].position.z += Math.sin(-angle_-angle);
this.value = \"a ⬅ d\";
break;
case \"d\":
const x = 1; const y = 0;
const angle_ = Math.atan2(y, x);
BABYLON.Engine.LastCreatedScene.getNodes()[parseInt(document.getElementById(\"fnum\").getElementsByTagName(\"input\")[0].value)+1].position.z += Math.sin(-angle_-angle);
this.value = \"a ➡ d\";
break;
case \"e\":
const x = 0; const y = -1;
const angle_ = Math.atan2(y, x);
BABYLON.Engine.LastCreatedScene.getNodes()[parseInt(document.getElementById(\"fnum\").getElementsByTagName(\"input\")[0].value)+1].position.x += Math.cos(-angle_-angle);
this.value = \"z ↗ e\";
break;
case \"z\":
const x = 0; const y = 1;
const angle_ = Math.atan2(y, x);
BABYLON.Engine.LastCreatedScene.getNodes()[parseInt(document.getElementById(\"fnum\").getElementsByTagName(\"input\")[0].value)+1].position.x += Math.cos(-angle_-angle);
this.value = \"z ↙ e\";
break;
case \"s\":
BABYLON.Engine.LastCreatedScene.getNodes()[parseInt(document.getElementById(\"fnum\").getElementsByTagName(\"input\")[0].value)+1].position.x = 0;
BABYLON.Engine.LastCreatedScene.getNodes()[parseInt(document.getElementById(\"fnum\").getElementsByTagName(\"input\")[0].value)+1].position.y = 0;
BABYLON.Engine.LastCreatedScene.getNodes()[parseInt(document.getElementById(\"fnum\").getElementsByTagName(\"input\")[0].value)+1].position.z = 0;
this.value = \"\";
break;
case \"t\":
BABYLON.Engine.LastCreatedScene.getNodes()[parseInt(document.getElementById(\"fnum\").getElementsByTagName(\"input\")[0].value)+1].rotation.z += Math.PI/256;
this.value = \"t 🔃 b\";
break;
case \"b\":
BABYLON.Engine.LastCreatedScene.getNodes()[parseInt(document.getElementById(\"fnum\").getElementsByTagName(\"input\")[0].value)+1].rotation.z -= Math.PI/256;
this.value = \"t 🔃 b\";
break;
case \"f\":
BABYLON.Engine.LastCreatedScene.getNodes()[parseInt(document.getElementById(\"fnum\").getElementsByTagName(\"input\")[0].value)+1].rotation.y -= Math.PI/256;
this.value = \"f 🔁 h\";
break;
case \"h\":
BABYLON.Engine.LastCreatedScene.getNodes()[parseInt(document.getElementById(\"fnum\").getElementsByTagName(\"input\")[0].value)+1].rotation.y += Math.PI/256;
this.value = \"f 🔁 h\";
break;
case \"y\":
BABYLON.Engine.LastCreatedScene.getNodes()[parseInt(document.getElementById(\"fnum\").getElementsByTagName(\"input\")[0].value)+1].rotation.x -= Math.PI/256;
this.value = \"v 🔄 y\";
break;
case \"v\":
BABYLON.Engine.LastCreatedScene.getNodes()[parseInt(document.getElementById(\"fnum\").getElementsByTagName(\"input\")[0].value)+1].rotation.x += Math.PI/256;
this.value = \"v 🔄 y\";
break;
case \"g\":
BABYLON.Engine.LastCreatedScene.getNodes()[parseInt(document.getElementById(\"fnum\").getElementsByTagName(\"input\")[0].value)+1].rotation.x = 0;
BABYLON.Engine.LastCreatedScene.getNodes()[parseInt(document.getElementById(\"fnum\").getElementsByTagName(\"input\")[0].value)+1].rotation.y = 0;
BABYLON.Engine.LastCreatedScene.getNodes()[parseInt(document.getElementById(\"fnum\").getElementsByTagName(\"input\")[0].value)+1].rotation.z = 0;
this.value = \"\";
break;
case \"i\":
BABYLON.Engine.LastCreatedScene.getNodes()[parseInt(document.getElementById(\"fnum\").getElementsByTagName(\"input\")[0].value)+1].scaling.y *= 256/255;
this.value = \"i ↕ ,\";
break;
case \",\":
BABYLON.Engine.LastCreatedScene.getNodes()[parseInt(document.getElementById(\"fnum\").getElementsByTagName(\"input\")[0].value)+1].scaling.y /= 256/255;
this.value = \"i ↕ ,\";
break;
case \"j\":
BABYLON.Engine.LastCreatedScene.getNodes()[parseInt(document.getElementById(\"fnum\").getElementsByTagName(\"input\")[0].value)+1].scaling.z /= 256/255;
this.value = \"j ↔ l\";
break;
case \"l\":
BABYLON.Engine.LastCreatedScene.getNodes()[parseInt(document.getElementById(\"fnum\").getElementsByTagName(\"input\")[0].value)+1].scaling.z *= 256/255;
this.value = \"j ↔ l\";
break;
case \"o\":
BABYLON.Engine.LastCreatedScene.getNodes()[parseInt(document.getElementById(\"fnum\").getElementsByTagName(\"input\")[0].value)+1].scaling.x /= 256/255;
this.value = \"m ⤢ o\";
break;
case \"m\":
BABYLON.Engine.LastCreatedScene.getNodes()[parseInt(document.getElementById(\"fnum\").getElementsByTagName(\"input\")[0].value)+1].scaling.x *= 256/255;
this.value = \"m ⤢ o\";
break;
case \"k\":
BABYLON.Engine.LastCreatedScene.getNodes()[parseInt(document.getElementById(\"fnum\").getElementsByTagName(\"input\")[0].value)+1].scaling.x = 1;
BABYLON.Engine.LastCreatedScene.getNodes()[parseInt(document.getElementById(\"fnum\").getElementsByTagName(\"input\")[0].value)+1].scaling.y = 1;
BABYLON.Engine.LastCreatedScene.getNodes()[parseInt(document.getElementById(\"fnum\").getElementsByTagName(\"input\")[0].value)+1].scaling.z = 1;
this.value = \"\";
break;
default:
this.value = \"\";
}
} catch(e) {alert(e)}
}
' style='height:128px;width:256px;user-select:none;touch-action:none;color:auto;background-color:transparent;border:1px solid gray;'/>
<pre id='keymap'>
` 1 2 3 4 5 6 7 8 9 0 - =
W E T Y I O { }
A-`S´-D F-`G´-H J-`K´-L ; '
Z´ X̀ V´ B̀ M´ `, . /
<a id='move' href='#'>move</a> <a id='rotate' href='#'>rotate</a> <a id='scale' href='#'>scale</a>
</pre>""")
selected = gr.Number(elem_id="fnum", value=0, minimum=0, maximum=256, interactive=False)
output_frame.select(fn=select_frame, inputs=[output_mask], outputs=[output_mask, selected, bgcolor])
example_coords = """[
{"lat": 50.07379596793083, "lng": 14.437146122950555, "heading": 152.70303, "pitch": 2.607833999999997},
{"lat": 50.073799567020004, "lng": 14.437146774240507, "heading": 151.12973, "pitch": 2.8672300000000064},
{"lat": 50.07377647505558, "lng": 14.437161000659017, "heading": 151.41025, "pitch": 3.4802200000000028},
{"lat": 50.07379496839027, "lng": 14.437148958238538, "heading": 151.93391, "pitch": 2.843050000000005},
{"lat": 50.073823157821664, "lng": 14.437124189538856, "heading": 152.95769, "pitch": 4.233024999999998}
]"""
coords = gr.Textbox(elem_id="coords", value=example_coords, label="Coordinates", interactive=False)
mesh_order = gr.Textbox(elem_id="order", value="", label="Order", interactive=False)
result_file = gr.File(elem_id="file3D", label="3D file", interactive=False)
html = gr.HTML(value="""<label for='zoom'>Zoom</label><input id='zoom' type='range' style='width:256px;height:1em;' value='0.8' min='0.157' max='1.57' step='0.001' oninput='
if (!BABYLON.Engine.LastCreatedScene.activeCamera.metadata) {
var evt = document.createEvent(\"Event\");
evt.initEvent(\"click\", true, false);
document.getElementById(\"reset_cam\").dispatchEvent(evt);
}
BABYLON.Engine.LastCreatedScene.getNodes()[parseInt(document.getElementById(\"fnum\").getElementsByTagName(\"input\")[0].value)+1].material.pointSize = Math.ceil(Math.log2(Math.PI/this.value));
BABYLON.Engine.LastCreatedScene.activeCamera.fov = this.value;
this.parentNode.childNodes[2].innerText = BABYLON.Engine.LastCreatedScene.activeCamera.fov;
document.getElementById(\"model3D\").getElementsByTagName(\"canvas\")[0].style.filter = \"blur(\" + BABYLON.Engine.LastCreatedScene.getNodes()[parseInt(document.getElementById(\"fnum\").getElementsByTagName(\"input\")[0].value)+1].material.pointSize/2.0*Math.sqrt(2.0) + \"px)\";
'/><span>0.8</span>""")
camera = gr.HTML(value="""<a href='#' id='reset_cam' onclick='
if (!BABYLON.Engine.LastCreatedScene.activeCamera.metadata) {
BABYLON.Engine.LastCreatedScene.activeCamera.metadata = {
screenshot: true,
pipeline: new BABYLON.DefaultRenderingPipeline(\"default\", true, BABYLON.Engine.LastCreatedScene, [BABYLON.Engine.LastCreatedScene.activeCamera])
}
}
BABYLON.Engine.LastCreatedScene.activeCamera.radius = 0;
BABYLON.Engine.LastCreatedScene.getNodes()[parseInt(document.getElementById(\"fnum\").getElementsByTagName(\"input\")[0].value)+1].material.pointSize = Math.ceil(Math.log2(Math.PI/document.getElementById(\"zoom\").value));
BABYLON.Engine.LastCreatedScene.activeCamera.metadata.pipeline.samples = 4;
BABYLON.Engine.LastCreatedScene.activeCamera.fov = document.getElementById(\"zoom\").value;
BABYLON.Engine.LastCreatedScene.activeCamera.metadata.pipeline.imageProcessing.contrast = document.getElementById(\"contrast\").value;
BABYLON.Engine.LastCreatedScene.activeCamera.metadata.pipeline.imageProcessing.exposure = document.getElementById(\"exposure\").value;
document.getElementById(\"model3D\").getElementsByTagName(\"canvas\")[0].style.filter = \"blur(\" + Math.ceil(Math.log2(Math.PI/document.getElementById(\"zoom\").value))/2.0*Math.sqrt(2.0) + \"px)\";
document.getElementById(\"model3D\").getElementsByTagName(\"canvas\")[0].oncontextmenu = function(e){e.preventDefault();}
document.getElementById(\"model3D\").getElementsByTagName(\"canvas\")[0].ondrag = function(e){e.preventDefault();}
if (!BABYLON.Engine.LastCreatedScene.activeCamera.metadata.gizmoManager) {
BABYLON.Engine.LastCreatedScene.activeCamera.metadata.gizmoManager = new BABYLON.GizmoManager(BABYLON.Engine.LastCreatedScene, 16);
BABYLON.Engine.LastCreatedScene.activeCamera.metadata.gizmoManager.positionGizmoEnabled = true;
BABYLON.Engine.LastCreatedScene.activeCamera.metadata.gizmoManager.rotationGizmoEnabled = false;
BABYLON.Engine.LastCreatedScene.activeCamera.metadata.gizmoManager.scaleGizmoEnabled = false;
BABYLON.Engine.LastCreatedScene.activeCamera.metadata.gizmoManager.boundingBoxGizmoEnabled = false;
BABYLON.Engine.LastCreatedScene.activeCamera.metadata.gizmoManager.usePointerToAttachGizmos = false;
document.getElementById(\"move\").onclick = function(event) {
BABYLON.Engine.LastCreatedScene.activeCamera.metadata.gizmoManager.positionGizmoEnabled = true;
BABYLON.Engine.LastCreatedScene.activeCamera.metadata.gizmoManager.rotationGizmoEnabled = false;
BABYLON.Engine.LastCreatedScene.activeCamera.metadata.gizmoManager.scaleGizmoEnabled = false;
}
document.getElementById(\"rotate\").onclick = function(event) {
BABYLON.Engine.LastCreatedScene.activeCamera.metadata.gizmoManager.positionGizmoEnabled = false;
BABYLON.Engine.LastCreatedScene.activeCamera.metadata.gizmoManager.rotationGizmoEnabled = true;
BABYLON.Engine.LastCreatedScene.activeCamera.metadata.gizmoManager.scaleGizmoEnabled = false;
}
document.getElementById(\"scale\").onclick = function(event) {
BABYLON.Engine.LastCreatedScene.activeCamera.metadata.gizmoManager.positionGizmoEnabled = false;
BABYLON.Engine.LastCreatedScene.activeCamera.metadata.gizmoManager.rotationGizmoEnabled = false;
BABYLON.Engine.LastCreatedScene.activeCamera.metadata.gizmoManager.scaleGizmoEnabled = true;
}
}
BABYLON.Engine.LastCreatedScene.activeCamera.metadata.gizmoManager.attachToMesh(BABYLON.Engine.LastCreatedScene.getNodes()[parseInt(document.getElementById(\"fnum\").getElementsByTagName(\"input\")[0].value)+1]);
'>reset camera</a>""")
contrast = gr.HTML(value="""<label for='contrast'>Contrast</label><input id='contrast' type='range' style='width:256px;height:1em;' value='1.0' min='0' max='2' step='0.001' oninput='
if (!BABYLON.Engine.LastCreatedScene.activeCamera.metadata) {
var evt = document.createEvent(\"Event\");
evt.initEvent(\"click\", true, false);
document.getElementById(\"reset_cam\").dispatchEvent(evt);
}
BABYLON.Engine.LastCreatedScene.activeCamera.metadata.pipeline.imageProcessing.contrast = this.value;
this.parentNode.childNodes[2].innerText = BABYLON.Engine.LastCreatedScene.activeCamera.metadata.pipeline.imageProcessing.contrast;
'/><span>1.0</span>""")
exposure = gr.HTML(value="""<label for='exposure'>Exposure</label><input id='exposure' type='range' style='width:256px;height:1em;' value='1.0' min='0' max='2' step='0.001' oninput='
if (!BABYLON.Engine.LastCreatedScene.activeCamera.metadata) {
var evt = document.createEvent(\"Event\");
evt.initEvent(\"click\", true, false);
document.getElementById(\"reset_cam\").dispatchEvent(evt);
}
BABYLON.Engine.LastCreatedScene.activeCamera.metadata.pipeline.imageProcessing.exposure = this.value;
this.parentNode.childNodes[2].innerText = BABYLON.Engine.LastCreatedScene.activeCamera.metadata.pipeline.imageProcessing.exposure;
'/><span>1.0</span>""")
canvas = gr.HTML(value="""<a href='#' onclick='
if (!BABYLON.Engine.LastCreatedScene.activeCamera.metadata) {
var evt = document.createEvent(\"Event\");
evt.initEvent(\"click\", true, false);
document.getElementById(\"reset_cam\").dispatchEvent(evt);
}
BABYLON.Engine.LastCreatedScene.activeCamera.metadata.screenshot = true;
BABYLON.Engine.LastCreatedScene.getEngine().onEndFrameObservable.add(function() {
if (BABYLON.Engine.LastCreatedScene.activeCamera.metadata.screenshot === true) {
BABYLON.Engine.LastCreatedScene.activeCamera.metadata.screenshot = false;
try {
BABYLON.Tools.CreateScreenshotUsingRenderTarget(BABYLON.Engine.LastCreatedScene.getEngine(), BABYLON.Engine.LastCreatedScene.activeCamera,
{ precision: 1.0 }, (durl) => {
var cnvs = document.getElementById(\"model3D\").getElementsByTagName(\"canvas\")[0]; //.getContext(\"webgl2\");
var svgd = `<svg id=\"svg_out\" viewBox=\"0 0 ` + cnvs.width + ` ` + cnvs.height + `\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\">
<defs>
<filter id=\"blur\" x=\"0\" y=\"0\" xmlns=\"http://www.w3.org/2000/svg\">
<feGaussianBlur in=\"SourceGraphic\" stdDeviation=\"` + BABYLON.Engine.LastCreatedScene.getNodes()[1].material.pointSize/2.0*Math.sqrt(2.0) + `\" />
</filter>
</defs>
<image filter=\"url(#blur)\" id=\"svg_img\" x=\"0\" y=\"0\" width=\"` + cnvs.width + `\" height=\"` + cnvs.height + `\" xlink:href=\"` + durl + `\"/>
</svg>`;
document.getElementById(\"cnv_out\").width = cnvs.width;
document.getElementById(\"cnv_out\").height = cnvs.height;
document.getElementById(\"img_out\").src = \"data:image/svg+xml;base64,\" + btoa(svgd);
}
);
} catch(e) { alert(e); }
// https://forum.babylonjs.com/t/best-way-to-save-to-jpeg-snapshots-of-scene/17663/11
}
});
'/>snapshot</a><br/><img src='' id='img_out' onload='
var ctxt = document.getElementById(\"cnv_out\").getContext(\"2d\");
ctxt.drawImage(this, 0, 0);
'/><br/>
<canvas id='cnv_out'/>""")
load_all = gr.Checkbox(label="Load all")
render = gr.Button("Render")
input_json.input(show_json, inputs=[input_json], outputs=[processed_video, processed_zip, output_frame, output_mask, output_depth, coords])
def on_submit(uploaded_video,model_type,remove_bg,maxc,maxd,lt,coordinates):
global locations
locations = []
avg = [0, 0]
locations = json.loads(coordinates)
for k, location in enumerate(locations):
if "tiles" in locations[k]:
locations[k]["heading"] = locations[k]["tiles"]["originHeading"]
locations[k]["pitch"] = locations[k]["tiles"]["originPitch"]
else:
locations[k]["heading"] = 0
locations[k]["pitch"] = 0
if "location" in locations[k]:
locations[k] = locations[k]["location"]["latLng"]
avg[0] = avg[0] + locations[k]["lat"]
avg[1] = avg[1] + locations[k]["lng"]
else:
locations[k]["lat"] = 0
locations[k]["lng"] = 0
if len(locations) > 0:
avg[0] = avg[0] / len(locations)
avg[1] = avg[1] / len(locations)
for k, location in enumerate(locations):
lat = vincenty((location["lat"], 0), (avg[0], 0)) * 1000
lng = vincenty((0, location["lng"]), (0, avg[1])) * 1000
locations[k]["lat"] = float(lat / 2.5 * 95 * np.sign(location["lat"]-avg[0]))
locations[k]["lng"] = float(lng / 2.5 * 95 * np.sign(location["lng"]-avg[1]))
print(locations)
# Process the video and get the path of the output video
output_video_path = make_video(uploaded_video,encoder=model_type,remove_bg=remove_bg,maxc=maxc,maxd=maxd,lt=lt)
return output_video_path + (json.dumps(locations),)
submit.click(on_submit, inputs=[input_video, model_type, remove_bg, max_c, max_d, lt, coords], outputs=[processed_video, processed_zip, output_frame, output_mask, output_depth, coords])
render.click(None, inputs=[coords, mesh_order, bgcolor, output_frame, output_mask, selected, output_depth], outputs=None, js=load_model)
render.click(partial(get_mesh), inputs=[output_frame, output_mask, blur_in, load_all], outputs=[result, result_file, mesh_order])
example_files = [["./examples/streetview.mp4", "vits", False, 12, 12, "slider", example_coords], ["./examples/man-in-museum-reverse-cut.mp4", "vits", True, 12, 12, "slider", example_coords]]
examples = gr.Examples(examples=example_files, fn=on_submit, cache_examples=True, inputs=[input_video, model_type, remove_bg, max_c, max_d, lt, coords], outputs=[processed_video, processed_zip, output_frame, output_mask, output_depth, coords])
if __name__ == '__main__':
demo.queue().launch()