File size: 73,451 Bytes
545659d
 
82e8e66
545659d
295f218
545659d
 
 
98ce923
545659d
ce8fe55
545659d
a0e06d8
6925966
 
9125fef
cabfe86
694de76
9e41914
4aea9f1
f6913f3
00e81be
 
 
3057121
099e1d8
00e81be
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4ab90c5
6b55b39
836b554
1e09d51
a9b6fe2
f80dbe2
6dd8ced
 
c400da7
ec6e24b
2868f8e
f40e1dd
e981f65
f80dbe2
ac2a5c7
6925966
ac2a5c7
 
 
52145da
6925966
 
f6913f3
 
74cd1a8
3e2c46e
9954d1d
3e2c46e
74cd1a8
f6913f3
545659d
10b0245
6ae9b9b
00e81be
 
 
 
 
 
89a1848
89f1281
3bf2d11
2abae72
00e81be
 
 
 
 
 
 
 
5e79f53
 
545659d
00e81be
545659d
00e81be
 
545659d
00e81be
123829d
00e81be
545659d
cbdb616
 
545659d
00e81be
 
 
 
 
 
 
 
 
 
 
 
 
545659d
 
dfe56e1
545659d
 
 
 
 
 
 
 
 
 
 
 
645ddd1
 
4696931
 
545659d
 
 
 
 
f4cc18c
 
fdbb8b2
 
 
545659d
fdbb8b2
545659d
fdbb8b2
 
545659d
fdbb8b2
 
38e2927
2712856
9509d05
f6913f3
ac2a5c7
c2f3170
8d436bc
545659d
 
 
 
edf0e9e
53c24cf
dceaf40
2a6e4d8
581f136
00e81be
 
07f8e2b
545659d
00e81be
 
108e1f8
00e81be
 
 
 
 
 
 
 
58be8ed
 
 
328e50b
 
58be8ed
4a116ab
58be8ed
80f8b1b
328e50b
12e552d
 
328e50b
 
fdbb8b2
 
545659d
 
 
 
72c7909
7155858
 
045da54
89f1281
 
 
 
 
 
 
 
 
 
 
 
0ce6656
8380995
60d4bfb
89f1281
0ad7299
 
045da54
f5e153d
 
89a1848
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
89f1281
 
 
 
 
 
 
 
 
25939d0
0ad7299
 
 
 
 
 
50ffb5e
0ad7299
 
89a1848
 
 
0ad7299
 
 
 
 
 
 
 
89a1848
 
 
0ad7299
 
 
89a1848
 
 
 
081057e
03493b1
ef2485c
0ac86d3
 
045da54
29f2dbd
086f826
9584213
 
89a1848
03493b1
07f8e2b
 
045da54
48761d0
549786e
38e2927
549786e
 
ce8da40
 
 
f6913f3
 
fd28694
 
 
 
 
4be74db
545659d
fdbb8b2
f6913f3
55cb886
6b55b39
55cb886
6dd8ced
 
 
 
d8453b9
71937bb
6b55b39
71937bb
6b55b39
7ab31cb
6b55b39
7ab31cb
edf0e9e
722a74e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f40e1dd
722a74e
 
 
 
 
 
 
 
 
9d7a705
722a74e
7139a06
 
722a74e
010a3dc
 
722a74e
1c3240c
5009bf7
1d201cc
8ee9d42
 
aa63800
 
434ff0c
 
 
8a924ec
 
 
5039081
 
1db0fad
 
 
1d201cc
c574318
87fcb8f
1ea492c
394988b
 
9f110ad
1d201cc
7cca730
8ee9d42
 
f6ef0c9
1d201cc
722a74e
893bff0
2e36d14
893bff0
3d63027
ce8fe55
a9b6fe2
25c8e4c
2868f8e
f40e1dd
e981f65
2868f8e
cc4061c
f40e1dd
cc4061c
b60e99e
db98133
 
 
ce8fe55
729feac
cfc80ce
ea2584d
cc4061c
6945437
 
9f110ad
1d201cc
cc4061c
2240766
cc4061c
 
 
5009bf7
af6f5a1
 
 
1d201cc
6945437
 
54c49be
2240766
b7e8a81
af6f5a1
b7e8a81
8e8d807
2240766
e458830
 
 
 
 
82509b8
 
a0e06d8
722a74e
 
4c4b7fe
e458830
a0e06d8
4c4b7fe
7c00bd8
 
3dbec8a
a510b3e
7c00bd8
ea2584d
3dbec8a
 
 
4eb7fe5
 
ea2584d
3dbec8a
 
ea2584d
7c00bd8
 
3dbec8a
7c00bd8
ca79504
545659d
8307ecb
3aacdf3
ed652cd
61c6a30
19a1dc3
61c6a30
0f6960a
 
 
e3dd182
0f6960a
90771ee
3716786
7d30303
117e770
1e09d51
0267daf
2f0b977
31fd26a
c400da7
09f2f01
4ab90c5
117e770
 
 
7b55dd1
 
 
 
130e694
7d30303
7b55dd1
0267daf
67ef952
 
 
6dd8ced
1072e96
 
6dd8ced
1072e96
 
bfb2083
7399e9a
a9b6fe2
1e09d51
 
7399e9a
 
 
799c779
8d1911b
a0e182b
2af00f7
2688f68
 
7399e9a
9f110ad
799c779
9cc7da8
 
 
63d7636
 
9cc7da8
 
 
 
3be64d4
63d7636
b96fe54
 
3be64d4
e347ae3
a9b6fe2
 
 
 
 
e347ae3
a9b6fe2
a0e182b
63d7636
 
 
a0e182b
ec8f810
63d7636
 
 
05e851d
 
ec8f810
a0e182b
799c779
130e694
7399e9a
130e694
7399e9a
21f3502
f60a3e5
21f3502
f60a3e5
9f110ad
f60a3e5
db53606
 
 
 
c68c8cf
6d39ae2
c68c8cf
ce8da40
 
4e6cc23
db53606
63f6d9b
c20e124
b70157a
 
6d39ae2
cfb10f4
63f6d9b
cfb10f4
71f861a
1c34e60
3f9b3cb
63f6d9b
130a9f9
3f9b3cb
130a9f9
 
a94ded4
c63285a
a94ded4
f4f2a8b
96da75a
ce8da40
e898a85
c63285a
e898a85
e9ec958
e7b48bb
3f9b3cb
c20e124
 
ce8da40
4e6cc23
b70157a
73d7a38
352cf00
6b55b39
f0bb6a1
 
6b55b39
df5eae9
f0bb6a1
031aec4
 
16f7bdc
2e1c921
836b554
aac5fb3
352cf00
c627a14
 
 
 
 
 
 
e588d54
6b55b39
39d3066
fb6c22a
 
70ccf1c
6b55b39
fb6c22a
 
 
 
 
 
 
 
 
6b55b39
 
fb6c22a
 
f15553a
fb6c22a
f15553a
fb6c22a
 
 
 
c68c8cf
80f8b1b
dcd8ce1
6b55b39
 
399e1f8
51c1ba8
7e7de5f
6b55b39
7e7de5f
51c1ba8
 
 
12e552d
 
 
a6a60c2
1814958
08b0c31
63f6d9b
db98133
5c437d9
e2c87e5
ed652cd
da39b9f
beaad43
672c005
88887a0
 
 
 
 
 
da39b9f
 
 
 
88887a0
672c005
 
 
88887a0
 
 
 
 
 
24162e7
28b9027
 
31a34eb
90771ee
9b32112
3f8e976
44fcf03
bec346c
9c78c76
e09db60
1a65e7f
 
 
 
 
 
 
 
 
 
 
 
 
 
3d63027
422328e
92bcd31
 
 
 
3af91b1
4f35e08
 
bbb625e
 
 
 
c56fb09
a9ca6aa
6945437
bbb625e
10c0335
 
 
 
 
 
1682873
 
c56fb09
 
 
371db45
 
 
 
9b83320
d07de60
 
40792b0
0d77f33
d07de60
9b83320
 
 
 
 
a88fb44
90771ee
e5c89b7
a88fb44
90771ee
 
 
 
a88fb44
 
 
90771ee
 
352cf00
cd6447a
324c1d2
56fb235
 
cd6447a
e5ffaeb
38739ed
3fba2f8
44fcf03
5ed989a
ba3347a
3f8e976
ba3347a
 
 
44fcf03
763a98d
9b45ad8
 
 
 
 
 
9525e4e
 
 
9b45ad8
 
 
 
 
 
352cf00
90771ee
763a98d
 
 
3f8e976
ba3347a
9b32112
 
8ac3a12
 
 
54ccd33
 
953b0fe
abca15b
 
672502e
abca15b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
54ccd33
 
 
545659d
 
 
 
 
 
 
 
 
 
 
5e79f53
00e81be
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
545659d
5e79f53
 
 
545659d
1c2fc5a
545659d
 
 
 
 
c3b945b
b966fba
5e9c0a3
f7824e3
3aacdf3
db53606
b966fba
6dd8ced
b966fba
67ef952
cc93339
 
7cbff67
e383855
db53606
 
34438a2
 
f729a6c
16f7bdc
f233963
16f7bdc
875e86b
 
 
16f7bdc
 
 
 
 
875e86b
 
 
16f7bdc
e926245
f233963
 
 
e926245
 
f233963
 
 
34438a2
 
 
 
 
87b9836
f233963
93dce2b
f233963
db53606
 
 
34438a2
 
 
 
 
 
4e6cc23
 
8b195a3
28b9027
da39b9f
28b9027
da39b9f
28b9027
c3b945b
89f1281
fd28694
0ad7299
 
8380995
 
89a1848
 
 
 
0ad7299
b966fba
 
5e75c95
11a84e1
c1e3d19
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
22afd36
c1e3d19
 
 
84d1dc0
d73fd83
42d57dc
1880eb2
8e3e24b
1880eb2
 
42d57dc
022388b
8e3e24b
1880eb2
 
4d68190
b55e39b
df75d51
 
1880eb2
d73fd83
1880eb2
 
 
d73fd83
1880eb2
 
d73fd83
11e9611
abca15b
4e5d26a
16e749d
d65dffb
 
 
 
 
 
 
 
 
 
 
e52122a
 
 
16e749d
812116a
 
 
bc3b79c
 
d65dffb
 
 
00c313f
7afa34d
 
 
 
f8331ca
b2c79c0
a756ea6
 
 
16e749d
c3096ba
 
 
b2c79c0
 
 
ada96e4
b2c79c0
 
 
ada96e4
b2c79c0
 
c3096ba
 
 
ada96e4
b2c79c0
 
c3096ba
 
 
ada96e4
b2c79c0
 
c3096ba
 
 
ada96e4
b2c79c0
 
c3096ba
 
 
ada96e4
b2c79c0
 
 
 
 
7afa34d
b2c79c0
 
ebb3c24
7afa34d
b2c79c0
 
ebb3c24
7afa34d
b2c79c0
 
ebb3c24
7afa34d
b2c79c0
 
ebb3c24
7afa34d
b2c79c0
 
ebb3c24
7afa34d
b2c79c0
 
ebb3c24
7afa34d
b2c79c0
 
 
 
 
7afa34d
b2c79c0
 
ebb3c24
bfb2083
b2c79c0
 
ebb3c24
ada96e4
b2c79c0
 
ebb3c24
ada96e4
b2c79c0
 
ebb3c24
ada96e4
b2c79c0
 
ebb3c24
ada96e4
b2c79c0
 
ebb3c24
ada96e4
b2c79c0
 
a756ea6
 
 
7afa34d
b2c79c0
 
7afa34d
2ea14e3
16e749d
00c313f
16e749d
c3096ba
822a192
26f32f4
 
 
96a5963
16e749d
d1f1ca8
1e09d51
e48c46d
a886ac0
 
 
 
 
e48c46d
73073c3
f40e1dd
11e9611
b966fba
f9b1af2
 
 
 
 
 
3d0dbc5
f9b1af2
 
d766a5d
3d0dbc5
f9b1af2
 
66ab5da
 
d010386
66ab5da
 
 
f9b1af2
3d0dbc5
586cf48
d766a5d
f9b1af2
 
ad73ab4
371db45
d1fd699
 
 
16a64c6
5ad9788
16a64c6
 
96a5963
 
16a64c6
0ef3ae5
16a64c6
96a5963
 
 
 
 
 
 
 
 
 
 
 
 
 
 
16a64c6
 
f9b1af2
1682873
c900035
f9b1af2
 
 
c900035
659dc3a
 
1682873
 
659dc3a
f9b1af2
 
 
659dc3a
 
 
1682873
201037e
bb61f71
f9b1af2
 
 
bb61f71
3bb651f
 
 
 
 
 
94a6927
ba45271
369cda2
d766a5d
 
 
7ac500f
d766a5d
 
 
 
7ac500f
 
 
a88f03a
 
3bb651f
 
 
 
a547f8e
 
 
 
c596c24
29a6d28
9af81d7
f002fa4
c3b945b
89a1848
ec6e24b
df7ff25
13d584d
df7ff25
045da54
 
 
 
 
 
 
 
 
 
 
13d584d
 
045da54
 
 
13d584d
54087a1
 
 
 
13d584d
9125fef
 
1c2fc5a
 
ec6e24b
59f0d02
545659d
89a1848
545659d
a6fbbb9
545659d
89a1848
90771ee
1c20e09
545659d
89a1848
 
545659d
 
 
6040159
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
import gradio as gr
import cv2
from PIL import Image
import numpy as np
#from transformers import pipeline
import os
import torch
import torch.nn.functional as F
from torchvision import transforms
from torchvision.transforms import Compose
#import open3d as o3d
import tempfile
from functools import partial
import spaces
from zipfile import ZipFile
from vincenty import vincenty
import json
#import DracoPy
from collections import Counter
import mediapy

#from depth_anything.dpt import DepthAnything
#from depth_anything.util.transform import Resize, NormalizeImage, PrepareForNet
from huggingface_hub import hf_hub_download
from huggingface_hub import snapshot_download
snapshot_download(repo_id="depth-anything/Depth-Anything-V2", repo_type="space", local_dir="./", allow_patterns=["*.py"], ignore_patterns=["app.py"])
from depth_anything_v2.dpt import DepthAnythingV2

DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu'
model_configs = {
    'vits': {'encoder': 'vits', 'features': 64, 'out_channels': [48, 96, 192, 384]},
    'vitb': {'encoder': 'vitb', 'features': 128, 'out_channels': [96, 192, 384, 768]},
    'vitl': {'encoder': 'vitl', 'features': 256, 'out_channels': [256, 512, 1024, 1024]},
    'vitg': {'encoder': 'vitg', 'features': 384, 'out_channels': [1536, 1536, 1536, 1536]}
}
encoder2name = {
    'vits': 'Small',
    'vitb': 'Base',
    'vitl': 'Large',
    'vitg': 'Giant', # we are undergoing company review procedures to release our giant model checkpoint
}

edge = []
gradient = None
params = { "fnum":0, "l":16 }
dcolor = []
pcolors = []
frame_selected = 0
frames = []
depths = []
masks = []
locations = []
mesh = []
mesh_n = []
scene = None

def zip_files(files_in, files_out):
    with ZipFile("depth_result.zip", "w") as zipObj:
        for idx, file in enumerate(files_in):
            zipObj.write(file, file.split("/")[-1])
        for idx, file in enumerate(files_out):
            zipObj.write(file, file.split("/")[-1])
    return "depth_result.zip"

def create_video(frames, fps, type):
    print("building video result")
    imgs = []
    for j, img in enumerate(frames):
        imgs.append(cv2.cvtColor(cv2.imread(img).astype(np.uint8), cv2.COLOR_BGR2RGB))

    mediapy.write_video(type + "_result.mp4", imgs, fps=fps)
    return type + "_result.mp4"

@torch.no_grad()
#@spaces.GPU
def predict_depth(image, model):
    return model.infer_image(image)
    
#def predict_depth(model, image):
#    return model(image)["depth"]

def make_video(video_path, outdir='./vis_video_depth', encoder='vits', remove_bg=False, maxc=12, maxd=12, maxs=32, maxl=64, maxv=16, lt="slider"):
    if encoder not in ["vitl","vitb","vits","vitg"]:
        encoder = "vits"

    model_name = encoder2name[encoder]
    model = DepthAnythingV2(**model_configs[encoder])
    filepath = hf_hub_download(repo_id=f"depth-anything/Depth-Anything-V2-{model_name}", filename=f"depth_anything_v2_{encoder}.pth", repo_type="model")
    state_dict = torch.load(filepath, map_location="cpu")
    model.load_state_dict(state_dict)
    model = model.to(DEVICE).eval()

    #mapper = {"vits":"small","vitb":"base","vitl":"large"}
    # DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu'
    # model = DepthAnything.from_pretrained('LiheYoung/depth_anything_vitl14').to(DEVICE).eval()
    # Define path for temporary processed frames
    #temp_frame_dir = tempfile.mkdtemp()
    
    #margin_width = 50
    #to_tensor_transform = transforms.ToTensor()

    #DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu'
    # depth_anything = DepthAnything.from_pretrained('LiheYoung/depth_anything_{}14'.format(encoder)).to(DEVICE).eval()
    #depth_anything = pipeline(task = "depth-estimation", model=f"nielsr/depth-anything-{mapper[encoder]}")
    
    # total_params = sum(param.numel() for param in depth_anything.parameters())
    # print('Total parameters: {:.2f}M'.format(total_params / 1e6))
    
    #transform = Compose([
    #    Resize(
    #        width=518,
    #        height=518,
    #        resize_target=False,
    #        keep_aspect_ratio=True,
    #        ensure_multiple_of=14,
    #        resize_method='lower_bound',
    #        image_interpolation_method=cv2.INTER_CUBIC,
    #    ),
    #    NormalizeImage(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
    #    PrepareForNet(),
    #])

    if os.path.isfile(video_path):
        if video_path.endswith('txt'):
            with open(video_path, 'r') as f:
                lines = f.read().splitlines()
        else:
            filenames = [video_path]
    else:
        filenames = os.listdir(video_path)
        filenames = [os.path.join(video_path, filename) for filename in filenames if not filename.startswith('.')]
        filenames.sort()
    
    # os.makedirs(outdir, exist_ok=True)
    
    for k, filename in enumerate(filenames):
        file_size = os.path.getsize(filename)/1024/1024
        if file_size > 128.0:
            print(f'File size of {filename} larger than 128Mb, sorry!')
            return filename
        print('Progress {:}/{:},'.format(k+1, len(filenames)), 'Processing', filename)
        
        raw_video = cv2.VideoCapture(filename)
        frame_width, frame_height = int(raw_video.get(cv2.CAP_PROP_FRAME_WIDTH)), int(raw_video.get(cv2.CAP_PROP_FRAME_HEIGHT))
        frame_rate = int(raw_video.get(cv2.CAP_PROP_FPS))
        if frame_rate < 1:
            frame_rate = 1
        cframes = int(raw_video.get(cv2.CAP_PROP_FRAME_COUNT))
        print(f'frames: {cframes}, fps: {frame_rate}')
        # output_width = frame_width * 2 + margin_width
        
        #filename = os.path.basename(filename)
        # output_path = os.path.join(outdir, filename[:filename.rfind('.')] + '_video_depth.mp4')
        #with tempfile.NamedTemporaryFile(delete=False, suffix='.mp4') as tmpfile:
        #    output_path = tmpfile.name
        #out = cv2.VideoWriter(output_path, cv2.VideoWriter_fourcc(*"avc1"), frame_rate, (output_width, frame_height))
        #fourcc = cv2.VideoWriter_fourcc(*'mp4v')
        #out = cv2.VideoWriter(output_path, fourcc, frame_rate, (output_width, frame_height))
        global masks
        count = 0
        n = 0
        depth_frames = []
        orig_frames = []
        thumbnail_old = []

        while raw_video.isOpened():
            ret, raw_frame = raw_video.read()
            if not ret:
                break
            else:
                print(count)

            frame = cv2.cvtColor(raw_frame, cv2.COLOR_BGR2RGB) / 255.0
            frame_pil = Image.fromarray((frame * 255).astype(np.uint8))
            #frame = transform({'image': frame})['image']
            #frame = torch.from_numpy(frame).unsqueeze(0).to(DEVICE)
            raw_frame_bg = cv2.medianBlur(raw_frame, 255)

            #
            depth = predict_depth(raw_frame[:, :, ::-1], model)
            depth_gray = ((depth - depth.min()) / (depth.max() - depth.min()) * 255.0).astype(np.uint8)
            #
            
            #depth = to_tensor_transform(predict_depth(depth_anything, frame_pil))
            #depth = F.interpolate(depth[None], (frame_height, frame_width), mode='bilinear', align_corners=False)[0, 0]
            #depth = (depth - depth.min()) / (depth.max() - depth.min()) * 255.0
            #depth = depth.cpu().numpy().astype(np.uint8)
            #depth_color = cv2.applyColorMap(depth, cv2.COLORMAP_BONE)
            #depth_gray = cv2.cvtColor(depth_color, cv2.COLOR_RGBA2GRAY)

            # Remove white border around map:
            # define lower and upper limits of white
            #white_lo = np.array([250,250,250])
            #white_hi = np.array([255,255,255])
            # mask image to only select white
            mask = cv2.inRange(depth_gray[0:int(depth_gray.shape[0]/8*6.5)-1, 0:depth_gray.shape[1]], 250, 255)
            # change image to black where we found white
            depth_gray[0:int(depth_gray.shape[0]/8*6.5)-1, 0:depth_gray.shape[1]][mask>0] = 0

            mask = cv2.inRange(depth_gray[int(depth_gray.shape[0]/8*6.5):depth_gray.shape[0], 0:depth_gray.shape[1]], 160, 255)
            depth_gray[int(depth_gray.shape[0]/8*6.5):depth_gray.shape[0], 0:depth_gray.shape[1]][mask>0] = 160

            depth_color = cv2.cvtColor(depth_gray, cv2.COLOR_GRAY2BGR)
            # split_region = np.ones((frame_height, margin_width, 3), dtype=np.uint8) * 255
            # combined_frame = cv2.hconcat([raw_frame, split_region, depth_color])
            
            # out.write(combined_frame)
            # frame_path = os.path.join(temp_frame_dir, f"frame_{count:05d}.png")
            # cv2.imwrite(frame_path, combined_frame)

            #raw_frame = cv2.cvtColor(raw_frame, cv2.COLOR_BGR2BGRA)
            #raw_frame[:, :, 3] = 255

            if remove_bg == False:
                thumbnail = cv2.cvtColor(cv2.resize(raw_frame, (16,32)), cv2.COLOR_BGR2GRAY).flatten()
                if len(thumbnail_old) > 0:
                    diff = thumbnail - thumbnail_old
                    #print(diff)
                    c = Counter(diff)
                    value, cc = c.most_common()[0]
                    if value == 0 and cc > int(16*32*0.8):
                        count += 1
                        continue
                thumbnail_old = thumbnail
            else:
                #actual fg video is made out of odd (scene) and even (bg) frames stacked separately in same file
                if count >= 0: #int(cframes/2): 
                    #n = count-int(cframes/2)
                    
                    depth_color_bg = cv2.medianBlur(depth_color, 255)
                    raw_frame_bg = cv2.medianBlur(raw_frame, 255)
                    
                    diff_d = np.abs(depth_color.astype(np.int16)-depth_color_bg.astype(np.int16))
                    diff_c = np.abs(raw_frame.astype(np.int16)-raw_frame_bg.astype(np.int16))

                    #correct hue against light
                    bg_gray = cv2.cvtColor(cv2.cvtColor(raw_frame_bg, cv2.COLOR_BGR2GRAY), cv2.COLOR_GRAY2BGR)
                    bg_diff = (raw_frame_bg-bg_gray).astype(np.int16)
                    frame_c = np.abs(raw_frame.astype(np.int16)-bg_diff).astype(np.uint8)

                    hsv_ = cv2.cvtColor(frame_c, cv2.COLOR_BGR2HSV)
                    edges = cv2.Laplacian(cv2.cvtColor(raw_frame, cv2.COLOR_BGR2GRAY), cv2.CV_64F)
                    blur_s = np.zeros_like(edges)
                    for i in range(2, frame.shape[0]-2):
                        for j in range(2, frame.shape[1]-2):
                            d = edges[i-2:i+2, j-2:j+2].var()
                            blur_s[i,j] = d.astype(np.uint8)

                    print("detail")
                    print(np.average(blur_s))
                    print(np.median(blur_s))
                    print("saturation")
                    print(np.average(hsv_[:,:,1]))
                    print(np.median(hsv_[:,:,1]))
                    print("lightness")
                    print(np.average(hsv_[:,:,2]))
                    print(np.median(hsv_[:,:,2]))
                    #print('-most common')
                    #c = Counter(diff_d.flatten())
                    #value, cc = c.most_common()[0]
                    #print(value)
                    #print(cc)
                    #c = Counter(diff_c.flatten())
                    #value, cc = c.most_common()[0]
                    #print(value)
                    #print(cc)
                    print('-')

                    if lt == "median":
                        md_d = int(np.median(diff_d))
                        md_c = int(np.median(diff_c))
                        print('-median')
                        print(md_d)
                        print(md_c)
                        mask_bg_shadow = cv2.inRange(diff_d, np.array([0,0,0]), np.array([md_d,md_d,md_d]))
                        mask_bg_no_shadow = cv2.inRange(diff_c, np.array([0,0,0]), np.array([md_c,md_c,md_c]))

                        m = cv2.inRange(hsv_, np.array([0,0,0]), np.array([180, int(np.median(hsv_[:,:,1])), int(np.median(hsv_[:,:,2]))]))
                        mask = cv2.inRange(blur_s, 0, int(np.median(blur_s)))
                    elif lt == "average":
                        avg_d = int(np.average(diff_d))
                        avg_c = int(np.average(diff_c))
                        print('-average')
                        print(avg_d)
                        print(avg_c)
                        mask_bg_shadow = cv2.inRange(diff_d, np.array([0,0,0]), np.array([avg_d,avg_d,avg_d]))
                        mask_bg_no_shadow = cv2.inRange(diff_c, np.array([0,0,0]), np.array([avg_c,avg_c,avg_c]))

                        m = cv2.inRange(hsv_, np.array([0,0,0]), np.array([180, int(np.average(hsv_[:,:,1])), int(np.average(hsv_[:,:,2]))]))
                        mask = cv2.inRange(blur_s, 0, int(np.average(blur_s)))
                    elif lt == "slider":
                        mask_bg_shadow = cv2.inRange(diff_d, np.array([0,0,0]), np.array([maxd,maxd,maxd]))
                        mask_bg_no_shadow = cv2.inRange(diff_c, np.array([0,0,0]), np.array([maxc,maxc,maxc]))

                        m = cv2.inRange(hsv_, np.array([0,0,0]), np.array([180,maxs,maxl]))
                        mask = cv2.inRange(blur_s, 0, maxv)

                    masks_shadow = np.bitwise_and(mask_bg_shadow, np.bitwise_and(m, mask))
                    #mask_no_shadow = cv2.bitwise_not(mask_shadow)

                    #stereo = cv2.StereoBM.create(numDisparities=16, blockSize=15)
                    #disparity = stereo.compute(raw_frame_l, raw_frame_r)
                    
                    m = cv2.inRange(raw_frame, np.array([240,240,240]), np.array([255,255,255]))
                    raw_frame[m>0] = (239,239,239)
                    m = cv2.inRange(raw_frame, np.array([0,0,0]), np.array([15,15,15]))
                    raw_frame[m>0] = (16,16,16)
                    raw_frame[masks_shadow>0] = (raw_frame[masks_shadow>0] / 17).astype(np.uint8)
                    raw_frame[mask_bg_no_shadow>0] = (255,255,255)
                else:
                    break
            
            cv2.imwrite(f"f{count}.png", raw_frame)
            orig_frames.append(f"f{count}.png")
            
            cv2.imwrite(f"f{count}_dmap.png", depth_color)
            depth_frames.append(f"f{count}_dmap.png")

            cv2.imwrite(f"f{count}_mask.png", depth_gray)
            masks.append(f"f{count}_mask.png")
            count += 1

        if remove_bg == True:
            final_vid = create_video(orig_frames, frame_rate, "orig")
        else:
            final_vid = create_video(depth_frames, frame_rate, "depth")
            
        final_zip = zip_files(orig_frames, depth_frames)
        raw_video.release()
        # out.release()
        cv2.destroyAllWindows()

        global gradient
        global frame_selected
        global depths
        global frames
        frames = orig_frames
        depths = depth_frames

        if depth_color.shape[0] == 2048: #height
            gradient = cv2.imread('./gradient_large.png').astype(np.uint8)
        elif depth_color.shape[0] == 1024:
            gradient = cv2.imread('./gradient.png').astype(np.uint8)
        else:
            gradient = cv2.imread('./gradient_small.png').astype(np.uint8)
        
        return final_vid, final_zip, frames, masks[frame_selected], depths #output_path

def depth_edges_mask(depth):
    """Returns a mask of edges in the depth map.
    Args:
    depth: 2D numpy array of shape (H, W) with dtype float32.
    Returns:
    mask: 2D numpy array of shape (H, W) with dtype bool.
    """
    # Compute the x and y gradients of the depth map.
    depth_dx, depth_dy = np.gradient(depth)
    # Compute the gradient magnitude.
    depth_grad = np.sqrt(depth_dx ** 2 + depth_dy ** 2)
    # Compute the edge mask.
    mask = depth_grad > 0.05
    return mask

def pano_depth_to_world_points(depth):
    """
    360 depth to world points
    given 2D depth is an equirectangular projection of a spherical image
    Treat depth as radius
    longitude : -pi to pi
    latitude : -pi/2 to pi/2
    """

    # Convert depth to radius
    radius = (255 - depth.flatten())

    lon = np.linspace(0, np.pi*2, depth.shape[1])
    lat = np.linspace(0, np.pi, depth.shape[0])
    lon, lat = np.meshgrid(lon, lat)
    lon = lon.flatten()
    lat = lat.flatten()

    pts3d = [[0,0,0]]
    uv = [[0,0]]
    nl = [[0,0,0]]
    for i in range(0, 1): #(0,2)
        for j in range(0, 1): #(0,2)
            #rnd_lon = (np.random.rand(depth.shape[0]*depth.shape[1]) - 0.5) / 8
            #rnd_lat = (np.random.rand(depth.shape[0]*depth.shape[1]) - 0.5) / 8
            d_lon = lon + i/2 * np.pi*2 / depth.shape[1]
            d_lat = lat + j/2 * np.pi / depth.shape[0]

            nx = np.cos(d_lon) * np.sin(d_lat)
            ny = np.cos(d_lat)
            nz = np.sin(d_lon) * np.sin(d_lat)
            
            # Convert to cartesian coordinates
            x = radius * nx
            y = radius * ny
            z = radius * nz

            pts = np.stack([x, y, z], axis=1)
            uvs = np.stack([lon/np.pi/2, lat/np.pi], axis=1)
            nls = np.stack([-nx, -ny, -nz], axis=1)
            
            pts3d = np.concatenate((pts3d, pts), axis=0)
            uv = np.concatenate((uv, uvs), axis=0)
            nl = np.concatenate((nl, nls), axis=0)
            #print(f'i: {i}, j: {j}')
            j = j+1
        i = i+1
        
    return [pts3d, uv, nl]

def rgb2gray(rgb):
    return np.dot(rgb[...,:3], [0.333, 0.333, 0.333])

def get_mesh(image, depth, blur_data, loadall):
    global depths
    global pcolors
    global frame_selected
    global mesh
    global mesh_n
    global scene
    if loadall == False:
        mesh = []
        mesh_n = []
    fnum = frame_selected

    #print(image[fnum][0])
    #print(depth["composite"])

    depthc = cv2.imread(depths[frame_selected], cv2.IMREAD_UNCHANGED).astype(np.uint8)
    blur_img = blur_image(cv2.imread(image[fnum][0], cv2.IMREAD_UNCHANGED).astype(np.uint8), depthc, blur_data)
    gdepth = cv2.cvtColor(depthc, cv2.COLOR_RGB2GRAY) #rgb2gray(depthc)
    
    print('depth to gray - ok')
    points = pano_depth_to_world_points(gdepth)
    pts3d = points[0]
    uv = points[1]
    nl = points[2]
    print('radius from depth - ok')

    # Create a trimesh mesh from the points
    # Each pixel is connected to its 4 neighbors
    # colors are the RGB values of the image
    uvs = uv.reshape(-1, 2)
    #print(uvs)
    #verts = pts3d.reshape(-1, 3)
    verts = [[0,0,0]]
    normals = nl.reshape(-1, 3)
    rgba = cv2.cvtColor(blur_img, cv2.COLOR_RGB2RGBA)
    colors = rgba.reshape(-1, 4)
    clrs = [[128,128,128,0]]

    #for i in range(0,1): #(0,4)
    #clrs = np.concatenate((clrs, colors), axis=0)
        #i = i+1
    #verts, clrs

    #pcd = o3d.geometry.TriangleMesh.create_tetrahedron()
    #pcd.compute_vertex_normals()
    #pcd.paint_uniform_color((1.0, 1.0, 1.0))
    #mesh.append(pcd)
    #print(mesh[len(mesh)-1])
    if not str(fnum) in mesh_n:
        mesh_n.append(str(fnum))
    print('mesh - ok')

    # Save as glb
    glb_file = tempfile.NamedTemporaryFile(suffix='.glb', delete=False)
    #o3d.io.write_triangle_mesh(glb_file.name, pcd)
    print('file - ok')
    return "./TriangleWithoutIndices.gltf", glb_file.name, ",".join(mesh_n)

def blur_image(image, depth, blur_data):
    blur_a = blur_data.split()
    print(f'blur data {blur_data}')

    blur_frame = image.copy()
    j = 0
    while j < 256:
        i = 255 - j
        blur_lo = np.array([i,i,i])
        blur_hi = np.array([i+1,i+1,i+1])
        blur_mask = cv2.inRange(depth, blur_lo, blur_hi)
        
        print(f'kernel size {int(blur_a[j])}')
        blur = cv2.GaussianBlur(image, (int(blur_a[j]), int(blur_a[j])), 0)
                
        blur_frame[blur_mask>0] = blur[blur_mask>0]
        j = j + 1

    return blur_frame

def loadfile(f):
    return f

def show_json(txt):
    data = json.loads(txt)
    print(txt)
    i=0
    while i < len(data[2]):
        data[2][i] = data[2][i]["image"]["path"]
        data[4][i] = data[4][i]["path"]
        i=i+1
    return data[0]["video"]["path"], data[1]["path"], data[2], data[3]["background"]["path"], data[4], data[5]


def select_frame(d, evt: gr.SelectData):
    global dcolor
    global frame_selected
    global masks
    global edge
    
    if evt.index != frame_selected:
        edge = []
        mask = cv2.imread(depths[frame_selected]).astype(np.uint8)
        cv2.imwrite(masks[frame_selected], cv2.cvtColor(mask, cv2.COLOR_RGB2GRAY))
        frame_selected = evt.index

    if len(dcolor) == 0:
        bg = [127, 127, 127, 255]
    else:
        bg = "[" + str(dcolor[frame_selected])[1:-1] + ", 255]"
        
    return masks[frame_selected], frame_selected, bg

def switch_rows(v):
    global frames
    global depths
    if v == True:
        print(depths[0])
        return depths
    else:
        print(frames[0])
        return frames

def optimize(v, d):
    global pcolors
    global dcolor
    global frame_selected
    global frames
    global depths
    
    if v == True:
        ddepth = cv2.CV_16S
        kernel_size = 3
        l = 16

        dcolor = []
        for k, f in enumerate(frames):
            frame = cv2.imread(frames[k]).astype(np.uint8)
            
            # convert to np.float32
            f = np.float32(frame.reshape((-1,3)))
            # define criteria, number of clusters(K) and apply kmeans()
            criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 4, 1.0)
            ret,label,center=cv2.kmeans(f,l,None,criteria,4,cv2.KMEANS_RANDOM_CENTERS)
            # Now convert back into uint8, and make original image
            center = np.uint8(center)
            res = center[label.flatten()]
            frame = res.reshape((frame.shape))

            depth = cv2.imread(depths[k]).astype(np.uint8)
            mask = cv2.cvtColor(depth, cv2.COLOR_RGB2GRAY)
            dcolor.append(bincount(frame[mask==0]))
            print(dcolor[k])
            clrs = Image.fromarray(frame.astype(np.uint8)).convert('RGB').getcolors()
            i=0
            while i<len(clrs):
                clrs[i] = list(clrs[i][1])
                clrs[i].append(255)
                i=i+1
            print(clrs)
            pcolors = clrs
            
            #mask = cv2.convertScaleAbs(cv2.Laplacian(cv2.cvtColor(frame, cv2.COLOR_RGB2GRAY), ddepth, ksize=kernel_size))
            #mask[mask>0] = 255
            #frame[mask==0] = (0, 0, 0)
            cv2.imwrite(frames[k], frame)

            #depth[mask==0] = (255,255,255)
            mask = cv2.inRange(frame, np.array([dcolor[k][0]-8, dcolor[k][1]-8, dcolor[k][2]-8]), np.array([dcolor[k][0]+8, dcolor[k][1]+8, dcolor[k][2]+8]))
            depth[mask>0] = (255,255,255)
            depth[depth.shape[0]-1:depth.shape[0], 0:depth.shape[1]] = (160, 160, 160)
            depth[0:1, 0:depth.shape[1]] = (0, 0, 0)
            cv2.imwrite(depths[k], depth)
            
    if d == False:
      return frames, "[" + str(dcolor[frame_selected])[1:-1] + ", 255]"
    else:
      return depths, "[" + str(dcolor[frame_selected])[1:-1] + ", 255]"

def bincount(a):
    a2D = a.reshape(-1,a.shape[-1])
    col_range = (256, 256, 256) # generically : a2D.max(0)+1
    a1D = np.ravel_multi_index(a2D.T, col_range)
    return list(reversed(np.unravel_index(np.bincount(a1D).argmax(), col_range)))

def reset_mask():
    global frame_selected
    global masks
    global depths
    global edge

    edge = []
    mask = cv2.imread(depths[frame_selected]).astype(np.uint8)
    cv2.imwrite(masks[frame_selected], cv2.cvtColor(mask, cv2.COLOR_RGB2GRAY))
    return masks[frame_selected], depths

def apply_mask(d, b):
    global frames
    global frame_selected
    global masks
    global depths
    global edge

    edge = []
    mask = cv2.cvtColor(d["layers"][0], cv2.COLOR_RGBA2GRAY)
    mask[mask<255] = 0
    b = b*2+1
    dilation = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (2 * b + 1, 2 * b + 1), (b, b))
    mask = cv2.dilate(mask, dilation)
    mask_b = cv2.GaussianBlur(mask, (b,b), 0)
    b = b*2+1
    dilation = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (2 * b + 1, 2 * b + 1), (b, b))
    dmask = cv2.dilate(mask, dilation)
    dmask_b = cv2.GaussianBlur(dmask, (b,b), 0)

    for k, mk in enumerate(masks):
        if k != frame_selected and k < len(depths):
            cv2.imwrite(masks[k], dmask)
            frame = cv2.imread(frames[k], cv2.IMREAD_UNCHANGED).astype(np.uint8)
            frame[:, :, 3] = dmask_b
            cv2.imwrite(frames[k], frame)
        
    frame = cv2.imread(frames[frame_selected], cv2.IMREAD_UNCHANGED).astype(np.uint8)
    frame[:, :, 3] = 255 - mask_b
    cv2.imwrite(frames[frame_selected], frame)
    
    cv2.imwrite(masks[frame_selected], mask) #d["background"]
    return masks[frame_selected], depths, frames

def draw_mask(l, t, v, d, evt: gr.EventData):
    global depths
    global params
    global frame_selected
    global masks
    global gradient
    global edge
    
    points = json.loads(v)
    pts = np.array(points, np.int32)
    pts = pts.reshape((-1,1,2))

    if len(edge) == 0 or params["fnum"] != frame_selected or params["l"] != l:
      if len(edge) > 0:
          d["background"] = cv2.imread(depths[frame_selected]).astype(np.uint8)
          
          if d["background"].shape[0] == 2048: #height
            gradient = cv2.imread('./gradient_large.png').astype(np.uint8)
          elif d["background"].shape[0] == 1024:
            gradient = cv2.imread('./gradient.png').astype(np.uint8)
          else:
            gradient = cv2.imread('./gradient_small.png').astype(np.uint8)

      bg = cv2.cvtColor(d["background"], cv2.COLOR_RGBA2GRAY)

      diff = np.abs(bg.astype(np.int16)-cv2.cvtColor(gradient, cv2.COLOR_RGBA2GRAY).astype(np.int16)).astype(np.uint8)
      mask = cv2.inRange(diff, 0, t)
      #kernel = np.ones((c,c),np.float32)/(c*c)
      #mask = cv2.filter2D(mask,-1,kernel)
      dilation = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (15-(t*2+1), 15-(t*2+1)), (t, t))
      mask = cv2.dilate(mask, dilation)

      #indices = np.arange(0,256)   # List of all colors 
      #divider = np.linspace(0,255,l+1)[1] # we get a divider
      #quantiz = np.intp(np.linspace(0,255,l)) # we get quantization colors
      #color_levels = np.clip(np.intp(indices/divider),0,l-1) # color levels 0,1,2..
      #palette = quantiz[color_levels]
      
      #for i in range(l):
      #    bg[(bg >= i*255/l) & (bg < (i+1)*255/l)] = i*255/(l-1)
      #bg = cv2.convertScaleAbs(palette[bg]).astype(np.uint8) # Converting image back to uint

      res = np.float32(bg.reshape((-1,1)))
      criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 4, 1.0)
      ret,label,center=cv2.kmeans(res,l,None,criteria,4,cv2.KMEANS_PP_CENTERS)
      center = np.uint8(center)
      res = center[label.flatten()]
      bg = res.reshape((bg.shape))
        
      bg[mask>0] = 0
      bg[bg==255] = 0

      params["fnum"] = frame_selected
      params["l"] = l

      d["layers"][0] = cv2.cvtColor(bg, cv2.COLOR_GRAY2RGBA)
      edge = bg.copy()
    else:
      bg = edge.copy()

    x = points[len(points)-1][0]
    y = points[len(points)-1][1]

                                                #int(t*256/l)
    mask = cv2.floodFill(bg, None, (x, y), 1, 0, 256, (4 | cv2.FLOODFILL_FIXED_RANGE))[2] #(4 | cv2.FLOODFILL_FIXED_RANGE | cv2.FLOODFILL_MASK_ONLY | 255 << 8)
    # 255 << 8 tells to fill with the value 255)
    mask = mask[1:mask.shape[0]-1, 1:mask.shape[1]-1]
    
    d["layers"][0][mask>0] = (255,255,255,255)
    
    return gr.ImageEditor(value=d)


def findNormals(format):
    global depths
    d_im = cv2.cvtColor(cv2.imread(depths[frame_selected]).astype(np.uint8), cv2.COLOR_BGR2GRAY)
    zy, zx = np.gradient(d_im)  
    # You may also consider using Sobel to get a joint Gaussian smoothing and differentation
    # to reduce noise
    #zx = cv2.Sobel(d_im, cv2.CV_64F, 1, 0, ksize=5)     
    #zy = cv2.Sobel(d_im, cv2.CV_64F, 0, 1, ksize=5)

    if format == "opengl":
        zy = -zy
        
    normal = np.dstack((np.ones_like(d_im), -zy, -zx))
    n = np.linalg.norm(normal, axis=2)
    normal[:, :, 0] /= n
    normal[:, :, 1] /= n
    normal[:, :, 2] /= n

    # offset and rescale values to be in 0-255
    normal += 1
    normal /= 2
    normal *= 255

    return (normal[:, :, ::-1]).astype(np.uint8)


load_model="""
async(c, o, b, p, d, n, m)=>{
  var intv = setInterval(function(){
    if (document.getElementById("iframe3D")===null || typeof document.getElementById("iframe3D")==="undefined") {
      try {
      if (typeof BABYLON !== "undefined" && BABYLON.Engine && BABYLON.Engine.LastCreatedScene) {
        BABYLON.Engine.LastCreatedScene.onAfterRenderObservable.add(function() { //onDataLoadedObservable

          var then = new Date().getTime();
          var now, delta;
          const interval = 1000 / 25;
          const tolerance = 0.1;
          BABYLON.Engine.LastCreatedScene.getEngine().stopRenderLoop();
          BABYLON.Engine.LastCreatedScene.getEngine().runRenderLoop(function () {
            now = new Date().getTime();
            delta = now - then;
            then = now - (delta % interval);
            if (delta >= interval - tolerance) {
                BABYLON.Engine.LastCreatedScene.render();
            }
          });
          
          var bg = JSON.parse(document.getElementById("bgcolor").getElementsByTagName("textarea")[0].value);
          BABYLON.Engine.LastCreatedScene.getEngine().setHardwareScalingLevel(1.0);
          for (var i=0; i<bg.length; i++) {
            bg[i] /= 255;
          }
          BABYLON.Engine.LastCreatedScene.clearColor = new BABYLON.Color4(bg[0], bg[1], bg[2], bg[3]);
          BABYLON.Engine.LastCreatedScene.ambientColor = new BABYLON.Color4(255,255,255,255);
          //BABYLON.Engine.LastCreatedScene.autoClear = false;
          //BABYLON.Engine.LastCreatedScene.autoClearDepthAndStencil = false;
          for (var i=0; i<BABYLON.Engine.LastCreatedScene.getNodes().length; i++) {
            if (BABYLON.Engine.LastCreatedScene.getNodes()[i].material) {
              BABYLON.Engine.LastCreatedScene.getNodes()[i].material.pointSize = Math.ceil(Math.log2(Math.PI/document.getElementById("zoom").value));
            }
          }
          BABYLON.Engine.LastCreatedScene.getAnimationRatio();
          //BABYLON.Engine.LastCreatedScene.activeCamera.inertia = 0.0;
        });
        if (!BABYLON.Engine.LastCreatedScene.activeCamera.metadata) {
          BABYLON.Engine.LastCreatedScene.activeCamera.metadata = {
            pipeline: new BABYLON.DefaultRenderingPipeline("default", true, BABYLON.Engine.LastCreatedScene, [BABYLON.Engine.LastCreatedScene.activeCamera]) 
          }
        }
        BABYLON.Engine.LastCreatedScene.activeCamera.metadata.pipeline.samples = 4;
        BABYLON.Engine.LastCreatedScene.activeCamera.metadata.pipeline.imageProcessing.contrast = 1.0;
        BABYLON.Engine.LastCreatedScene.activeCamera.metadata.pipeline.imageProcessing.exposure = 1.0;

        BABYLON.Engine.LastCreatedScene.activeCamera.fov = document.getElementById("zoom").value;

        document.getElementById("model3D").getElementsByTagName("canvas")[0].style.filter = "blur(" + Math.ceil(Math.log2(Math.PI/document.getElementById("zoom").value))/2.0*Math.sqrt(2.0) + "px)";
        document.getElementById("model3D").getElementsByTagName("canvas")[0].oncontextmenu = function(e){e.preventDefault();}
        document.getElementById("model3D").getElementsByTagName("canvas")[0].ondrag = function(e){e.preventDefault();}

        if (o.indexOf(""+n) < 0) {
          if (o != "") { o += ","; }
          o += n;
        }
        //alert(o);
        var o_ = o.split(",");
        var q = BABYLON.Engine.LastCreatedScene.meshes;
        for(i = 0; i < q.length; i++) {
          let mesh = q[i];
          mesh.dispose(false, true);
        }
        var dome = [];
        for (var j=0; j<o_.length; j++) {
          o_[j] = parseInt(o_[j]);
          dome[j] = new BABYLON.PhotoDome("dome"+j, p[o_[j]].image.url, 
          {
            resolution: 16,
            size: 512
          }, BABYLON.Engine.LastCreatedScene);
          var q = BABYLON.Engine.LastCreatedScene.meshes[BABYLON.Engine.LastCreatedScene.meshes.length-2]._children;
          for(i = 0; i < q.length; i++) {
            let mesh = q[i];
            mesh.dispose(false, true);
          }
          //BABYLON.Engine.LastCreatedScene.meshes[BABYLON.Engine.LastCreatedScene.meshes.length-1].material.needDepthPrePass = true;
          //BABYLON.Engine.LastCreatedScene.meshes[BABYLON.Engine.LastCreatedScene.meshes.length-1].scaling.z = -1;
          BABYLON.Engine.LastCreatedScene.meshes[BABYLON.Engine.LastCreatedScene.meshes.length-1].alphaIndex = o_.length-j;
          BABYLON.Engine.LastCreatedScene.meshes[BABYLON.Engine.LastCreatedScene.meshes.length-1].material.diffuseTexture.hasAlpha = true;
          BABYLON.Engine.LastCreatedScene.meshes[BABYLON.Engine.LastCreatedScene.meshes.length-1].material.useAlphaFromDiffuseTexture = true;
          BABYLON.Engine.LastCreatedScene.meshes[BABYLON.Engine.LastCreatedScene.meshes.length-1].applyDisplacementMap(m[o_[j]].url, 0, 255, function(m){try{alert(BABYLON.Engine.Version);}catch(e){alert(e);}}, null, null, true, function(e){alert(e);});
        }
        clearInterval(intv);
      }
      } catch(e) {alert(e);}
    } else if (BABYLON || BABYLON == null) {
    try {
      BABYLON = null;
      if (document.getElementById("model3D").getElementsByTagName("canvas")[0]) {
        document.getElementById("model3D").getElementsByTagName("canvas")[0].remove();
      }
      document.getElementById("iframe3D").src = "index.htm";
      document.getElementById("iframe3D").onload = function() {
        if (o.indexOf(""+n) < 0) {
          if (o != "") { o += ","; }
          o += n;
        }
        alert(o);
        var o_ = o.split(",");
        document.getElementById("iframe3D").contentDocument.getElementById("coords").value = c;
        document.getElementById("iframe3D").contentDocument.getElementById("order").value = o;
        document.getElementById("iframe3D").contentDocument.getElementById("bgcolor").value = b;
        document.getElementById("iframe3D").contentDocument.getElementById("bgimage").value = "";
        document.getElementById("iframe3D").contentDocument.getElementById("bgdepth").value = "";
        for (var j=0; j<o_.length; j++) {
          o_[j] = parseInt(o_[j]);
          alert(o_[j]);
          document.getElementById("iframe3D").contentDocument.getElementById("bgimage").value += p[o_[j]].image.url + ",";
          document.getElementById("iframe3D").contentDocument.getElementById("bgdepth").value += m[o_[j]].url + ",";
        }
      }
      toggleDisplay("model");
      
      clearInterval(intv);
    } catch(e) {alert(e)}
    }
  }, 40);
}
"""

js = """
async()=>{
  console.log('Hi');

const chart = document.getElementById('chart');
const blur_in = document.getElementById('blur_in').getElementsByTagName('textarea')[0];
var md = false;
var xold = 128;
var yold = 32;
var a = new Array(256);
var l;

for (var i=0; i<256; i++) {
  const hr = document.createElement('hr');
  hr.style.backgroundColor = 'hsl(0,0%,' + (100-i/256*100) + '%)';
  chart.appendChild(hr);
}

function resetLine() {
  a.fill(1);
  for (var i=0; i<256; i++) {
    chart.childNodes[i].style.height = a[i] + 'px';
    chart.childNodes[i].style.marginTop = '32px';
  }
}
resetLine();
window.resetLine = resetLine;

function pointerDown(x, y) {
  md = true;
  xold = parseInt(x - chart.getBoundingClientRect().x);
  yold = parseInt(y - chart.getBoundingClientRect().y);
  chart.title = xold + ',' + yold;
}
window.pointerDown = pointerDown;

function pointerUp() {
  md = false;
  var evt = document.createEvent('Event');
  evt.initEvent('input', true, false);
  blur_in.dispatchEvent(evt);
  chart.title = '';
}
window.pointerUp = pointerUp;

function lerp(y1, y2, mu) { return y1*(1-mu)+y2*mu; }

function drawLine(x, y) {
  x = parseInt(x - chart.getBoundingClientRect().x);
  y = parseInt(y - chart.getBoundingClientRect().y);
  if (md === true && y >= 0 && y < 64 && x >= 0 && x < 256) {
    if (y < 32) {
      a[x] = Math.abs(32-y)*2 + 1;
      chart.childNodes[x].style.height = a[x] + 'px';
      chart.childNodes[x].style.marginTop = y + 'px';

      for (var i=Math.min(xold, x)+1; i<Math.max(xold, x); i++) {
        l = parseInt(lerp( yold, y, (i-xold)/(x-xold) ));

        if (l < 32) {
          a[i] = Math.abs(32-l)*2 + 1;
          chart.childNodes[i].style.height = a[i] + 'px';
          chart.childNodes[i].style.marginTop = l + 'px';
        } else if (l < 64) {
          a[i] = Math.abs(l-32)*2 + 1;
          chart.childNodes[i].style.height = a[i] + 'px';
          chart.childNodes[i].style.marginTop = (64-l) + 'px';
        }
      }
    } else if (y < 64) {
      a[x] = Math.abs(y-32)*2 + 1;
      chart.childNodes[x].style.height = a[x] + 'px';
      chart.childNodes[x].style.marginTop = (64-y) + 'px';

      for (var i=Math.min(xold, x)+1; i<Math.max(xold, x); i++) {
        l = parseInt(lerp( yold, y, (i-xold)/(x-xold) ));

        if (l < 32) {
          a[i] = Math.abs(32-l)*2 + 1;
          chart.childNodes[i].style.height = a[i] + 'px';
          chart.childNodes[i].style.marginTop = l + 'px';
        } else if (l < 64) {
          a[i] = Math.abs(l-32)*2 + 1;
          chart.childNodes[i].style.height = a[i] + 'px';
          chart.childNodes[i].style.marginTop = (64-l) + 'px';
        }
      }
    }
    blur_in.value = a.join(' ');
    xold = x;
    yold = y;
    chart.title = xold + ',' + yold;
  }
}
window.drawLine = drawLine;
  
}
"""

css = """
#img-display-container {
    max-height: 100vh;
    }
#img-display-input {
    max-height: 80vh;
    }
#img-display-output {
    max-height: 80vh;
    }
"""

title = "# Depth Anything V2 Video"
description = """**Depth Anything V2** on full video files.
Please refer to our [paper](https://arxiv.org/abs/2406.09414), [project page](https://depth-anything-v2.github.io), and [github](https://github.com/DepthAnything/Depth-Anything-V2) for more details."""

    
#transform = Compose([
#        Resize(
#            width=518,
#            height=518,
#            resize_target=False,
#            keep_aspect_ratio=True,
#            ensure_multiple_of=14,
#            resize_method='lower_bound',
#            image_interpolation_method=cv2.INTER_CUBIC,
#        ),
#        NormalizeImage(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
#        PrepareForNet(),
#])

# @torch.no_grad()
# def predict_depth(model, image):
#     return model(image)

with gr.Blocks(css=css, js=js) as demo:
    gr.Markdown(title)
    gr.Markdown(description)
    gr.Markdown("### Video Depth Prediction demo")

    with gr.Row():
        with gr.Column():
            input_json = gr.Textbox(elem_id="json_in", value="{}", label="JSON", interactive=False)
            input_url = gr.Textbox(elem_id="url_in", value="./examples/streetview.mp4", label="URL")
            input_video = gr.Video(label="Input Video", format="mp4")
            input_url.input(fn=loadfile, inputs=[input_url], outputs=[input_video])
            submit = gr.Button("Submit")
            output_frame = gr.Gallery(label="Frames", preview=True, columns=8192, interactive=False)
            output_switch = gr.Checkbox(label="Show depths")
            output_depth = gr.Files(label="Depths", interactive=False)
            output_switch.input(fn=switch_rows, inputs=[output_switch], outputs=[output_frame])
            optimize_switch = gr.Checkbox(label="Optimize")
            bgcolor = gr.Textbox(elem_id="bgcolor", value="[127, 127, 127, 255]", label="Background color", interactive=False)
            optimize_switch.input(fn=optimize, inputs=[optimize_switch, output_switch], outputs=[output_frame, bgcolor])
            output_mask = gr.ImageEditor(layers=False, sources=('upload', 'clipboard'), show_download_button=True, type="numpy", interactive=True, transforms=(None,), eraser=gr.Eraser(), brush=gr.Brush(default_size=0, colors=['black', '#505050', '#a0a0a0', 'white']), elem_id="image_edit")
            with gr.Row():
              selector = gr.HTML(value="""
            <a href='#' id='selector' onclick='if (this.style.fontWeight!=\"bold\") {
            this.style.fontWeight=\"bold\";
            document.getElementById(\"image_edit\").getElementsByTagName(\"canvas\")[0].oncontextmenu = function(e){e.preventDefault();}
            document.getElementById(\"image_edit\").getElementsByTagName(\"canvas\")[0].ondrag = function(e){e.preventDefault();}
            
            document.getElementById(\"image_edit\").getElementsByTagName(\"canvas\")[0].onclick = function(e) {
              var x = parseInt((e.clientX-e.target.getBoundingClientRect().x)*e.target.width/e.target.getBoundingClientRect().width);
              var y = parseInt((e.clientY-e.target.getBoundingClientRect().y)*e.target.height/e.target.getBoundingClientRect().height);

              var p = document.getElementById(\"mouse\").getElementsByTagName(\"textarea\")[0].value.slice(1, -1);
              if (p != \"\") { p += \", \"; }
              p += \"[\" + x + \", \" + y + \"]\";
              document.getElementById(\"mouse\").getElementsByTagName(\"textarea\")[0].value = \"[\" + p + \"]\";
              
              var evt = document.createEvent(\"Event\");
              evt.initEvent(\"input\", true, false);
              document.getElementById(\"mouse\").getElementsByTagName(\"textarea\")[0].dispatchEvent(evt);
            }
            document.getElementById(\"image_edit\").getElementsByTagName(\"canvas\")[0].onpointerdown = function(e) {
              
              document.getElementById(\"mouse\").getElementsByTagName(\"textarea\")[0].style.borderColor = \"#a0a0a0\";
            
            }
            document.getElementById(\"image_edit\").getElementsByTagName(\"canvas\")[0].onpointerup = function(e) {
              
              document.getElementById(\"mouse\").getElementsByTagName(\"textarea\")[0].style.borderColor = \"#ffffff\";
            
            }
            } else {
              this.style.fontWeight=\"normal\";
              document.getElementById(\"image_edit\").getElementsByTagName(\"canvas\")[0].onclick = null;
              
            }' title='Select point' style='text-decoration:none;color:white;'>⊹ Select point</a> <a href='#' id='clear_select' onclick='
              
              document.getElementById(\"mouse\").getElementsByTagName(\"textarea\")[0].value = \"[]\";
            
            ' title='Clear selection' style='text-decoration:none;color:white;'>✕ Clear</a>""")
              apply = gr.Button("Apply", size='sm')
              reset = gr.Button("Reset", size='sm')
            with gr.Accordion(label="Edge", open=False):
              levels = gr.Slider(label="Color levels", value=16, maximum=32, minimum=2, step=1)
              tolerance = gr.Slider(label="Tolerance", value=1, maximum=7, minimum=0, step=1)
              bsize = gr.Slider(label="Border size", value=15, maximum=256, minimum=1, step=2)
              mouse = gr.Textbox(elem_id="mouse", value="""[]""", interactive=False)
              mouse.input(fn=draw_mask, show_progress="minimal", inputs=[levels, tolerance, mouse, output_mask], outputs=[output_mask])
              apply.click(fn=apply_mask, inputs=[output_mask, bsize], outputs=[output_mask, output_depth, output_frame])
              reset.click(fn=reset_mask, inputs=None, outputs=[output_mask, output_depth])

            normals_out = gr.Image(label="Normal map", interactive=False)
            format_normals = gr.Radio(choices=["directx", "opengl"])
            find_normals = gr.Button("Find normals")
            find_normals.click(fn=findNormals, inputs=[format_normals], outputs=[normals_out])

        with gr.Column():
            model_type = gr.Dropdown([("small", "vits"), ("base", "vitb"), ("large", "vitl"), ("giant", "vitg")], type="value", value="vits", label='Model Type')
            remove_bg = gr.Checkbox(label="Remove background")
            with gr.Accordion(label="Background removal settings", open=False):
                with gr.Tab(label="Maximums"):
                    max_c = gr.Slider(minimum=0, maximum=255, step=1, value=12, label="Color diff")
                    max_d = gr.Slider(minimum=0, maximum=255, step=1, value=12, label="Depth diff")
                with gr.Tab(label="Shadow maximums"):
                    max_s = gr.Slider(minimum=0, maximum=255, step=1, value=32, label="Saturation")
                    max_l = gr.Slider(minimum=0, maximum=255, step=1, value=64, label="Lightness")
                    max_v = gr.Slider(minimum=0, maximum=255, step=1, value=16, label="Detail")
                lt = gr.Radio(label="Maximum is", choices=["average", "median", "slider"], value="slider")
            processed_video = gr.Video(label="Output Video", format="mp4", interactive=False)
            processed_zip = gr.File(label="Output Archive", interactive=False)
            result = gr.Model3D(label="3D Mesh", clear_color=[0.5, 0.5, 0.5, 0.0], camera_position=[0, 90, 0], zoom_speed=2.0, pan_speed=2.0, interactive=True, elem_id="model3D") #, display_mode="point_cloud"
            chart_c = gr.HTML(elem_id="chart_c", value="""<div id='chart' onpointermove='window.drawLine(event.clientX, event.clientY);' onpointerdown='window.pointerDown(event.clientX, event.clientY);' onpointerup='window.pointerUp();' onpointerleave='window.pointerUp();' onpointercancel='window.pointerUp();' onclick='window.resetLine();'></div>
            <style>
  body {
    user-select: none;
  }
  #chart hr {
    width: 1px;
    height: 1px;
    clear: none;
    border: 0;
    padding:0;
    display: inline-block;
    position: relative;
    vertical-align: top;
    margin-top:32px;
  }
  #chart {
    padding:0;
    margin:0;
    width:256px;
    height:64px;
    background-color:#808080;
    touch-action: none;
  }
            </style>
            """)
            average = gr.HTML(value="""<label for='average'>Average</label><input id='average' type='range' style='width:256px;height:1em;' value='1' min='1' max='15' step='2' onclick='
              var pts_a = document.getElementById(\"blur_in\").getElementsByTagName(\"textarea\")[0].value.split(\" \");
              for (var i=0; i<256; i++) {
                var avg = 0;
                var div = this.value;
                for (var j = i-parseInt(this.value/2); j <= i+parseInt(this.value/2); j++) {
                  if (pts_a[j]) {
                    avg += parseInt(pts_a[j]);
                  } else if (div > 1) {
                    div--;
                  }
                }
                pts_a[i] = Math.round((avg / div - 1) / 2) * 2 + 1;

                document.getElementById(\"chart\").childNodes[i].style.height = pts_a[i] + \"px\";
                document.getElementById(\"chart\").childNodes[i].style.marginTop = (64-pts_a[i])/2 + \"px\";
              }
              document.getElementById(\"blur_in\").getElementsByTagName(\"textarea\")[0].value = pts_a.join(\" \");

              var evt = document.createEvent(\"Event\");
              evt.initEvent(\"input\", true, false);
              document.getElementById(\"blur_in\").getElementsByTagName(\"textarea\")[0].dispatchEvent(evt);
            ' oninput='
              this.parentNode.childNodes[2].innerText = this.value;
            ' onchange='this.click();'/><span>1</span>""")
            with gr.Accordion(label="Blur levels", open=False):
                blur_in = gr.Textbox(elem_id="blur_in", label="Kernel size", show_label=False, interactive=False, value="1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1")
            with gr.Accordion(label="Locations", open=False):
                offset = gr.HTML(value="""<input type='text' id='kbrd' onpointerdown='this.style.color = \"white\";' onpointerup='this.style.color = \"auto\";' onpointermove='
                try {
                if (this.style.color!=\"auto\" && BABYLON) {
                  if (!BABYLON.Engine.LastCreatedScene.activeCamera.metadata) {
                    var evt = document.createEvent(\"Event\");
                    evt.initEvent(\"click\", true, false);
                    document.getElementById(\"reset_cam\").dispatchEvent(evt);
                  }
                  event.preventDefault();
                  if (BABYLON.Engine.LastCreatedScene.getNodes()[parseInt(document.getElementById(\"fnum\").getElementsByTagName(\"input\")[0].value)+1].rotationQuaternion) {
                    BABYLON.Engine.LastCreatedScene.getNodes()[parseInt(document.getElementById(\"fnum\").getElementsByTagName(\"input\")[0].value)+1].rotationQuaternion = null;
                  }
                  const dir = BABYLON.Engine.LastCreatedScene.activeCamera.getForwardRay().direction;
                  dir.y = 0; dir.normalize();
                  const angle = BABYLON.Vector3.GetAngleBetweenVectors(dir, BABYLON.Vector3.Forward(), BABYLON.Vector3.Up());
                  const x = event.clientX-this.getBoundingClientRect().x-128;
                  const y = event.clientY-this.getBoundingClientRect().y-64;
                  const angle_ = Math.atan2(y, x);
                  const r = Math.sqrt(Math.pow(y,2) + Math.pow(x,2));
                  BABYLON.Engine.LastCreatedScene.getNodes()[parseInt(document.getElementById(\"fnum\").getElementsByTagName(\"input\")[0].value)+1].position.z = r * Math.sin(-angle_-angle);
                  BABYLON.Engine.LastCreatedScene.getNodes()[parseInt(document.getElementById(\"fnum\").getElementsByTagName(\"input\")[0].value)+1].position.x = r * Math.cos(-angle_-angle);
                }
                } catch(e) {alert(e)}
                ' onkeydown='
                if (BABYLON) {
                  if (!BABYLON.Engine.LastCreatedScene.activeCamera.metadata) {
                    var evt = document.createEvent(\"Event\");
                    evt.initEvent(\"click\", true, false);
                    document.getElementById(\"reset_cam\").dispatchEvent(evt);
                  }
                  event.preventDefault();
                  if (BABYLON.Engine.LastCreatedScene.getNodes()[parseInt(document.getElementById(\"fnum\").getElementsByTagName(\"input\")[0].value)+1].rotationQuaternion) {
                    BABYLON.Engine.LastCreatedScene.getNodes()[parseInt(document.getElementById(\"fnum\").getElementsByTagName(\"input\")[0].value)+1].rotationQuaternion = null;
                  }
                  try {
                  const dir = BABYLON.Engine.LastCreatedScene.activeCamera.getForwardRay().direction;
                  dir.y = 0; dir.normalize();
                  const angle = BABYLON.Vector3.GetAngleBetweenVectors(dir, BABYLON.Vector3.Forward(), BABYLON.Vector3.Up());
                  switch(event.key) {
                    case \"w\":
                      BABYLON.Engine.LastCreatedScene.getNodes()[parseInt(document.getElementById(\"fnum\").getElementsByTagName(\"input\")[0].value)+1].position.y += 1;
                      this.value = \"w ⬆ x\";
                      break;
                    case \"x\":
                      BABYLON.Engine.LastCreatedScene.getNodes()[parseInt(document.getElementById(\"fnum\").getElementsByTagName(\"input\")[0].value)+1].position.y -= 1;
                      this.value = \"w ⬇ x\";
                      break;
                    case \"a\":
                      const x = -1; const y = 0;
                      const angle_ = Math.atan2(y, x);
                      BABYLON.Engine.LastCreatedScene.getNodes()[parseInt(document.getElementById(\"fnum\").getElementsByTagName(\"input\")[0].value)+1].position.z += Math.sin(-angle_-angle);
                      this.value = \"a ⬅ d\";
                      break;
                    case \"d\":
                      const x = 1; const y = 0;
                      const angle_ = Math.atan2(y, x);
                      BABYLON.Engine.LastCreatedScene.getNodes()[parseInt(document.getElementById(\"fnum\").getElementsByTagName(\"input\")[0].value)+1].position.z += Math.sin(-angle_-angle);
                      this.value = \"a ➡ d\";
                      break;
                    case \"e\":
                      const x = 0; const y = -1;
                      const angle_ = Math.atan2(y, x);
                      BABYLON.Engine.LastCreatedScene.getNodes()[parseInt(document.getElementById(\"fnum\").getElementsByTagName(\"input\")[0].value)+1].position.x += Math.cos(-angle_-angle);
                      this.value = \"z ↗ e\";
                      break;
                    case \"z\":
                      const x = 0; const y = 1;
                      const angle_ = Math.atan2(y, x);
                      BABYLON.Engine.LastCreatedScene.getNodes()[parseInt(document.getElementById(\"fnum\").getElementsByTagName(\"input\")[0].value)+1].position.x += Math.cos(-angle_-angle);
                      this.value = \"z ↙ e\";
                      break;
                    case \"s\":
                      BABYLON.Engine.LastCreatedScene.getNodes()[parseInt(document.getElementById(\"fnum\").getElementsByTagName(\"input\")[0].value)+1].position.x = 0;
                      BABYLON.Engine.LastCreatedScene.getNodes()[parseInt(document.getElementById(\"fnum\").getElementsByTagName(\"input\")[0].value)+1].position.y = 0;
                      BABYLON.Engine.LastCreatedScene.getNodes()[parseInt(document.getElementById(\"fnum\").getElementsByTagName(\"input\")[0].value)+1].position.z = 0;
                      this.value = \"\";
                      break;
                    case \"t\":
                      BABYLON.Engine.LastCreatedScene.getNodes()[parseInt(document.getElementById(\"fnum\").getElementsByTagName(\"input\")[0].value)+1].rotation.z += Math.PI/256;
                      this.value = \"t 🔃 b\";
                      break;
                    case \"b\":
                      BABYLON.Engine.LastCreatedScene.getNodes()[parseInt(document.getElementById(\"fnum\").getElementsByTagName(\"input\")[0].value)+1].rotation.z -= Math.PI/256;
                      this.value = \"t 🔃 b\";
                      break;
                    case \"f\":
                      BABYLON.Engine.LastCreatedScene.getNodes()[parseInt(document.getElementById(\"fnum\").getElementsByTagName(\"input\")[0].value)+1].rotation.y -= Math.PI/256;
                      this.value = \"f 🔁 h\";
                      break;
                    case \"h\":
                      BABYLON.Engine.LastCreatedScene.getNodes()[parseInt(document.getElementById(\"fnum\").getElementsByTagName(\"input\")[0].value)+1].rotation.y += Math.PI/256;
                      this.value = \"f 🔁 h\";
                      break;
                    case \"y\":
                      BABYLON.Engine.LastCreatedScene.getNodes()[parseInt(document.getElementById(\"fnum\").getElementsByTagName(\"input\")[0].value)+1].rotation.x -= Math.PI/256;
                      this.value = \"v 🔄 y\";
                      break;
                    case \"v\":
                      BABYLON.Engine.LastCreatedScene.getNodes()[parseInt(document.getElementById(\"fnum\").getElementsByTagName(\"input\")[0].value)+1].rotation.x += Math.PI/256;
                      this.value = \"v 🔄 y\";
                      break;
                    case \"g\":
                      BABYLON.Engine.LastCreatedScene.getNodes()[parseInt(document.getElementById(\"fnum\").getElementsByTagName(\"input\")[0].value)+1].rotation.x = 0;
                      BABYLON.Engine.LastCreatedScene.getNodes()[parseInt(document.getElementById(\"fnum\").getElementsByTagName(\"input\")[0].value)+1].rotation.y = 0;
                      BABYLON.Engine.LastCreatedScene.getNodes()[parseInt(document.getElementById(\"fnum\").getElementsByTagName(\"input\")[0].value)+1].rotation.z = 0;
                      this.value = \"\";
                      break;
                    case \"i\":
                      BABYLON.Engine.LastCreatedScene.getNodes()[parseInt(document.getElementById(\"fnum\").getElementsByTagName(\"input\")[0].value)+1].scaling.y *= 256/255;
                      this.value = \"i ↕ ,\";
                      break;
                    case \",\":
                      BABYLON.Engine.LastCreatedScene.getNodes()[parseInt(document.getElementById(\"fnum\").getElementsByTagName(\"input\")[0].value)+1].scaling.y /= 256/255;
                      this.value = \"i ↕ ,\";
                      break;
                    case \"j\":
                      BABYLON.Engine.LastCreatedScene.getNodes()[parseInt(document.getElementById(\"fnum\").getElementsByTagName(\"input\")[0].value)+1].scaling.z /= 256/255;
                      this.value = \"j ↔ l\";
                      break;
                    case \"l\":
                      BABYLON.Engine.LastCreatedScene.getNodes()[parseInt(document.getElementById(\"fnum\").getElementsByTagName(\"input\")[0].value)+1].scaling.z *= 256/255;
                      this.value = \"j ↔ l\";
                      break;
                    case \"o\":
                      BABYLON.Engine.LastCreatedScene.getNodes()[parseInt(document.getElementById(\"fnum\").getElementsByTagName(\"input\")[0].value)+1].scaling.x /= 256/255;
                      this.value = \"m ⤢ o\";
                      break;
                    case \"m\":
                      BABYLON.Engine.LastCreatedScene.getNodes()[parseInt(document.getElementById(\"fnum\").getElementsByTagName(\"input\")[0].value)+1].scaling.x *= 256/255;
                      this.value = \"m ⤢ o\";
                      break;
                    case \"k\":
                      BABYLON.Engine.LastCreatedScene.getNodes()[parseInt(document.getElementById(\"fnum\").getElementsByTagName(\"input\")[0].value)+1].scaling.x = 1;
                      BABYLON.Engine.LastCreatedScene.getNodes()[parseInt(document.getElementById(\"fnum\").getElementsByTagName(\"input\")[0].value)+1].scaling.y = 1;
                      BABYLON.Engine.LastCreatedScene.getNodes()[parseInt(document.getElementById(\"fnum\").getElementsByTagName(\"input\")[0].value)+1].scaling.z = 1;
                      this.value = \"\";
                      break;
                    default:
                      this.value = \"\"; 
                  }
                  } catch(e) {alert(e)}
                }
                ' style='height:128px;width:256px;user-select:none;touch-action:none;color:auto;background-color:transparent;border:1px solid gray;'/>
                <pre id='keymap'>
`  1  2  3  4  5  6  7  8  9  0  -  =  
       W  E     T  Y     I  O     {  }
     A-`S´-D  F-`G´-H  J-`K´-L  ;  '
      Z´ X̀     V´ B̀     M´ `,  .  /
      <a id='move' href='#'>move</a>    <a id='rotate' href='#'>rotate</a>    <a id='scale' href='#'>scale</a>
                </pre>""")
                selected = gr.Number(elem_id="fnum", value=0, minimum=0, maximum=256, interactive=False)
                output_frame.select(fn=select_frame, inputs=[output_mask], outputs=[output_mask, selected, bgcolor])
                example_coords = """[
                  {"lat": 50.07379596793083, "lng": 14.437146122950555, "heading": 152.70303, "pitch": 2.607833999999997}, 
                  {"lat": 50.073799567020004, "lng": 14.437146774240507, "heading": 151.12973, "pitch": 2.8672300000000064}, 
                  {"lat": 50.07377647505558, "lng": 14.437161000659017, "heading": 151.41025, "pitch": 3.4802200000000028}, 
                  {"lat": 50.07379496839027, "lng": 14.437148958238538, "heading": 151.93391, "pitch": 2.843050000000005}, 
                  {"lat": 50.073823157821664, "lng": 14.437124189538856, "heading": 152.95769, "pitch": 4.233024999999998}
                ]"""
                coords = gr.Textbox(elem_id="coords", value=example_coords, label="Coordinates", interactive=False)
                mesh_order = gr.Textbox(elem_id="order", value="", label="Order", interactive=False)
                
            result_file = gr.File(elem_id="file3D", label="3D file", interactive=False)
            html = gr.HTML(value="""<label for='zoom'>Zoom</label><input id='zoom' type='range' style='width:256px;height:1em;' value='0.8' min='0.157' max='1.57' step='0.001' oninput='
              if (!BABYLON.Engine.LastCreatedScene.activeCamera.metadata) {
                var evt = document.createEvent(\"Event\");
                evt.initEvent(\"click\", true, false);
                document.getElementById(\"reset_cam\").dispatchEvent(evt);
              } 
              BABYLON.Engine.LastCreatedScene.getNodes()[parseInt(document.getElementById(\"fnum\").getElementsByTagName(\"input\")[0].value)+1].material.pointSize = Math.ceil(Math.log2(Math.PI/this.value));
              BABYLON.Engine.LastCreatedScene.activeCamera.fov = this.value;
              this.parentNode.childNodes[2].innerText = BABYLON.Engine.LastCreatedScene.activeCamera.fov;

              document.getElementById(\"model3D\").getElementsByTagName(\"canvas\")[0].style.filter = \"blur(\" + BABYLON.Engine.LastCreatedScene.getNodes()[parseInt(document.getElementById(\"fnum\").getElementsByTagName(\"input\")[0].value)+1].material.pointSize/2.0*Math.sqrt(2.0) + \"px)\";
            '/><span>0.8</span>""")
            camera = gr.HTML(value="""<a href='#' id='reset_cam' onclick='
              if (!BABYLON.Engine.LastCreatedScene.activeCamera.metadata) {
                BABYLON.Engine.LastCreatedScene.activeCamera.metadata = { 
                  screenshot: true,
                  pipeline: new BABYLON.DefaultRenderingPipeline(\"default\", true, BABYLON.Engine.LastCreatedScene, [BABYLON.Engine.LastCreatedScene.activeCamera]) 
                }
              } 
              BABYLON.Engine.LastCreatedScene.activeCamera.radius = 0;
              BABYLON.Engine.LastCreatedScene.getNodes()[parseInt(document.getElementById(\"fnum\").getElementsByTagName(\"input\")[0].value)+1].material.pointSize = Math.ceil(Math.log2(Math.PI/document.getElementById(\"zoom\").value));
              BABYLON.Engine.LastCreatedScene.activeCamera.metadata.pipeline.samples = 4; 
              BABYLON.Engine.LastCreatedScene.activeCamera.fov = document.getElementById(\"zoom\").value;
              BABYLON.Engine.LastCreatedScene.activeCamera.metadata.pipeline.imageProcessing.contrast = document.getElementById(\"contrast\").value;
              BABYLON.Engine.LastCreatedScene.activeCamera.metadata.pipeline.imageProcessing.exposure = document.getElementById(\"exposure\").value;
              
              document.getElementById(\"model3D\").getElementsByTagName(\"canvas\")[0].style.filter = \"blur(\" + Math.ceil(Math.log2(Math.PI/document.getElementById(\"zoom\").value))/2.0*Math.sqrt(2.0) + \"px)\";
              document.getElementById(\"model3D\").getElementsByTagName(\"canvas\")[0].oncontextmenu = function(e){e.preventDefault();}
              document.getElementById(\"model3D\").getElementsByTagName(\"canvas\")[0].ondrag = function(e){e.preventDefault();}

              if (!BABYLON.Engine.LastCreatedScene.activeCamera.metadata.gizmoManager) {
                BABYLON.Engine.LastCreatedScene.activeCamera.metadata.gizmoManager = new BABYLON.GizmoManager(BABYLON.Engine.LastCreatedScene, 16);
                
                BABYLON.Engine.LastCreatedScene.activeCamera.metadata.gizmoManager.positionGizmoEnabled = true;
                BABYLON.Engine.LastCreatedScene.activeCamera.metadata.gizmoManager.rotationGizmoEnabled = false;
                BABYLON.Engine.LastCreatedScene.activeCamera.metadata.gizmoManager.scaleGizmoEnabled = false;
                BABYLON.Engine.LastCreatedScene.activeCamera.metadata.gizmoManager.boundingBoxGizmoEnabled = false;
              
                BABYLON.Engine.LastCreatedScene.activeCamera.metadata.gizmoManager.usePointerToAttachGizmos = false;
                document.getElementById(\"move\").onclick = function(event) {
                  BABYLON.Engine.LastCreatedScene.activeCamera.metadata.gizmoManager.positionGizmoEnabled = true;
                  BABYLON.Engine.LastCreatedScene.activeCamera.metadata.gizmoManager.rotationGizmoEnabled = false;
                  BABYLON.Engine.LastCreatedScene.activeCamera.metadata.gizmoManager.scaleGizmoEnabled = false;
                }
                document.getElementById(\"rotate\").onclick = function(event) {
                  BABYLON.Engine.LastCreatedScene.activeCamera.metadata.gizmoManager.positionGizmoEnabled = false;
                  BABYLON.Engine.LastCreatedScene.activeCamera.metadata.gizmoManager.rotationGizmoEnabled = true;
                  BABYLON.Engine.LastCreatedScene.activeCamera.metadata.gizmoManager.scaleGizmoEnabled = false;
                }
                document.getElementById(\"scale\").onclick = function(event) {
                  BABYLON.Engine.LastCreatedScene.activeCamera.metadata.gizmoManager.positionGizmoEnabled = false;
                  BABYLON.Engine.LastCreatedScene.activeCamera.metadata.gizmoManager.rotationGizmoEnabled = false;
                  BABYLON.Engine.LastCreatedScene.activeCamera.metadata.gizmoManager.scaleGizmoEnabled = true;
                }
              }
              BABYLON.Engine.LastCreatedScene.activeCamera.metadata.gizmoManager.attachToMesh(BABYLON.Engine.LastCreatedScene.getNodes()[parseInt(document.getElementById(\"fnum\").getElementsByTagName(\"input\")[0].value)+1]);
            '>reset camera</a>""")
            contrast = gr.HTML(value="""<label for='contrast'>Contrast</label><input id='contrast' type='range' style='width:256px;height:1em;' value='1.0' min='0' max='2' step='0.001' oninput='
              if (!BABYLON.Engine.LastCreatedScene.activeCamera.metadata) {
                var evt = document.createEvent(\"Event\");
                evt.initEvent(\"click\", true, false);
                document.getElementById(\"reset_cam\").dispatchEvent(evt);
              } 
              BABYLON.Engine.LastCreatedScene.activeCamera.metadata.pipeline.imageProcessing.contrast = this.value;
              this.parentNode.childNodes[2].innerText = BABYLON.Engine.LastCreatedScene.activeCamera.metadata.pipeline.imageProcessing.contrast;
            '/><span>1.0</span>""")
            exposure = gr.HTML(value="""<label for='exposure'>Exposure</label><input id='exposure' type='range' style='width:256px;height:1em;' value='1.0' min='0' max='2' step='0.001' oninput='
              if (!BABYLON.Engine.LastCreatedScene.activeCamera.metadata) {
                var evt = document.createEvent(\"Event\");
                evt.initEvent(\"click\", true, false);
                document.getElementById(\"reset_cam\").dispatchEvent(evt);
              } 
              BABYLON.Engine.LastCreatedScene.activeCamera.metadata.pipeline.imageProcessing.exposure = this.value;
              this.parentNode.childNodes[2].innerText = BABYLON.Engine.LastCreatedScene.activeCamera.metadata.pipeline.imageProcessing.exposure;
            '/><span>1.0</span>""")
            canvas = gr.HTML(value="""<a href='#' onclick='
              if (!BABYLON.Engine.LastCreatedScene.activeCamera.metadata) {
                var evt = document.createEvent(\"Event\");
                evt.initEvent(\"click\", true, false);
                document.getElementById(\"reset_cam\").dispatchEvent(evt);
              } 
              BABYLON.Engine.LastCreatedScene.activeCamera.metadata.screenshot = true;

              BABYLON.Engine.LastCreatedScene.getEngine().onEndFrameObservable.add(function() {
                if (BABYLON.Engine.LastCreatedScene.activeCamera.metadata.screenshot === true) {
                  BABYLON.Engine.LastCreatedScene.activeCamera.metadata.screenshot = false;
                  try {
                    BABYLON.Tools.CreateScreenshotUsingRenderTarget(BABYLON.Engine.LastCreatedScene.getEngine(), BABYLON.Engine.LastCreatedScene.activeCamera, 
                      { precision: 1.0 }, (durl) => { 
                        var cnvs = document.getElementById(\"model3D\").getElementsByTagName(\"canvas\")[0]; //.getContext(\"webgl2\");
                        var svgd = `<svg id=\"svg_out\" viewBox=\"0 0 ` + cnvs.width + ` ` + cnvs.height + `\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\">
                          <defs>
                            <filter id=\"blur\" x=\"0\" y=\"0\" xmlns=\"http://www.w3.org/2000/svg\">
                              <feGaussianBlur in=\"SourceGraphic\" stdDeviation=\"` + BABYLON.Engine.LastCreatedScene.getNodes()[1].material.pointSize/2.0*Math.sqrt(2.0) + `\" />
                            </filter>
                          </defs>
                          <image filter=\"url(#blur)\" id=\"svg_img\" x=\"0\" y=\"0\" width=\"` + cnvs.width + `\" height=\"` + cnvs.height + `\" xlink:href=\"` + durl + `\"/>
                        </svg>`;
                        document.getElementById(\"cnv_out\").width = cnvs.width;
                        document.getElementById(\"cnv_out\").height = cnvs.height;
                        document.getElementById(\"img_out\").src = \"data:image/svg+xml;base64,\" + btoa(svgd);        
                      }
                    );
                  } catch(e) { alert(e); }
                  // https://forum.babylonjs.com/t/best-way-to-save-to-jpeg-snapshots-of-scene/17663/11
                }
              });
            '/>snapshot</a><br/><img src='' id='img_out' onload='
              var ctxt = document.getElementById(\"cnv_out\").getContext(\"2d\");
              ctxt.drawImage(this, 0, 0); 
            '/><br/>
            <canvas id='cnv_out'/>""")
            load_all = gr.Checkbox(label="Load all")
            render = gr.Button("Render")
            input_json.input(show_json, inputs=[input_json], outputs=[processed_video, processed_zip, output_frame, output_mask, output_depth, coords])
    
    def on_submit(uploaded_video,model_type,remove_bg,maxc,maxd,maxs,maxl,maxv,lt,coordinates):
        global locations
        locations = []
        avg = [0, 0]
        
        locations = json.loads(coordinates)
        for k, location in enumerate(locations):
            if "tiles" in locations[k]:
                locations[k]["heading"] = locations[k]["tiles"]["originHeading"]
                locations[k]["pitch"] = locations[k]["tiles"]["originPitch"]
            else:
                locations[k]["heading"] = 0
                locations[k]["pitch"] = 0

            if "location" in locations[k]:
                locations[k] = locations[k]["location"]["latLng"]
                avg[0] = avg[0] + locations[k]["lat"]
                avg[1] = avg[1] + locations[k]["lng"]
            else:
                locations[k]["lat"] = 0
                locations[k]["lng"] = 0
                
        if len(locations) > 0:
            avg[0] = avg[0] / len(locations)
            avg[1] = avg[1] / len(locations)
            
        for k, location in enumerate(locations):
            lat = vincenty((location["lat"], 0), (avg[0], 0)) * 1000
            lng = vincenty((0, location["lng"]), (0, avg[1])) * 1000
            locations[k]["lat"] = float(lat / 2.5 * 95 * np.sign(location["lat"]-avg[0]))
            locations[k]["lng"] = float(lng / 2.5 * 95 * np.sign(location["lng"]-avg[1]))
        print(locations)
            
        # Process the video and get the path of the output video
        output_video_path = make_video(uploaded_video,encoder=model_type,remove_bg=remove_bg,maxc=maxc,maxd=maxd,maxs=maxs,maxl=maxl,maxv=maxv,lt=lt)

        return output_video_path + (json.dumps(locations),)

    submit.click(on_submit, inputs=[input_video, model_type, remove_bg, max_c, max_d, max_s, max_l, max_v, lt, coords], outputs=[processed_video, processed_zip, output_frame, output_mask, output_depth, coords])
    render.click(None, inputs=[coords, mesh_order, bgcolor, output_frame, output_mask, selected, output_depth], outputs=None, js=load_model)
    render.click(partial(get_mesh), inputs=[output_frame, output_mask, blur_in, load_all], outputs=[result, result_file, mesh_order])

    example_files = [["./examples/streetview.mp4", "vits", False, 12, 12, 32, 64, 16, "slider", example_coords], ["./examples/man-in-museum-reverse-cut.mp4", "vits", True, 12, 12, 32, 64, 16, "slider", example_coords]]
    examples = gr.Examples(examples=example_files, fn=on_submit, cache_examples=True, inputs=[input_video, model_type, remove_bg, max_c, max_d, max_s, max_l, max_v, lt, coords], outputs=[processed_video, processed_zip, output_frame, output_mask, output_depth, coords])
    

if __name__ == '__main__':
    demo.queue().launch()