Spaces:
Starting
Starting
File size: 73,451 Bytes
545659d 82e8e66 545659d 295f218 545659d 98ce923 545659d ce8fe55 545659d a0e06d8 6925966 9125fef cabfe86 694de76 9e41914 4aea9f1 f6913f3 00e81be 3057121 099e1d8 00e81be 4ab90c5 6b55b39 836b554 1e09d51 a9b6fe2 f80dbe2 6dd8ced c400da7 ec6e24b 2868f8e f40e1dd e981f65 f80dbe2 ac2a5c7 6925966 ac2a5c7 52145da 6925966 f6913f3 74cd1a8 3e2c46e 9954d1d 3e2c46e 74cd1a8 f6913f3 545659d 10b0245 6ae9b9b 00e81be 89a1848 89f1281 3bf2d11 2abae72 00e81be 5e79f53 545659d 00e81be 545659d 00e81be 545659d 00e81be 123829d 00e81be 545659d cbdb616 545659d 00e81be 545659d dfe56e1 545659d 645ddd1 4696931 545659d f4cc18c fdbb8b2 545659d fdbb8b2 545659d fdbb8b2 545659d fdbb8b2 38e2927 2712856 9509d05 f6913f3 ac2a5c7 c2f3170 8d436bc 545659d edf0e9e 53c24cf dceaf40 2a6e4d8 581f136 00e81be 07f8e2b 545659d 00e81be 108e1f8 00e81be 58be8ed 328e50b 58be8ed 4a116ab 58be8ed 80f8b1b 328e50b 12e552d 328e50b fdbb8b2 545659d 72c7909 7155858 045da54 89f1281 0ce6656 8380995 60d4bfb 89f1281 0ad7299 045da54 f5e153d 89a1848 89f1281 25939d0 0ad7299 50ffb5e 0ad7299 89a1848 0ad7299 89a1848 0ad7299 89a1848 081057e 03493b1 ef2485c 0ac86d3 045da54 29f2dbd 086f826 9584213 89a1848 03493b1 07f8e2b 045da54 48761d0 549786e 38e2927 549786e ce8da40 f6913f3 fd28694 4be74db 545659d fdbb8b2 f6913f3 55cb886 6b55b39 55cb886 6dd8ced d8453b9 71937bb 6b55b39 71937bb 6b55b39 7ab31cb 6b55b39 7ab31cb edf0e9e 722a74e f40e1dd 722a74e 9d7a705 722a74e 7139a06 722a74e 010a3dc 722a74e 1c3240c 5009bf7 1d201cc 8ee9d42 aa63800 434ff0c 8a924ec 5039081 1db0fad 1d201cc c574318 87fcb8f 1ea492c 394988b 9f110ad 1d201cc 7cca730 8ee9d42 f6ef0c9 1d201cc 722a74e 893bff0 2e36d14 893bff0 3d63027 ce8fe55 a9b6fe2 25c8e4c 2868f8e f40e1dd e981f65 2868f8e cc4061c f40e1dd cc4061c b60e99e db98133 ce8fe55 729feac cfc80ce ea2584d cc4061c 6945437 9f110ad 1d201cc cc4061c 2240766 cc4061c 5009bf7 af6f5a1 1d201cc 6945437 54c49be 2240766 b7e8a81 af6f5a1 b7e8a81 8e8d807 2240766 e458830 82509b8 a0e06d8 722a74e 4c4b7fe e458830 a0e06d8 4c4b7fe 7c00bd8 3dbec8a a510b3e 7c00bd8 ea2584d 3dbec8a 4eb7fe5 ea2584d 3dbec8a ea2584d 7c00bd8 3dbec8a 7c00bd8 ca79504 545659d 8307ecb 3aacdf3 ed652cd 61c6a30 19a1dc3 61c6a30 0f6960a e3dd182 0f6960a 90771ee 3716786 7d30303 117e770 1e09d51 0267daf 2f0b977 31fd26a c400da7 09f2f01 4ab90c5 117e770 7b55dd1 130e694 7d30303 7b55dd1 0267daf 67ef952 6dd8ced 1072e96 6dd8ced 1072e96 bfb2083 7399e9a a9b6fe2 1e09d51 7399e9a 799c779 8d1911b a0e182b 2af00f7 2688f68 7399e9a 9f110ad 799c779 9cc7da8 63d7636 9cc7da8 3be64d4 63d7636 b96fe54 3be64d4 e347ae3 a9b6fe2 e347ae3 a9b6fe2 a0e182b 63d7636 a0e182b ec8f810 63d7636 05e851d ec8f810 a0e182b 799c779 130e694 7399e9a 130e694 7399e9a 21f3502 f60a3e5 21f3502 f60a3e5 9f110ad f60a3e5 db53606 c68c8cf 6d39ae2 c68c8cf ce8da40 4e6cc23 db53606 63f6d9b c20e124 b70157a 6d39ae2 cfb10f4 63f6d9b cfb10f4 71f861a 1c34e60 3f9b3cb 63f6d9b 130a9f9 3f9b3cb 130a9f9 a94ded4 c63285a a94ded4 f4f2a8b 96da75a ce8da40 e898a85 c63285a e898a85 e9ec958 e7b48bb 3f9b3cb c20e124 ce8da40 4e6cc23 b70157a 73d7a38 352cf00 6b55b39 f0bb6a1 6b55b39 df5eae9 f0bb6a1 031aec4 16f7bdc 2e1c921 836b554 aac5fb3 352cf00 c627a14 e588d54 6b55b39 39d3066 fb6c22a 70ccf1c 6b55b39 fb6c22a 6b55b39 fb6c22a f15553a fb6c22a f15553a fb6c22a c68c8cf 80f8b1b dcd8ce1 6b55b39 399e1f8 51c1ba8 7e7de5f 6b55b39 7e7de5f 51c1ba8 12e552d a6a60c2 1814958 08b0c31 63f6d9b db98133 5c437d9 e2c87e5 ed652cd da39b9f beaad43 672c005 88887a0 da39b9f 88887a0 672c005 88887a0 24162e7 28b9027 31a34eb 90771ee 9b32112 3f8e976 44fcf03 bec346c 9c78c76 e09db60 1a65e7f 3d63027 422328e 92bcd31 3af91b1 4f35e08 bbb625e c56fb09 a9ca6aa 6945437 bbb625e 10c0335 1682873 c56fb09 371db45 9b83320 d07de60 40792b0 0d77f33 d07de60 9b83320 a88fb44 90771ee e5c89b7 a88fb44 90771ee a88fb44 90771ee 352cf00 cd6447a 324c1d2 56fb235 cd6447a e5ffaeb 38739ed 3fba2f8 44fcf03 5ed989a ba3347a 3f8e976 ba3347a 44fcf03 763a98d 9b45ad8 9525e4e 9b45ad8 352cf00 90771ee 763a98d 3f8e976 ba3347a 9b32112 8ac3a12 54ccd33 953b0fe abca15b 672502e abca15b 54ccd33 545659d 5e79f53 00e81be 545659d 5e79f53 545659d 1c2fc5a 545659d c3b945b b966fba 5e9c0a3 f7824e3 3aacdf3 db53606 b966fba 6dd8ced b966fba 67ef952 cc93339 7cbff67 e383855 db53606 34438a2 f729a6c 16f7bdc f233963 16f7bdc 875e86b 16f7bdc 875e86b 16f7bdc e926245 f233963 e926245 f233963 34438a2 87b9836 f233963 93dce2b f233963 db53606 34438a2 4e6cc23 8b195a3 28b9027 da39b9f 28b9027 da39b9f 28b9027 c3b945b 89f1281 fd28694 0ad7299 8380995 89a1848 0ad7299 b966fba 5e75c95 11a84e1 c1e3d19 22afd36 c1e3d19 84d1dc0 d73fd83 42d57dc 1880eb2 8e3e24b 1880eb2 42d57dc 022388b 8e3e24b 1880eb2 4d68190 b55e39b df75d51 1880eb2 d73fd83 1880eb2 d73fd83 1880eb2 d73fd83 11e9611 abca15b 4e5d26a 16e749d d65dffb e52122a 16e749d 812116a bc3b79c d65dffb 00c313f 7afa34d f8331ca b2c79c0 a756ea6 16e749d c3096ba b2c79c0 ada96e4 b2c79c0 ada96e4 b2c79c0 c3096ba ada96e4 b2c79c0 c3096ba ada96e4 b2c79c0 c3096ba ada96e4 b2c79c0 c3096ba ada96e4 b2c79c0 7afa34d b2c79c0 ebb3c24 7afa34d b2c79c0 ebb3c24 7afa34d b2c79c0 ebb3c24 7afa34d b2c79c0 ebb3c24 7afa34d b2c79c0 ebb3c24 7afa34d b2c79c0 ebb3c24 7afa34d b2c79c0 7afa34d b2c79c0 ebb3c24 bfb2083 b2c79c0 ebb3c24 ada96e4 b2c79c0 ebb3c24 ada96e4 b2c79c0 ebb3c24 ada96e4 b2c79c0 ebb3c24 ada96e4 b2c79c0 ebb3c24 ada96e4 b2c79c0 a756ea6 7afa34d b2c79c0 7afa34d 2ea14e3 16e749d 00c313f 16e749d c3096ba 822a192 26f32f4 96a5963 16e749d d1f1ca8 1e09d51 e48c46d a886ac0 e48c46d 73073c3 f40e1dd 11e9611 b966fba f9b1af2 3d0dbc5 f9b1af2 d766a5d 3d0dbc5 f9b1af2 66ab5da d010386 66ab5da f9b1af2 3d0dbc5 586cf48 d766a5d f9b1af2 ad73ab4 371db45 d1fd699 16a64c6 5ad9788 16a64c6 96a5963 16a64c6 0ef3ae5 16a64c6 96a5963 16a64c6 f9b1af2 1682873 c900035 f9b1af2 c900035 659dc3a 1682873 659dc3a f9b1af2 659dc3a 1682873 201037e bb61f71 f9b1af2 bb61f71 3bb651f 94a6927 ba45271 369cda2 d766a5d 7ac500f d766a5d 7ac500f a88f03a 3bb651f a547f8e c596c24 29a6d28 9af81d7 f002fa4 c3b945b 89a1848 ec6e24b df7ff25 13d584d df7ff25 045da54 13d584d 045da54 13d584d 54087a1 13d584d 9125fef 1c2fc5a ec6e24b 59f0d02 545659d 89a1848 545659d a6fbbb9 545659d 89a1848 90771ee 1c20e09 545659d 89a1848 545659d 6040159 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 |
import gradio as gr
import cv2
from PIL import Image
import numpy as np
#from transformers import pipeline
import os
import torch
import torch.nn.functional as F
from torchvision import transforms
from torchvision.transforms import Compose
#import open3d as o3d
import tempfile
from functools import partial
import spaces
from zipfile import ZipFile
from vincenty import vincenty
import json
#import DracoPy
from collections import Counter
import mediapy
#from depth_anything.dpt import DepthAnything
#from depth_anything.util.transform import Resize, NormalizeImage, PrepareForNet
from huggingface_hub import hf_hub_download
from huggingface_hub import snapshot_download
snapshot_download(repo_id="depth-anything/Depth-Anything-V2", repo_type="space", local_dir="./", allow_patterns=["*.py"], ignore_patterns=["app.py"])
from depth_anything_v2.dpt import DepthAnythingV2
DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu'
model_configs = {
'vits': {'encoder': 'vits', 'features': 64, 'out_channels': [48, 96, 192, 384]},
'vitb': {'encoder': 'vitb', 'features': 128, 'out_channels': [96, 192, 384, 768]},
'vitl': {'encoder': 'vitl', 'features': 256, 'out_channels': [256, 512, 1024, 1024]},
'vitg': {'encoder': 'vitg', 'features': 384, 'out_channels': [1536, 1536, 1536, 1536]}
}
encoder2name = {
'vits': 'Small',
'vitb': 'Base',
'vitl': 'Large',
'vitg': 'Giant', # we are undergoing company review procedures to release our giant model checkpoint
}
edge = []
gradient = None
params = { "fnum":0, "l":16 }
dcolor = []
pcolors = []
frame_selected = 0
frames = []
depths = []
masks = []
locations = []
mesh = []
mesh_n = []
scene = None
def zip_files(files_in, files_out):
with ZipFile("depth_result.zip", "w") as zipObj:
for idx, file in enumerate(files_in):
zipObj.write(file, file.split("/")[-1])
for idx, file in enumerate(files_out):
zipObj.write(file, file.split("/")[-1])
return "depth_result.zip"
def create_video(frames, fps, type):
print("building video result")
imgs = []
for j, img in enumerate(frames):
imgs.append(cv2.cvtColor(cv2.imread(img).astype(np.uint8), cv2.COLOR_BGR2RGB))
mediapy.write_video(type + "_result.mp4", imgs, fps=fps)
return type + "_result.mp4"
@torch.no_grad()
#@spaces.GPU
def predict_depth(image, model):
return model.infer_image(image)
#def predict_depth(model, image):
# return model(image)["depth"]
def make_video(video_path, outdir='./vis_video_depth', encoder='vits', remove_bg=False, maxc=12, maxd=12, maxs=32, maxl=64, maxv=16, lt="slider"):
if encoder not in ["vitl","vitb","vits","vitg"]:
encoder = "vits"
model_name = encoder2name[encoder]
model = DepthAnythingV2(**model_configs[encoder])
filepath = hf_hub_download(repo_id=f"depth-anything/Depth-Anything-V2-{model_name}", filename=f"depth_anything_v2_{encoder}.pth", repo_type="model")
state_dict = torch.load(filepath, map_location="cpu")
model.load_state_dict(state_dict)
model = model.to(DEVICE).eval()
#mapper = {"vits":"small","vitb":"base","vitl":"large"}
# DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu'
# model = DepthAnything.from_pretrained('LiheYoung/depth_anything_vitl14').to(DEVICE).eval()
# Define path for temporary processed frames
#temp_frame_dir = tempfile.mkdtemp()
#margin_width = 50
#to_tensor_transform = transforms.ToTensor()
#DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu'
# depth_anything = DepthAnything.from_pretrained('LiheYoung/depth_anything_{}14'.format(encoder)).to(DEVICE).eval()
#depth_anything = pipeline(task = "depth-estimation", model=f"nielsr/depth-anything-{mapper[encoder]}")
# total_params = sum(param.numel() for param in depth_anything.parameters())
# print('Total parameters: {:.2f}M'.format(total_params / 1e6))
#transform = Compose([
# Resize(
# width=518,
# height=518,
# resize_target=False,
# keep_aspect_ratio=True,
# ensure_multiple_of=14,
# resize_method='lower_bound',
# image_interpolation_method=cv2.INTER_CUBIC,
# ),
# NormalizeImage(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
# PrepareForNet(),
#])
if os.path.isfile(video_path):
if video_path.endswith('txt'):
with open(video_path, 'r') as f:
lines = f.read().splitlines()
else:
filenames = [video_path]
else:
filenames = os.listdir(video_path)
filenames = [os.path.join(video_path, filename) for filename in filenames if not filename.startswith('.')]
filenames.sort()
# os.makedirs(outdir, exist_ok=True)
for k, filename in enumerate(filenames):
file_size = os.path.getsize(filename)/1024/1024
if file_size > 128.0:
print(f'File size of {filename} larger than 128Mb, sorry!')
return filename
print('Progress {:}/{:},'.format(k+1, len(filenames)), 'Processing', filename)
raw_video = cv2.VideoCapture(filename)
frame_width, frame_height = int(raw_video.get(cv2.CAP_PROP_FRAME_WIDTH)), int(raw_video.get(cv2.CAP_PROP_FRAME_HEIGHT))
frame_rate = int(raw_video.get(cv2.CAP_PROP_FPS))
if frame_rate < 1:
frame_rate = 1
cframes = int(raw_video.get(cv2.CAP_PROP_FRAME_COUNT))
print(f'frames: {cframes}, fps: {frame_rate}')
# output_width = frame_width * 2 + margin_width
#filename = os.path.basename(filename)
# output_path = os.path.join(outdir, filename[:filename.rfind('.')] + '_video_depth.mp4')
#with tempfile.NamedTemporaryFile(delete=False, suffix='.mp4') as tmpfile:
# output_path = tmpfile.name
#out = cv2.VideoWriter(output_path, cv2.VideoWriter_fourcc(*"avc1"), frame_rate, (output_width, frame_height))
#fourcc = cv2.VideoWriter_fourcc(*'mp4v')
#out = cv2.VideoWriter(output_path, fourcc, frame_rate, (output_width, frame_height))
global masks
count = 0
n = 0
depth_frames = []
orig_frames = []
thumbnail_old = []
while raw_video.isOpened():
ret, raw_frame = raw_video.read()
if not ret:
break
else:
print(count)
frame = cv2.cvtColor(raw_frame, cv2.COLOR_BGR2RGB) / 255.0
frame_pil = Image.fromarray((frame * 255).astype(np.uint8))
#frame = transform({'image': frame})['image']
#frame = torch.from_numpy(frame).unsqueeze(0).to(DEVICE)
raw_frame_bg = cv2.medianBlur(raw_frame, 255)
#
depth = predict_depth(raw_frame[:, :, ::-1], model)
depth_gray = ((depth - depth.min()) / (depth.max() - depth.min()) * 255.0).astype(np.uint8)
#
#depth = to_tensor_transform(predict_depth(depth_anything, frame_pil))
#depth = F.interpolate(depth[None], (frame_height, frame_width), mode='bilinear', align_corners=False)[0, 0]
#depth = (depth - depth.min()) / (depth.max() - depth.min()) * 255.0
#depth = depth.cpu().numpy().astype(np.uint8)
#depth_color = cv2.applyColorMap(depth, cv2.COLORMAP_BONE)
#depth_gray = cv2.cvtColor(depth_color, cv2.COLOR_RGBA2GRAY)
# Remove white border around map:
# define lower and upper limits of white
#white_lo = np.array([250,250,250])
#white_hi = np.array([255,255,255])
# mask image to only select white
mask = cv2.inRange(depth_gray[0:int(depth_gray.shape[0]/8*6.5)-1, 0:depth_gray.shape[1]], 250, 255)
# change image to black where we found white
depth_gray[0:int(depth_gray.shape[0]/8*6.5)-1, 0:depth_gray.shape[1]][mask>0] = 0
mask = cv2.inRange(depth_gray[int(depth_gray.shape[0]/8*6.5):depth_gray.shape[0], 0:depth_gray.shape[1]], 160, 255)
depth_gray[int(depth_gray.shape[0]/8*6.5):depth_gray.shape[0], 0:depth_gray.shape[1]][mask>0] = 160
depth_color = cv2.cvtColor(depth_gray, cv2.COLOR_GRAY2BGR)
# split_region = np.ones((frame_height, margin_width, 3), dtype=np.uint8) * 255
# combined_frame = cv2.hconcat([raw_frame, split_region, depth_color])
# out.write(combined_frame)
# frame_path = os.path.join(temp_frame_dir, f"frame_{count:05d}.png")
# cv2.imwrite(frame_path, combined_frame)
#raw_frame = cv2.cvtColor(raw_frame, cv2.COLOR_BGR2BGRA)
#raw_frame[:, :, 3] = 255
if remove_bg == False:
thumbnail = cv2.cvtColor(cv2.resize(raw_frame, (16,32)), cv2.COLOR_BGR2GRAY).flatten()
if len(thumbnail_old) > 0:
diff = thumbnail - thumbnail_old
#print(diff)
c = Counter(diff)
value, cc = c.most_common()[0]
if value == 0 and cc > int(16*32*0.8):
count += 1
continue
thumbnail_old = thumbnail
else:
#actual fg video is made out of odd (scene) and even (bg) frames stacked separately in same file
if count >= 0: #int(cframes/2):
#n = count-int(cframes/2)
depth_color_bg = cv2.medianBlur(depth_color, 255)
raw_frame_bg = cv2.medianBlur(raw_frame, 255)
diff_d = np.abs(depth_color.astype(np.int16)-depth_color_bg.astype(np.int16))
diff_c = np.abs(raw_frame.astype(np.int16)-raw_frame_bg.astype(np.int16))
#correct hue against light
bg_gray = cv2.cvtColor(cv2.cvtColor(raw_frame_bg, cv2.COLOR_BGR2GRAY), cv2.COLOR_GRAY2BGR)
bg_diff = (raw_frame_bg-bg_gray).astype(np.int16)
frame_c = np.abs(raw_frame.astype(np.int16)-bg_diff).astype(np.uint8)
hsv_ = cv2.cvtColor(frame_c, cv2.COLOR_BGR2HSV)
edges = cv2.Laplacian(cv2.cvtColor(raw_frame, cv2.COLOR_BGR2GRAY), cv2.CV_64F)
blur_s = np.zeros_like(edges)
for i in range(2, frame.shape[0]-2):
for j in range(2, frame.shape[1]-2):
d = edges[i-2:i+2, j-2:j+2].var()
blur_s[i,j] = d.astype(np.uint8)
print("detail")
print(np.average(blur_s))
print(np.median(blur_s))
print("saturation")
print(np.average(hsv_[:,:,1]))
print(np.median(hsv_[:,:,1]))
print("lightness")
print(np.average(hsv_[:,:,2]))
print(np.median(hsv_[:,:,2]))
#print('-most common')
#c = Counter(diff_d.flatten())
#value, cc = c.most_common()[0]
#print(value)
#print(cc)
#c = Counter(diff_c.flatten())
#value, cc = c.most_common()[0]
#print(value)
#print(cc)
print('-')
if lt == "median":
md_d = int(np.median(diff_d))
md_c = int(np.median(diff_c))
print('-median')
print(md_d)
print(md_c)
mask_bg_shadow = cv2.inRange(diff_d, np.array([0,0,0]), np.array([md_d,md_d,md_d]))
mask_bg_no_shadow = cv2.inRange(diff_c, np.array([0,0,0]), np.array([md_c,md_c,md_c]))
m = cv2.inRange(hsv_, np.array([0,0,0]), np.array([180, int(np.median(hsv_[:,:,1])), int(np.median(hsv_[:,:,2]))]))
mask = cv2.inRange(blur_s, 0, int(np.median(blur_s)))
elif lt == "average":
avg_d = int(np.average(diff_d))
avg_c = int(np.average(diff_c))
print('-average')
print(avg_d)
print(avg_c)
mask_bg_shadow = cv2.inRange(diff_d, np.array([0,0,0]), np.array([avg_d,avg_d,avg_d]))
mask_bg_no_shadow = cv2.inRange(diff_c, np.array([0,0,0]), np.array([avg_c,avg_c,avg_c]))
m = cv2.inRange(hsv_, np.array([0,0,0]), np.array([180, int(np.average(hsv_[:,:,1])), int(np.average(hsv_[:,:,2]))]))
mask = cv2.inRange(blur_s, 0, int(np.average(blur_s)))
elif lt == "slider":
mask_bg_shadow = cv2.inRange(diff_d, np.array([0,0,0]), np.array([maxd,maxd,maxd]))
mask_bg_no_shadow = cv2.inRange(diff_c, np.array([0,0,0]), np.array([maxc,maxc,maxc]))
m = cv2.inRange(hsv_, np.array([0,0,0]), np.array([180,maxs,maxl]))
mask = cv2.inRange(blur_s, 0, maxv)
masks_shadow = np.bitwise_and(mask_bg_shadow, np.bitwise_and(m, mask))
#mask_no_shadow = cv2.bitwise_not(mask_shadow)
#stereo = cv2.StereoBM.create(numDisparities=16, blockSize=15)
#disparity = stereo.compute(raw_frame_l, raw_frame_r)
m = cv2.inRange(raw_frame, np.array([240,240,240]), np.array([255,255,255]))
raw_frame[m>0] = (239,239,239)
m = cv2.inRange(raw_frame, np.array([0,0,0]), np.array([15,15,15]))
raw_frame[m>0] = (16,16,16)
raw_frame[masks_shadow>0] = (raw_frame[masks_shadow>0] / 17).astype(np.uint8)
raw_frame[mask_bg_no_shadow>0] = (255,255,255)
else:
break
cv2.imwrite(f"f{count}.png", raw_frame)
orig_frames.append(f"f{count}.png")
cv2.imwrite(f"f{count}_dmap.png", depth_color)
depth_frames.append(f"f{count}_dmap.png")
cv2.imwrite(f"f{count}_mask.png", depth_gray)
masks.append(f"f{count}_mask.png")
count += 1
if remove_bg == True:
final_vid = create_video(orig_frames, frame_rate, "orig")
else:
final_vid = create_video(depth_frames, frame_rate, "depth")
final_zip = zip_files(orig_frames, depth_frames)
raw_video.release()
# out.release()
cv2.destroyAllWindows()
global gradient
global frame_selected
global depths
global frames
frames = orig_frames
depths = depth_frames
if depth_color.shape[0] == 2048: #height
gradient = cv2.imread('./gradient_large.png').astype(np.uint8)
elif depth_color.shape[0] == 1024:
gradient = cv2.imread('./gradient.png').astype(np.uint8)
else:
gradient = cv2.imread('./gradient_small.png').astype(np.uint8)
return final_vid, final_zip, frames, masks[frame_selected], depths #output_path
def depth_edges_mask(depth):
"""Returns a mask of edges in the depth map.
Args:
depth: 2D numpy array of shape (H, W) with dtype float32.
Returns:
mask: 2D numpy array of shape (H, W) with dtype bool.
"""
# Compute the x and y gradients of the depth map.
depth_dx, depth_dy = np.gradient(depth)
# Compute the gradient magnitude.
depth_grad = np.sqrt(depth_dx ** 2 + depth_dy ** 2)
# Compute the edge mask.
mask = depth_grad > 0.05
return mask
def pano_depth_to_world_points(depth):
"""
360 depth to world points
given 2D depth is an equirectangular projection of a spherical image
Treat depth as radius
longitude : -pi to pi
latitude : -pi/2 to pi/2
"""
# Convert depth to radius
radius = (255 - depth.flatten())
lon = np.linspace(0, np.pi*2, depth.shape[1])
lat = np.linspace(0, np.pi, depth.shape[0])
lon, lat = np.meshgrid(lon, lat)
lon = lon.flatten()
lat = lat.flatten()
pts3d = [[0,0,0]]
uv = [[0,0]]
nl = [[0,0,0]]
for i in range(0, 1): #(0,2)
for j in range(0, 1): #(0,2)
#rnd_lon = (np.random.rand(depth.shape[0]*depth.shape[1]) - 0.5) / 8
#rnd_lat = (np.random.rand(depth.shape[0]*depth.shape[1]) - 0.5) / 8
d_lon = lon + i/2 * np.pi*2 / depth.shape[1]
d_lat = lat + j/2 * np.pi / depth.shape[0]
nx = np.cos(d_lon) * np.sin(d_lat)
ny = np.cos(d_lat)
nz = np.sin(d_lon) * np.sin(d_lat)
# Convert to cartesian coordinates
x = radius * nx
y = radius * ny
z = radius * nz
pts = np.stack([x, y, z], axis=1)
uvs = np.stack([lon/np.pi/2, lat/np.pi], axis=1)
nls = np.stack([-nx, -ny, -nz], axis=1)
pts3d = np.concatenate((pts3d, pts), axis=0)
uv = np.concatenate((uv, uvs), axis=0)
nl = np.concatenate((nl, nls), axis=0)
#print(f'i: {i}, j: {j}')
j = j+1
i = i+1
return [pts3d, uv, nl]
def rgb2gray(rgb):
return np.dot(rgb[...,:3], [0.333, 0.333, 0.333])
def get_mesh(image, depth, blur_data, loadall):
global depths
global pcolors
global frame_selected
global mesh
global mesh_n
global scene
if loadall == False:
mesh = []
mesh_n = []
fnum = frame_selected
#print(image[fnum][0])
#print(depth["composite"])
depthc = cv2.imread(depths[frame_selected], cv2.IMREAD_UNCHANGED).astype(np.uint8)
blur_img = blur_image(cv2.imread(image[fnum][0], cv2.IMREAD_UNCHANGED).astype(np.uint8), depthc, blur_data)
gdepth = cv2.cvtColor(depthc, cv2.COLOR_RGB2GRAY) #rgb2gray(depthc)
print('depth to gray - ok')
points = pano_depth_to_world_points(gdepth)
pts3d = points[0]
uv = points[1]
nl = points[2]
print('radius from depth - ok')
# Create a trimesh mesh from the points
# Each pixel is connected to its 4 neighbors
# colors are the RGB values of the image
uvs = uv.reshape(-1, 2)
#print(uvs)
#verts = pts3d.reshape(-1, 3)
verts = [[0,0,0]]
normals = nl.reshape(-1, 3)
rgba = cv2.cvtColor(blur_img, cv2.COLOR_RGB2RGBA)
colors = rgba.reshape(-1, 4)
clrs = [[128,128,128,0]]
#for i in range(0,1): #(0,4)
#clrs = np.concatenate((clrs, colors), axis=0)
#i = i+1
#verts, clrs
#pcd = o3d.geometry.TriangleMesh.create_tetrahedron()
#pcd.compute_vertex_normals()
#pcd.paint_uniform_color((1.0, 1.0, 1.0))
#mesh.append(pcd)
#print(mesh[len(mesh)-1])
if not str(fnum) in mesh_n:
mesh_n.append(str(fnum))
print('mesh - ok')
# Save as glb
glb_file = tempfile.NamedTemporaryFile(suffix='.glb', delete=False)
#o3d.io.write_triangle_mesh(glb_file.name, pcd)
print('file - ok')
return "./TriangleWithoutIndices.gltf", glb_file.name, ",".join(mesh_n)
def blur_image(image, depth, blur_data):
blur_a = blur_data.split()
print(f'blur data {blur_data}')
blur_frame = image.copy()
j = 0
while j < 256:
i = 255 - j
blur_lo = np.array([i,i,i])
blur_hi = np.array([i+1,i+1,i+1])
blur_mask = cv2.inRange(depth, blur_lo, blur_hi)
print(f'kernel size {int(blur_a[j])}')
blur = cv2.GaussianBlur(image, (int(blur_a[j]), int(blur_a[j])), 0)
blur_frame[blur_mask>0] = blur[blur_mask>0]
j = j + 1
return blur_frame
def loadfile(f):
return f
def show_json(txt):
data = json.loads(txt)
print(txt)
i=0
while i < len(data[2]):
data[2][i] = data[2][i]["image"]["path"]
data[4][i] = data[4][i]["path"]
i=i+1
return data[0]["video"]["path"], data[1]["path"], data[2], data[3]["background"]["path"], data[4], data[5]
def select_frame(d, evt: gr.SelectData):
global dcolor
global frame_selected
global masks
global edge
if evt.index != frame_selected:
edge = []
mask = cv2.imread(depths[frame_selected]).astype(np.uint8)
cv2.imwrite(masks[frame_selected], cv2.cvtColor(mask, cv2.COLOR_RGB2GRAY))
frame_selected = evt.index
if len(dcolor) == 0:
bg = [127, 127, 127, 255]
else:
bg = "[" + str(dcolor[frame_selected])[1:-1] + ", 255]"
return masks[frame_selected], frame_selected, bg
def switch_rows(v):
global frames
global depths
if v == True:
print(depths[0])
return depths
else:
print(frames[0])
return frames
def optimize(v, d):
global pcolors
global dcolor
global frame_selected
global frames
global depths
if v == True:
ddepth = cv2.CV_16S
kernel_size = 3
l = 16
dcolor = []
for k, f in enumerate(frames):
frame = cv2.imread(frames[k]).astype(np.uint8)
# convert to np.float32
f = np.float32(frame.reshape((-1,3)))
# define criteria, number of clusters(K) and apply kmeans()
criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 4, 1.0)
ret,label,center=cv2.kmeans(f,l,None,criteria,4,cv2.KMEANS_RANDOM_CENTERS)
# Now convert back into uint8, and make original image
center = np.uint8(center)
res = center[label.flatten()]
frame = res.reshape((frame.shape))
depth = cv2.imread(depths[k]).astype(np.uint8)
mask = cv2.cvtColor(depth, cv2.COLOR_RGB2GRAY)
dcolor.append(bincount(frame[mask==0]))
print(dcolor[k])
clrs = Image.fromarray(frame.astype(np.uint8)).convert('RGB').getcolors()
i=0
while i<len(clrs):
clrs[i] = list(clrs[i][1])
clrs[i].append(255)
i=i+1
print(clrs)
pcolors = clrs
#mask = cv2.convertScaleAbs(cv2.Laplacian(cv2.cvtColor(frame, cv2.COLOR_RGB2GRAY), ddepth, ksize=kernel_size))
#mask[mask>0] = 255
#frame[mask==0] = (0, 0, 0)
cv2.imwrite(frames[k], frame)
#depth[mask==0] = (255,255,255)
mask = cv2.inRange(frame, np.array([dcolor[k][0]-8, dcolor[k][1]-8, dcolor[k][2]-8]), np.array([dcolor[k][0]+8, dcolor[k][1]+8, dcolor[k][2]+8]))
depth[mask>0] = (255,255,255)
depth[depth.shape[0]-1:depth.shape[0], 0:depth.shape[1]] = (160, 160, 160)
depth[0:1, 0:depth.shape[1]] = (0, 0, 0)
cv2.imwrite(depths[k], depth)
if d == False:
return frames, "[" + str(dcolor[frame_selected])[1:-1] + ", 255]"
else:
return depths, "[" + str(dcolor[frame_selected])[1:-1] + ", 255]"
def bincount(a):
a2D = a.reshape(-1,a.shape[-1])
col_range = (256, 256, 256) # generically : a2D.max(0)+1
a1D = np.ravel_multi_index(a2D.T, col_range)
return list(reversed(np.unravel_index(np.bincount(a1D).argmax(), col_range)))
def reset_mask():
global frame_selected
global masks
global depths
global edge
edge = []
mask = cv2.imread(depths[frame_selected]).astype(np.uint8)
cv2.imwrite(masks[frame_selected], cv2.cvtColor(mask, cv2.COLOR_RGB2GRAY))
return masks[frame_selected], depths
def apply_mask(d, b):
global frames
global frame_selected
global masks
global depths
global edge
edge = []
mask = cv2.cvtColor(d["layers"][0], cv2.COLOR_RGBA2GRAY)
mask[mask<255] = 0
b = b*2+1
dilation = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (2 * b + 1, 2 * b + 1), (b, b))
mask = cv2.dilate(mask, dilation)
mask_b = cv2.GaussianBlur(mask, (b,b), 0)
b = b*2+1
dilation = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (2 * b + 1, 2 * b + 1), (b, b))
dmask = cv2.dilate(mask, dilation)
dmask_b = cv2.GaussianBlur(dmask, (b,b), 0)
for k, mk in enumerate(masks):
if k != frame_selected and k < len(depths):
cv2.imwrite(masks[k], dmask)
frame = cv2.imread(frames[k], cv2.IMREAD_UNCHANGED).astype(np.uint8)
frame[:, :, 3] = dmask_b
cv2.imwrite(frames[k], frame)
frame = cv2.imread(frames[frame_selected], cv2.IMREAD_UNCHANGED).astype(np.uint8)
frame[:, :, 3] = 255 - mask_b
cv2.imwrite(frames[frame_selected], frame)
cv2.imwrite(masks[frame_selected], mask) #d["background"]
return masks[frame_selected], depths, frames
def draw_mask(l, t, v, d, evt: gr.EventData):
global depths
global params
global frame_selected
global masks
global gradient
global edge
points = json.loads(v)
pts = np.array(points, np.int32)
pts = pts.reshape((-1,1,2))
if len(edge) == 0 or params["fnum"] != frame_selected or params["l"] != l:
if len(edge) > 0:
d["background"] = cv2.imread(depths[frame_selected]).astype(np.uint8)
if d["background"].shape[0] == 2048: #height
gradient = cv2.imread('./gradient_large.png').astype(np.uint8)
elif d["background"].shape[0] == 1024:
gradient = cv2.imread('./gradient.png').astype(np.uint8)
else:
gradient = cv2.imread('./gradient_small.png').astype(np.uint8)
bg = cv2.cvtColor(d["background"], cv2.COLOR_RGBA2GRAY)
diff = np.abs(bg.astype(np.int16)-cv2.cvtColor(gradient, cv2.COLOR_RGBA2GRAY).astype(np.int16)).astype(np.uint8)
mask = cv2.inRange(diff, 0, t)
#kernel = np.ones((c,c),np.float32)/(c*c)
#mask = cv2.filter2D(mask,-1,kernel)
dilation = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (15-(t*2+1), 15-(t*2+1)), (t, t))
mask = cv2.dilate(mask, dilation)
#indices = np.arange(0,256) # List of all colors
#divider = np.linspace(0,255,l+1)[1] # we get a divider
#quantiz = np.intp(np.linspace(0,255,l)) # we get quantization colors
#color_levels = np.clip(np.intp(indices/divider),0,l-1) # color levels 0,1,2..
#palette = quantiz[color_levels]
#for i in range(l):
# bg[(bg >= i*255/l) & (bg < (i+1)*255/l)] = i*255/(l-1)
#bg = cv2.convertScaleAbs(palette[bg]).astype(np.uint8) # Converting image back to uint
res = np.float32(bg.reshape((-1,1)))
criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 4, 1.0)
ret,label,center=cv2.kmeans(res,l,None,criteria,4,cv2.KMEANS_PP_CENTERS)
center = np.uint8(center)
res = center[label.flatten()]
bg = res.reshape((bg.shape))
bg[mask>0] = 0
bg[bg==255] = 0
params["fnum"] = frame_selected
params["l"] = l
d["layers"][0] = cv2.cvtColor(bg, cv2.COLOR_GRAY2RGBA)
edge = bg.copy()
else:
bg = edge.copy()
x = points[len(points)-1][0]
y = points[len(points)-1][1]
#int(t*256/l)
mask = cv2.floodFill(bg, None, (x, y), 1, 0, 256, (4 | cv2.FLOODFILL_FIXED_RANGE))[2] #(4 | cv2.FLOODFILL_FIXED_RANGE | cv2.FLOODFILL_MASK_ONLY | 255 << 8)
# 255 << 8 tells to fill with the value 255)
mask = mask[1:mask.shape[0]-1, 1:mask.shape[1]-1]
d["layers"][0][mask>0] = (255,255,255,255)
return gr.ImageEditor(value=d)
def findNormals(format):
global depths
d_im = cv2.cvtColor(cv2.imread(depths[frame_selected]).astype(np.uint8), cv2.COLOR_BGR2GRAY)
zy, zx = np.gradient(d_im)
# You may also consider using Sobel to get a joint Gaussian smoothing and differentation
# to reduce noise
#zx = cv2.Sobel(d_im, cv2.CV_64F, 1, 0, ksize=5)
#zy = cv2.Sobel(d_im, cv2.CV_64F, 0, 1, ksize=5)
if format == "opengl":
zy = -zy
normal = np.dstack((np.ones_like(d_im), -zy, -zx))
n = np.linalg.norm(normal, axis=2)
normal[:, :, 0] /= n
normal[:, :, 1] /= n
normal[:, :, 2] /= n
# offset and rescale values to be in 0-255
normal += 1
normal /= 2
normal *= 255
return (normal[:, :, ::-1]).astype(np.uint8)
load_model="""
async(c, o, b, p, d, n, m)=>{
var intv = setInterval(function(){
if (document.getElementById("iframe3D")===null || typeof document.getElementById("iframe3D")==="undefined") {
try {
if (typeof BABYLON !== "undefined" && BABYLON.Engine && BABYLON.Engine.LastCreatedScene) {
BABYLON.Engine.LastCreatedScene.onAfterRenderObservable.add(function() { //onDataLoadedObservable
var then = new Date().getTime();
var now, delta;
const interval = 1000 / 25;
const tolerance = 0.1;
BABYLON.Engine.LastCreatedScene.getEngine().stopRenderLoop();
BABYLON.Engine.LastCreatedScene.getEngine().runRenderLoop(function () {
now = new Date().getTime();
delta = now - then;
then = now - (delta % interval);
if (delta >= interval - tolerance) {
BABYLON.Engine.LastCreatedScene.render();
}
});
var bg = JSON.parse(document.getElementById("bgcolor").getElementsByTagName("textarea")[0].value);
BABYLON.Engine.LastCreatedScene.getEngine().setHardwareScalingLevel(1.0);
for (var i=0; i<bg.length; i++) {
bg[i] /= 255;
}
BABYLON.Engine.LastCreatedScene.clearColor = new BABYLON.Color4(bg[0], bg[1], bg[2], bg[3]);
BABYLON.Engine.LastCreatedScene.ambientColor = new BABYLON.Color4(255,255,255,255);
//BABYLON.Engine.LastCreatedScene.autoClear = false;
//BABYLON.Engine.LastCreatedScene.autoClearDepthAndStencil = false;
for (var i=0; i<BABYLON.Engine.LastCreatedScene.getNodes().length; i++) {
if (BABYLON.Engine.LastCreatedScene.getNodes()[i].material) {
BABYLON.Engine.LastCreatedScene.getNodes()[i].material.pointSize = Math.ceil(Math.log2(Math.PI/document.getElementById("zoom").value));
}
}
BABYLON.Engine.LastCreatedScene.getAnimationRatio();
//BABYLON.Engine.LastCreatedScene.activeCamera.inertia = 0.0;
});
if (!BABYLON.Engine.LastCreatedScene.activeCamera.metadata) {
BABYLON.Engine.LastCreatedScene.activeCamera.metadata = {
pipeline: new BABYLON.DefaultRenderingPipeline("default", true, BABYLON.Engine.LastCreatedScene, [BABYLON.Engine.LastCreatedScene.activeCamera])
}
}
BABYLON.Engine.LastCreatedScene.activeCamera.metadata.pipeline.samples = 4;
BABYLON.Engine.LastCreatedScene.activeCamera.metadata.pipeline.imageProcessing.contrast = 1.0;
BABYLON.Engine.LastCreatedScene.activeCamera.metadata.pipeline.imageProcessing.exposure = 1.0;
BABYLON.Engine.LastCreatedScene.activeCamera.fov = document.getElementById("zoom").value;
document.getElementById("model3D").getElementsByTagName("canvas")[0].style.filter = "blur(" + Math.ceil(Math.log2(Math.PI/document.getElementById("zoom").value))/2.0*Math.sqrt(2.0) + "px)";
document.getElementById("model3D").getElementsByTagName("canvas")[0].oncontextmenu = function(e){e.preventDefault();}
document.getElementById("model3D").getElementsByTagName("canvas")[0].ondrag = function(e){e.preventDefault();}
if (o.indexOf(""+n) < 0) {
if (o != "") { o += ","; }
o += n;
}
//alert(o);
var o_ = o.split(",");
var q = BABYLON.Engine.LastCreatedScene.meshes;
for(i = 0; i < q.length; i++) {
let mesh = q[i];
mesh.dispose(false, true);
}
var dome = [];
for (var j=0; j<o_.length; j++) {
o_[j] = parseInt(o_[j]);
dome[j] = new BABYLON.PhotoDome("dome"+j, p[o_[j]].image.url,
{
resolution: 16,
size: 512
}, BABYLON.Engine.LastCreatedScene);
var q = BABYLON.Engine.LastCreatedScene.meshes[BABYLON.Engine.LastCreatedScene.meshes.length-2]._children;
for(i = 0; i < q.length; i++) {
let mesh = q[i];
mesh.dispose(false, true);
}
//BABYLON.Engine.LastCreatedScene.meshes[BABYLON.Engine.LastCreatedScene.meshes.length-1].material.needDepthPrePass = true;
//BABYLON.Engine.LastCreatedScene.meshes[BABYLON.Engine.LastCreatedScene.meshes.length-1].scaling.z = -1;
BABYLON.Engine.LastCreatedScene.meshes[BABYLON.Engine.LastCreatedScene.meshes.length-1].alphaIndex = o_.length-j;
BABYLON.Engine.LastCreatedScene.meshes[BABYLON.Engine.LastCreatedScene.meshes.length-1].material.diffuseTexture.hasAlpha = true;
BABYLON.Engine.LastCreatedScene.meshes[BABYLON.Engine.LastCreatedScene.meshes.length-1].material.useAlphaFromDiffuseTexture = true;
BABYLON.Engine.LastCreatedScene.meshes[BABYLON.Engine.LastCreatedScene.meshes.length-1].applyDisplacementMap(m[o_[j]].url, 0, 255, function(m){try{alert(BABYLON.Engine.Version);}catch(e){alert(e);}}, null, null, true, function(e){alert(e);});
}
clearInterval(intv);
}
} catch(e) {alert(e);}
} else if (BABYLON || BABYLON == null) {
try {
BABYLON = null;
if (document.getElementById("model3D").getElementsByTagName("canvas")[0]) {
document.getElementById("model3D").getElementsByTagName("canvas")[0].remove();
}
document.getElementById("iframe3D").src = "index.htm";
document.getElementById("iframe3D").onload = function() {
if (o.indexOf(""+n) < 0) {
if (o != "") { o += ","; }
o += n;
}
alert(o);
var o_ = o.split(",");
document.getElementById("iframe3D").contentDocument.getElementById("coords").value = c;
document.getElementById("iframe3D").contentDocument.getElementById("order").value = o;
document.getElementById("iframe3D").contentDocument.getElementById("bgcolor").value = b;
document.getElementById("iframe3D").contentDocument.getElementById("bgimage").value = "";
document.getElementById("iframe3D").contentDocument.getElementById("bgdepth").value = "";
for (var j=0; j<o_.length; j++) {
o_[j] = parseInt(o_[j]);
alert(o_[j]);
document.getElementById("iframe3D").contentDocument.getElementById("bgimage").value += p[o_[j]].image.url + ",";
document.getElementById("iframe3D").contentDocument.getElementById("bgdepth").value += m[o_[j]].url + ",";
}
}
toggleDisplay("model");
clearInterval(intv);
} catch(e) {alert(e)}
}
}, 40);
}
"""
js = """
async()=>{
console.log('Hi');
const chart = document.getElementById('chart');
const blur_in = document.getElementById('blur_in').getElementsByTagName('textarea')[0];
var md = false;
var xold = 128;
var yold = 32;
var a = new Array(256);
var l;
for (var i=0; i<256; i++) {
const hr = document.createElement('hr');
hr.style.backgroundColor = 'hsl(0,0%,' + (100-i/256*100) + '%)';
chart.appendChild(hr);
}
function resetLine() {
a.fill(1);
for (var i=0; i<256; i++) {
chart.childNodes[i].style.height = a[i] + 'px';
chart.childNodes[i].style.marginTop = '32px';
}
}
resetLine();
window.resetLine = resetLine;
function pointerDown(x, y) {
md = true;
xold = parseInt(x - chart.getBoundingClientRect().x);
yold = parseInt(y - chart.getBoundingClientRect().y);
chart.title = xold + ',' + yold;
}
window.pointerDown = pointerDown;
function pointerUp() {
md = false;
var evt = document.createEvent('Event');
evt.initEvent('input', true, false);
blur_in.dispatchEvent(evt);
chart.title = '';
}
window.pointerUp = pointerUp;
function lerp(y1, y2, mu) { return y1*(1-mu)+y2*mu; }
function drawLine(x, y) {
x = parseInt(x - chart.getBoundingClientRect().x);
y = parseInt(y - chart.getBoundingClientRect().y);
if (md === true && y >= 0 && y < 64 && x >= 0 && x < 256) {
if (y < 32) {
a[x] = Math.abs(32-y)*2 + 1;
chart.childNodes[x].style.height = a[x] + 'px';
chart.childNodes[x].style.marginTop = y + 'px';
for (var i=Math.min(xold, x)+1; i<Math.max(xold, x); i++) {
l = parseInt(lerp( yold, y, (i-xold)/(x-xold) ));
if (l < 32) {
a[i] = Math.abs(32-l)*2 + 1;
chart.childNodes[i].style.height = a[i] + 'px';
chart.childNodes[i].style.marginTop = l + 'px';
} else if (l < 64) {
a[i] = Math.abs(l-32)*2 + 1;
chart.childNodes[i].style.height = a[i] + 'px';
chart.childNodes[i].style.marginTop = (64-l) + 'px';
}
}
} else if (y < 64) {
a[x] = Math.abs(y-32)*2 + 1;
chart.childNodes[x].style.height = a[x] + 'px';
chart.childNodes[x].style.marginTop = (64-y) + 'px';
for (var i=Math.min(xold, x)+1; i<Math.max(xold, x); i++) {
l = parseInt(lerp( yold, y, (i-xold)/(x-xold) ));
if (l < 32) {
a[i] = Math.abs(32-l)*2 + 1;
chart.childNodes[i].style.height = a[i] + 'px';
chart.childNodes[i].style.marginTop = l + 'px';
} else if (l < 64) {
a[i] = Math.abs(l-32)*2 + 1;
chart.childNodes[i].style.height = a[i] + 'px';
chart.childNodes[i].style.marginTop = (64-l) + 'px';
}
}
}
blur_in.value = a.join(' ');
xold = x;
yold = y;
chart.title = xold + ',' + yold;
}
}
window.drawLine = drawLine;
}
"""
css = """
#img-display-container {
max-height: 100vh;
}
#img-display-input {
max-height: 80vh;
}
#img-display-output {
max-height: 80vh;
}
"""
title = "# Depth Anything V2 Video"
description = """**Depth Anything V2** on full video files.
Please refer to our [paper](https://arxiv.org/abs/2406.09414), [project page](https://depth-anything-v2.github.io), and [github](https://github.com/DepthAnything/Depth-Anything-V2) for more details."""
#transform = Compose([
# Resize(
# width=518,
# height=518,
# resize_target=False,
# keep_aspect_ratio=True,
# ensure_multiple_of=14,
# resize_method='lower_bound',
# image_interpolation_method=cv2.INTER_CUBIC,
# ),
# NormalizeImage(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
# PrepareForNet(),
#])
# @torch.no_grad()
# def predict_depth(model, image):
# return model(image)
with gr.Blocks(css=css, js=js) as demo:
gr.Markdown(title)
gr.Markdown(description)
gr.Markdown("### Video Depth Prediction demo")
with gr.Row():
with gr.Column():
input_json = gr.Textbox(elem_id="json_in", value="{}", label="JSON", interactive=False)
input_url = gr.Textbox(elem_id="url_in", value="./examples/streetview.mp4", label="URL")
input_video = gr.Video(label="Input Video", format="mp4")
input_url.input(fn=loadfile, inputs=[input_url], outputs=[input_video])
submit = gr.Button("Submit")
output_frame = gr.Gallery(label="Frames", preview=True, columns=8192, interactive=False)
output_switch = gr.Checkbox(label="Show depths")
output_depth = gr.Files(label="Depths", interactive=False)
output_switch.input(fn=switch_rows, inputs=[output_switch], outputs=[output_frame])
optimize_switch = gr.Checkbox(label="Optimize")
bgcolor = gr.Textbox(elem_id="bgcolor", value="[127, 127, 127, 255]", label="Background color", interactive=False)
optimize_switch.input(fn=optimize, inputs=[optimize_switch, output_switch], outputs=[output_frame, bgcolor])
output_mask = gr.ImageEditor(layers=False, sources=('upload', 'clipboard'), show_download_button=True, type="numpy", interactive=True, transforms=(None,), eraser=gr.Eraser(), brush=gr.Brush(default_size=0, colors=['black', '#505050', '#a0a0a0', 'white']), elem_id="image_edit")
with gr.Row():
selector = gr.HTML(value="""
<a href='#' id='selector' onclick='if (this.style.fontWeight!=\"bold\") {
this.style.fontWeight=\"bold\";
document.getElementById(\"image_edit\").getElementsByTagName(\"canvas\")[0].oncontextmenu = function(e){e.preventDefault();}
document.getElementById(\"image_edit\").getElementsByTagName(\"canvas\")[0].ondrag = function(e){e.preventDefault();}
document.getElementById(\"image_edit\").getElementsByTagName(\"canvas\")[0].onclick = function(e) {
var x = parseInt((e.clientX-e.target.getBoundingClientRect().x)*e.target.width/e.target.getBoundingClientRect().width);
var y = parseInt((e.clientY-e.target.getBoundingClientRect().y)*e.target.height/e.target.getBoundingClientRect().height);
var p = document.getElementById(\"mouse\").getElementsByTagName(\"textarea\")[0].value.slice(1, -1);
if (p != \"\") { p += \", \"; }
p += \"[\" + x + \", \" + y + \"]\";
document.getElementById(\"mouse\").getElementsByTagName(\"textarea\")[0].value = \"[\" + p + \"]\";
var evt = document.createEvent(\"Event\");
evt.initEvent(\"input\", true, false);
document.getElementById(\"mouse\").getElementsByTagName(\"textarea\")[0].dispatchEvent(evt);
}
document.getElementById(\"image_edit\").getElementsByTagName(\"canvas\")[0].onpointerdown = function(e) {
document.getElementById(\"mouse\").getElementsByTagName(\"textarea\")[0].style.borderColor = \"#a0a0a0\";
}
document.getElementById(\"image_edit\").getElementsByTagName(\"canvas\")[0].onpointerup = function(e) {
document.getElementById(\"mouse\").getElementsByTagName(\"textarea\")[0].style.borderColor = \"#ffffff\";
}
} else {
this.style.fontWeight=\"normal\";
document.getElementById(\"image_edit\").getElementsByTagName(\"canvas\")[0].onclick = null;
}' title='Select point' style='text-decoration:none;color:white;'>⊹ Select point</a> <a href='#' id='clear_select' onclick='
document.getElementById(\"mouse\").getElementsByTagName(\"textarea\")[0].value = \"[]\";
' title='Clear selection' style='text-decoration:none;color:white;'>✕ Clear</a>""")
apply = gr.Button("Apply", size='sm')
reset = gr.Button("Reset", size='sm')
with gr.Accordion(label="Edge", open=False):
levels = gr.Slider(label="Color levels", value=16, maximum=32, minimum=2, step=1)
tolerance = gr.Slider(label="Tolerance", value=1, maximum=7, minimum=0, step=1)
bsize = gr.Slider(label="Border size", value=15, maximum=256, minimum=1, step=2)
mouse = gr.Textbox(elem_id="mouse", value="""[]""", interactive=False)
mouse.input(fn=draw_mask, show_progress="minimal", inputs=[levels, tolerance, mouse, output_mask], outputs=[output_mask])
apply.click(fn=apply_mask, inputs=[output_mask, bsize], outputs=[output_mask, output_depth, output_frame])
reset.click(fn=reset_mask, inputs=None, outputs=[output_mask, output_depth])
normals_out = gr.Image(label="Normal map", interactive=False)
format_normals = gr.Radio(choices=["directx", "opengl"])
find_normals = gr.Button("Find normals")
find_normals.click(fn=findNormals, inputs=[format_normals], outputs=[normals_out])
with gr.Column():
model_type = gr.Dropdown([("small", "vits"), ("base", "vitb"), ("large", "vitl"), ("giant", "vitg")], type="value", value="vits", label='Model Type')
remove_bg = gr.Checkbox(label="Remove background")
with gr.Accordion(label="Background removal settings", open=False):
with gr.Tab(label="Maximums"):
max_c = gr.Slider(minimum=0, maximum=255, step=1, value=12, label="Color diff")
max_d = gr.Slider(minimum=0, maximum=255, step=1, value=12, label="Depth diff")
with gr.Tab(label="Shadow maximums"):
max_s = gr.Slider(minimum=0, maximum=255, step=1, value=32, label="Saturation")
max_l = gr.Slider(minimum=0, maximum=255, step=1, value=64, label="Lightness")
max_v = gr.Slider(minimum=0, maximum=255, step=1, value=16, label="Detail")
lt = gr.Radio(label="Maximum is", choices=["average", "median", "slider"], value="slider")
processed_video = gr.Video(label="Output Video", format="mp4", interactive=False)
processed_zip = gr.File(label="Output Archive", interactive=False)
result = gr.Model3D(label="3D Mesh", clear_color=[0.5, 0.5, 0.5, 0.0], camera_position=[0, 90, 0], zoom_speed=2.0, pan_speed=2.0, interactive=True, elem_id="model3D") #, display_mode="point_cloud"
chart_c = gr.HTML(elem_id="chart_c", value="""<div id='chart' onpointermove='window.drawLine(event.clientX, event.clientY);' onpointerdown='window.pointerDown(event.clientX, event.clientY);' onpointerup='window.pointerUp();' onpointerleave='window.pointerUp();' onpointercancel='window.pointerUp();' onclick='window.resetLine();'></div>
<style>
body {
user-select: none;
}
#chart hr {
width: 1px;
height: 1px;
clear: none;
border: 0;
padding:0;
display: inline-block;
position: relative;
vertical-align: top;
margin-top:32px;
}
#chart {
padding:0;
margin:0;
width:256px;
height:64px;
background-color:#808080;
touch-action: none;
}
</style>
""")
average = gr.HTML(value="""<label for='average'>Average</label><input id='average' type='range' style='width:256px;height:1em;' value='1' min='1' max='15' step='2' onclick='
var pts_a = document.getElementById(\"blur_in\").getElementsByTagName(\"textarea\")[0].value.split(\" \");
for (var i=0; i<256; i++) {
var avg = 0;
var div = this.value;
for (var j = i-parseInt(this.value/2); j <= i+parseInt(this.value/2); j++) {
if (pts_a[j]) {
avg += parseInt(pts_a[j]);
} else if (div > 1) {
div--;
}
}
pts_a[i] = Math.round((avg / div - 1) / 2) * 2 + 1;
document.getElementById(\"chart\").childNodes[i].style.height = pts_a[i] + \"px\";
document.getElementById(\"chart\").childNodes[i].style.marginTop = (64-pts_a[i])/2 + \"px\";
}
document.getElementById(\"blur_in\").getElementsByTagName(\"textarea\")[0].value = pts_a.join(\" \");
var evt = document.createEvent(\"Event\");
evt.initEvent(\"input\", true, false);
document.getElementById(\"blur_in\").getElementsByTagName(\"textarea\")[0].dispatchEvent(evt);
' oninput='
this.parentNode.childNodes[2].innerText = this.value;
' onchange='this.click();'/><span>1</span>""")
with gr.Accordion(label="Blur levels", open=False):
blur_in = gr.Textbox(elem_id="blur_in", label="Kernel size", show_label=False, interactive=False, value="1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1")
with gr.Accordion(label="Locations", open=False):
offset = gr.HTML(value="""<input type='text' id='kbrd' onpointerdown='this.style.color = \"white\";' onpointerup='this.style.color = \"auto\";' onpointermove='
try {
if (this.style.color!=\"auto\" && BABYLON) {
if (!BABYLON.Engine.LastCreatedScene.activeCamera.metadata) {
var evt = document.createEvent(\"Event\");
evt.initEvent(\"click\", true, false);
document.getElementById(\"reset_cam\").dispatchEvent(evt);
}
event.preventDefault();
if (BABYLON.Engine.LastCreatedScene.getNodes()[parseInt(document.getElementById(\"fnum\").getElementsByTagName(\"input\")[0].value)+1].rotationQuaternion) {
BABYLON.Engine.LastCreatedScene.getNodes()[parseInt(document.getElementById(\"fnum\").getElementsByTagName(\"input\")[0].value)+1].rotationQuaternion = null;
}
const dir = BABYLON.Engine.LastCreatedScene.activeCamera.getForwardRay().direction;
dir.y = 0; dir.normalize();
const angle = BABYLON.Vector3.GetAngleBetweenVectors(dir, BABYLON.Vector3.Forward(), BABYLON.Vector3.Up());
const x = event.clientX-this.getBoundingClientRect().x-128;
const y = event.clientY-this.getBoundingClientRect().y-64;
const angle_ = Math.atan2(y, x);
const r = Math.sqrt(Math.pow(y,2) + Math.pow(x,2));
BABYLON.Engine.LastCreatedScene.getNodes()[parseInt(document.getElementById(\"fnum\").getElementsByTagName(\"input\")[0].value)+1].position.z = r * Math.sin(-angle_-angle);
BABYLON.Engine.LastCreatedScene.getNodes()[parseInt(document.getElementById(\"fnum\").getElementsByTagName(\"input\")[0].value)+1].position.x = r * Math.cos(-angle_-angle);
}
} catch(e) {alert(e)}
' onkeydown='
if (BABYLON) {
if (!BABYLON.Engine.LastCreatedScene.activeCamera.metadata) {
var evt = document.createEvent(\"Event\");
evt.initEvent(\"click\", true, false);
document.getElementById(\"reset_cam\").dispatchEvent(evt);
}
event.preventDefault();
if (BABYLON.Engine.LastCreatedScene.getNodes()[parseInt(document.getElementById(\"fnum\").getElementsByTagName(\"input\")[0].value)+1].rotationQuaternion) {
BABYLON.Engine.LastCreatedScene.getNodes()[parseInt(document.getElementById(\"fnum\").getElementsByTagName(\"input\")[0].value)+1].rotationQuaternion = null;
}
try {
const dir = BABYLON.Engine.LastCreatedScene.activeCamera.getForwardRay().direction;
dir.y = 0; dir.normalize();
const angle = BABYLON.Vector3.GetAngleBetweenVectors(dir, BABYLON.Vector3.Forward(), BABYLON.Vector3.Up());
switch(event.key) {
case \"w\":
BABYLON.Engine.LastCreatedScene.getNodes()[parseInt(document.getElementById(\"fnum\").getElementsByTagName(\"input\")[0].value)+1].position.y += 1;
this.value = \"w ⬆ x\";
break;
case \"x\":
BABYLON.Engine.LastCreatedScene.getNodes()[parseInt(document.getElementById(\"fnum\").getElementsByTagName(\"input\")[0].value)+1].position.y -= 1;
this.value = \"w ⬇ x\";
break;
case \"a\":
const x = -1; const y = 0;
const angle_ = Math.atan2(y, x);
BABYLON.Engine.LastCreatedScene.getNodes()[parseInt(document.getElementById(\"fnum\").getElementsByTagName(\"input\")[0].value)+1].position.z += Math.sin(-angle_-angle);
this.value = \"a ⬅ d\";
break;
case \"d\":
const x = 1; const y = 0;
const angle_ = Math.atan2(y, x);
BABYLON.Engine.LastCreatedScene.getNodes()[parseInt(document.getElementById(\"fnum\").getElementsByTagName(\"input\")[0].value)+1].position.z += Math.sin(-angle_-angle);
this.value = \"a ➡ d\";
break;
case \"e\":
const x = 0; const y = -1;
const angle_ = Math.atan2(y, x);
BABYLON.Engine.LastCreatedScene.getNodes()[parseInt(document.getElementById(\"fnum\").getElementsByTagName(\"input\")[0].value)+1].position.x += Math.cos(-angle_-angle);
this.value = \"z ↗ e\";
break;
case \"z\":
const x = 0; const y = 1;
const angle_ = Math.atan2(y, x);
BABYLON.Engine.LastCreatedScene.getNodes()[parseInt(document.getElementById(\"fnum\").getElementsByTagName(\"input\")[0].value)+1].position.x += Math.cos(-angle_-angle);
this.value = \"z ↙ e\";
break;
case \"s\":
BABYLON.Engine.LastCreatedScene.getNodes()[parseInt(document.getElementById(\"fnum\").getElementsByTagName(\"input\")[0].value)+1].position.x = 0;
BABYLON.Engine.LastCreatedScene.getNodes()[parseInt(document.getElementById(\"fnum\").getElementsByTagName(\"input\")[0].value)+1].position.y = 0;
BABYLON.Engine.LastCreatedScene.getNodes()[parseInt(document.getElementById(\"fnum\").getElementsByTagName(\"input\")[0].value)+1].position.z = 0;
this.value = \"\";
break;
case \"t\":
BABYLON.Engine.LastCreatedScene.getNodes()[parseInt(document.getElementById(\"fnum\").getElementsByTagName(\"input\")[0].value)+1].rotation.z += Math.PI/256;
this.value = \"t 🔃 b\";
break;
case \"b\":
BABYLON.Engine.LastCreatedScene.getNodes()[parseInt(document.getElementById(\"fnum\").getElementsByTagName(\"input\")[0].value)+1].rotation.z -= Math.PI/256;
this.value = \"t 🔃 b\";
break;
case \"f\":
BABYLON.Engine.LastCreatedScene.getNodes()[parseInt(document.getElementById(\"fnum\").getElementsByTagName(\"input\")[0].value)+1].rotation.y -= Math.PI/256;
this.value = \"f 🔁 h\";
break;
case \"h\":
BABYLON.Engine.LastCreatedScene.getNodes()[parseInt(document.getElementById(\"fnum\").getElementsByTagName(\"input\")[0].value)+1].rotation.y += Math.PI/256;
this.value = \"f 🔁 h\";
break;
case \"y\":
BABYLON.Engine.LastCreatedScene.getNodes()[parseInt(document.getElementById(\"fnum\").getElementsByTagName(\"input\")[0].value)+1].rotation.x -= Math.PI/256;
this.value = \"v 🔄 y\";
break;
case \"v\":
BABYLON.Engine.LastCreatedScene.getNodes()[parseInt(document.getElementById(\"fnum\").getElementsByTagName(\"input\")[0].value)+1].rotation.x += Math.PI/256;
this.value = \"v 🔄 y\";
break;
case \"g\":
BABYLON.Engine.LastCreatedScene.getNodes()[parseInt(document.getElementById(\"fnum\").getElementsByTagName(\"input\")[0].value)+1].rotation.x = 0;
BABYLON.Engine.LastCreatedScene.getNodes()[parseInt(document.getElementById(\"fnum\").getElementsByTagName(\"input\")[0].value)+1].rotation.y = 0;
BABYLON.Engine.LastCreatedScene.getNodes()[parseInt(document.getElementById(\"fnum\").getElementsByTagName(\"input\")[0].value)+1].rotation.z = 0;
this.value = \"\";
break;
case \"i\":
BABYLON.Engine.LastCreatedScene.getNodes()[parseInt(document.getElementById(\"fnum\").getElementsByTagName(\"input\")[0].value)+1].scaling.y *= 256/255;
this.value = \"i ↕ ,\";
break;
case \",\":
BABYLON.Engine.LastCreatedScene.getNodes()[parseInt(document.getElementById(\"fnum\").getElementsByTagName(\"input\")[0].value)+1].scaling.y /= 256/255;
this.value = \"i ↕ ,\";
break;
case \"j\":
BABYLON.Engine.LastCreatedScene.getNodes()[parseInt(document.getElementById(\"fnum\").getElementsByTagName(\"input\")[0].value)+1].scaling.z /= 256/255;
this.value = \"j ↔ l\";
break;
case \"l\":
BABYLON.Engine.LastCreatedScene.getNodes()[parseInt(document.getElementById(\"fnum\").getElementsByTagName(\"input\")[0].value)+1].scaling.z *= 256/255;
this.value = \"j ↔ l\";
break;
case \"o\":
BABYLON.Engine.LastCreatedScene.getNodes()[parseInt(document.getElementById(\"fnum\").getElementsByTagName(\"input\")[0].value)+1].scaling.x /= 256/255;
this.value = \"m ⤢ o\";
break;
case \"m\":
BABYLON.Engine.LastCreatedScene.getNodes()[parseInt(document.getElementById(\"fnum\").getElementsByTagName(\"input\")[0].value)+1].scaling.x *= 256/255;
this.value = \"m ⤢ o\";
break;
case \"k\":
BABYLON.Engine.LastCreatedScene.getNodes()[parseInt(document.getElementById(\"fnum\").getElementsByTagName(\"input\")[0].value)+1].scaling.x = 1;
BABYLON.Engine.LastCreatedScene.getNodes()[parseInt(document.getElementById(\"fnum\").getElementsByTagName(\"input\")[0].value)+1].scaling.y = 1;
BABYLON.Engine.LastCreatedScene.getNodes()[parseInt(document.getElementById(\"fnum\").getElementsByTagName(\"input\")[0].value)+1].scaling.z = 1;
this.value = \"\";
break;
default:
this.value = \"\";
}
} catch(e) {alert(e)}
}
' style='height:128px;width:256px;user-select:none;touch-action:none;color:auto;background-color:transparent;border:1px solid gray;'/>
<pre id='keymap'>
` 1 2 3 4 5 6 7 8 9 0 - =
W E T Y I O { }
A-`S´-D F-`G´-H J-`K´-L ; '
Z´ X̀ V´ B̀ M´ `, . /
<a id='move' href='#'>move</a> <a id='rotate' href='#'>rotate</a> <a id='scale' href='#'>scale</a>
</pre>""")
selected = gr.Number(elem_id="fnum", value=0, minimum=0, maximum=256, interactive=False)
output_frame.select(fn=select_frame, inputs=[output_mask], outputs=[output_mask, selected, bgcolor])
example_coords = """[
{"lat": 50.07379596793083, "lng": 14.437146122950555, "heading": 152.70303, "pitch": 2.607833999999997},
{"lat": 50.073799567020004, "lng": 14.437146774240507, "heading": 151.12973, "pitch": 2.8672300000000064},
{"lat": 50.07377647505558, "lng": 14.437161000659017, "heading": 151.41025, "pitch": 3.4802200000000028},
{"lat": 50.07379496839027, "lng": 14.437148958238538, "heading": 151.93391, "pitch": 2.843050000000005},
{"lat": 50.073823157821664, "lng": 14.437124189538856, "heading": 152.95769, "pitch": 4.233024999999998}
]"""
coords = gr.Textbox(elem_id="coords", value=example_coords, label="Coordinates", interactive=False)
mesh_order = gr.Textbox(elem_id="order", value="", label="Order", interactive=False)
result_file = gr.File(elem_id="file3D", label="3D file", interactive=False)
html = gr.HTML(value="""<label for='zoom'>Zoom</label><input id='zoom' type='range' style='width:256px;height:1em;' value='0.8' min='0.157' max='1.57' step='0.001' oninput='
if (!BABYLON.Engine.LastCreatedScene.activeCamera.metadata) {
var evt = document.createEvent(\"Event\");
evt.initEvent(\"click\", true, false);
document.getElementById(\"reset_cam\").dispatchEvent(evt);
}
BABYLON.Engine.LastCreatedScene.getNodes()[parseInt(document.getElementById(\"fnum\").getElementsByTagName(\"input\")[0].value)+1].material.pointSize = Math.ceil(Math.log2(Math.PI/this.value));
BABYLON.Engine.LastCreatedScene.activeCamera.fov = this.value;
this.parentNode.childNodes[2].innerText = BABYLON.Engine.LastCreatedScene.activeCamera.fov;
document.getElementById(\"model3D\").getElementsByTagName(\"canvas\")[0].style.filter = \"blur(\" + BABYLON.Engine.LastCreatedScene.getNodes()[parseInt(document.getElementById(\"fnum\").getElementsByTagName(\"input\")[0].value)+1].material.pointSize/2.0*Math.sqrt(2.0) + \"px)\";
'/><span>0.8</span>""")
camera = gr.HTML(value="""<a href='#' id='reset_cam' onclick='
if (!BABYLON.Engine.LastCreatedScene.activeCamera.metadata) {
BABYLON.Engine.LastCreatedScene.activeCamera.metadata = {
screenshot: true,
pipeline: new BABYLON.DefaultRenderingPipeline(\"default\", true, BABYLON.Engine.LastCreatedScene, [BABYLON.Engine.LastCreatedScene.activeCamera])
}
}
BABYLON.Engine.LastCreatedScene.activeCamera.radius = 0;
BABYLON.Engine.LastCreatedScene.getNodes()[parseInt(document.getElementById(\"fnum\").getElementsByTagName(\"input\")[0].value)+1].material.pointSize = Math.ceil(Math.log2(Math.PI/document.getElementById(\"zoom\").value));
BABYLON.Engine.LastCreatedScene.activeCamera.metadata.pipeline.samples = 4;
BABYLON.Engine.LastCreatedScene.activeCamera.fov = document.getElementById(\"zoom\").value;
BABYLON.Engine.LastCreatedScene.activeCamera.metadata.pipeline.imageProcessing.contrast = document.getElementById(\"contrast\").value;
BABYLON.Engine.LastCreatedScene.activeCamera.metadata.pipeline.imageProcessing.exposure = document.getElementById(\"exposure\").value;
document.getElementById(\"model3D\").getElementsByTagName(\"canvas\")[0].style.filter = \"blur(\" + Math.ceil(Math.log2(Math.PI/document.getElementById(\"zoom\").value))/2.0*Math.sqrt(2.0) + \"px)\";
document.getElementById(\"model3D\").getElementsByTagName(\"canvas\")[0].oncontextmenu = function(e){e.preventDefault();}
document.getElementById(\"model3D\").getElementsByTagName(\"canvas\")[0].ondrag = function(e){e.preventDefault();}
if (!BABYLON.Engine.LastCreatedScene.activeCamera.metadata.gizmoManager) {
BABYLON.Engine.LastCreatedScene.activeCamera.metadata.gizmoManager = new BABYLON.GizmoManager(BABYLON.Engine.LastCreatedScene, 16);
BABYLON.Engine.LastCreatedScene.activeCamera.metadata.gizmoManager.positionGizmoEnabled = true;
BABYLON.Engine.LastCreatedScene.activeCamera.metadata.gizmoManager.rotationGizmoEnabled = false;
BABYLON.Engine.LastCreatedScene.activeCamera.metadata.gizmoManager.scaleGizmoEnabled = false;
BABYLON.Engine.LastCreatedScene.activeCamera.metadata.gizmoManager.boundingBoxGizmoEnabled = false;
BABYLON.Engine.LastCreatedScene.activeCamera.metadata.gizmoManager.usePointerToAttachGizmos = false;
document.getElementById(\"move\").onclick = function(event) {
BABYLON.Engine.LastCreatedScene.activeCamera.metadata.gizmoManager.positionGizmoEnabled = true;
BABYLON.Engine.LastCreatedScene.activeCamera.metadata.gizmoManager.rotationGizmoEnabled = false;
BABYLON.Engine.LastCreatedScene.activeCamera.metadata.gizmoManager.scaleGizmoEnabled = false;
}
document.getElementById(\"rotate\").onclick = function(event) {
BABYLON.Engine.LastCreatedScene.activeCamera.metadata.gizmoManager.positionGizmoEnabled = false;
BABYLON.Engine.LastCreatedScene.activeCamera.metadata.gizmoManager.rotationGizmoEnabled = true;
BABYLON.Engine.LastCreatedScene.activeCamera.metadata.gizmoManager.scaleGizmoEnabled = false;
}
document.getElementById(\"scale\").onclick = function(event) {
BABYLON.Engine.LastCreatedScene.activeCamera.metadata.gizmoManager.positionGizmoEnabled = false;
BABYLON.Engine.LastCreatedScene.activeCamera.metadata.gizmoManager.rotationGizmoEnabled = false;
BABYLON.Engine.LastCreatedScene.activeCamera.metadata.gizmoManager.scaleGizmoEnabled = true;
}
}
BABYLON.Engine.LastCreatedScene.activeCamera.metadata.gizmoManager.attachToMesh(BABYLON.Engine.LastCreatedScene.getNodes()[parseInt(document.getElementById(\"fnum\").getElementsByTagName(\"input\")[0].value)+1]);
'>reset camera</a>""")
contrast = gr.HTML(value="""<label for='contrast'>Contrast</label><input id='contrast' type='range' style='width:256px;height:1em;' value='1.0' min='0' max='2' step='0.001' oninput='
if (!BABYLON.Engine.LastCreatedScene.activeCamera.metadata) {
var evt = document.createEvent(\"Event\");
evt.initEvent(\"click\", true, false);
document.getElementById(\"reset_cam\").dispatchEvent(evt);
}
BABYLON.Engine.LastCreatedScene.activeCamera.metadata.pipeline.imageProcessing.contrast = this.value;
this.parentNode.childNodes[2].innerText = BABYLON.Engine.LastCreatedScene.activeCamera.metadata.pipeline.imageProcessing.contrast;
'/><span>1.0</span>""")
exposure = gr.HTML(value="""<label for='exposure'>Exposure</label><input id='exposure' type='range' style='width:256px;height:1em;' value='1.0' min='0' max='2' step='0.001' oninput='
if (!BABYLON.Engine.LastCreatedScene.activeCamera.metadata) {
var evt = document.createEvent(\"Event\");
evt.initEvent(\"click\", true, false);
document.getElementById(\"reset_cam\").dispatchEvent(evt);
}
BABYLON.Engine.LastCreatedScene.activeCamera.metadata.pipeline.imageProcessing.exposure = this.value;
this.parentNode.childNodes[2].innerText = BABYLON.Engine.LastCreatedScene.activeCamera.metadata.pipeline.imageProcessing.exposure;
'/><span>1.0</span>""")
canvas = gr.HTML(value="""<a href='#' onclick='
if (!BABYLON.Engine.LastCreatedScene.activeCamera.metadata) {
var evt = document.createEvent(\"Event\");
evt.initEvent(\"click\", true, false);
document.getElementById(\"reset_cam\").dispatchEvent(evt);
}
BABYLON.Engine.LastCreatedScene.activeCamera.metadata.screenshot = true;
BABYLON.Engine.LastCreatedScene.getEngine().onEndFrameObservable.add(function() {
if (BABYLON.Engine.LastCreatedScene.activeCamera.metadata.screenshot === true) {
BABYLON.Engine.LastCreatedScene.activeCamera.metadata.screenshot = false;
try {
BABYLON.Tools.CreateScreenshotUsingRenderTarget(BABYLON.Engine.LastCreatedScene.getEngine(), BABYLON.Engine.LastCreatedScene.activeCamera,
{ precision: 1.0 }, (durl) => {
var cnvs = document.getElementById(\"model3D\").getElementsByTagName(\"canvas\")[0]; //.getContext(\"webgl2\");
var svgd = `<svg id=\"svg_out\" viewBox=\"0 0 ` + cnvs.width + ` ` + cnvs.height + `\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\">
<defs>
<filter id=\"blur\" x=\"0\" y=\"0\" xmlns=\"http://www.w3.org/2000/svg\">
<feGaussianBlur in=\"SourceGraphic\" stdDeviation=\"` + BABYLON.Engine.LastCreatedScene.getNodes()[1].material.pointSize/2.0*Math.sqrt(2.0) + `\" />
</filter>
</defs>
<image filter=\"url(#blur)\" id=\"svg_img\" x=\"0\" y=\"0\" width=\"` + cnvs.width + `\" height=\"` + cnvs.height + `\" xlink:href=\"` + durl + `\"/>
</svg>`;
document.getElementById(\"cnv_out\").width = cnvs.width;
document.getElementById(\"cnv_out\").height = cnvs.height;
document.getElementById(\"img_out\").src = \"data:image/svg+xml;base64,\" + btoa(svgd);
}
);
} catch(e) { alert(e); }
// https://forum.babylonjs.com/t/best-way-to-save-to-jpeg-snapshots-of-scene/17663/11
}
});
'/>snapshot</a><br/><img src='' id='img_out' onload='
var ctxt = document.getElementById(\"cnv_out\").getContext(\"2d\");
ctxt.drawImage(this, 0, 0);
'/><br/>
<canvas id='cnv_out'/>""")
load_all = gr.Checkbox(label="Load all")
render = gr.Button("Render")
input_json.input(show_json, inputs=[input_json], outputs=[processed_video, processed_zip, output_frame, output_mask, output_depth, coords])
def on_submit(uploaded_video,model_type,remove_bg,maxc,maxd,maxs,maxl,maxv,lt,coordinates):
global locations
locations = []
avg = [0, 0]
locations = json.loads(coordinates)
for k, location in enumerate(locations):
if "tiles" in locations[k]:
locations[k]["heading"] = locations[k]["tiles"]["originHeading"]
locations[k]["pitch"] = locations[k]["tiles"]["originPitch"]
else:
locations[k]["heading"] = 0
locations[k]["pitch"] = 0
if "location" in locations[k]:
locations[k] = locations[k]["location"]["latLng"]
avg[0] = avg[0] + locations[k]["lat"]
avg[1] = avg[1] + locations[k]["lng"]
else:
locations[k]["lat"] = 0
locations[k]["lng"] = 0
if len(locations) > 0:
avg[0] = avg[0] / len(locations)
avg[1] = avg[1] / len(locations)
for k, location in enumerate(locations):
lat = vincenty((location["lat"], 0), (avg[0], 0)) * 1000
lng = vincenty((0, location["lng"]), (0, avg[1])) * 1000
locations[k]["lat"] = float(lat / 2.5 * 95 * np.sign(location["lat"]-avg[0]))
locations[k]["lng"] = float(lng / 2.5 * 95 * np.sign(location["lng"]-avg[1]))
print(locations)
# Process the video and get the path of the output video
output_video_path = make_video(uploaded_video,encoder=model_type,remove_bg=remove_bg,maxc=maxc,maxd=maxd,maxs=maxs,maxl=maxl,maxv=maxv,lt=lt)
return output_video_path + (json.dumps(locations),)
submit.click(on_submit, inputs=[input_video, model_type, remove_bg, max_c, max_d, max_s, max_l, max_v, lt, coords], outputs=[processed_video, processed_zip, output_frame, output_mask, output_depth, coords])
render.click(None, inputs=[coords, mesh_order, bgcolor, output_frame, output_mask, selected, output_depth], outputs=None, js=load_model)
render.click(partial(get_mesh), inputs=[output_frame, output_mask, blur_in, load_all], outputs=[result, result_file, mesh_order])
example_files = [["./examples/streetview.mp4", "vits", False, 12, 12, 32, 64, 16, "slider", example_coords], ["./examples/man-in-museum-reverse-cut.mp4", "vits", True, 12, 12, 32, 64, 16, "slider", example_coords]]
examples = gr.Examples(examples=example_files, fn=on_submit, cache_examples=True, inputs=[input_video, model_type, remove_bg, max_c, max_d, max_s, max_l, max_v, lt, coords], outputs=[processed_video, processed_zip, output_frame, output_mask, output_depth, coords])
if __name__ == '__main__':
demo.queue().launch() |