janus-demo / app.py
gabrielchua's picture
Create app.py
4e757f3 verified
raw
history blame
6.85 kB
import os
import torch
import gradio as gr
import numpy as np
import spaces
from PIL import Image
from transformers import AutoModelForCausalLM
from janus.models import MultiModalityCausalLM, VLChatProcessor
from janus.utils.io import load_pil_images
# Specify the path to the model
model_path = "deepseek-ai/Janus-1.3B"
# Load the VLChatProcessor and tokenizer
vl_chat_processor: VLChatProcessor = VLChatProcessor.from_pretrained(model_path)
tokenizer = vl_chat_processor.tokenizer
# Load the MultiModalityCausalLM model
vl_gpt: MultiModalityCausalLM = AutoModelForCausalLM.from_pretrained(
model_path, trust_remote_code=True
)
vl_gpt = vl_gpt.to(torch.bfloat16).cuda().eval()
@spaces.GPU(duration=120)
def image_to_latex(image: Image.Image) -> str:
"""
Convert an uploaded image of a formula into LaTeX code.
"""
# Define the conversation with the uploaded image
conversation = [
{
"role": "User",
"content": "<image_placeholder>\nConvert the formula into latex code.",
"images": [image],
},
{"role": "Assistant", "content": ""},
]
# Load the PIL images from the conversation
pil_images = load_pil_images(conversation)
# Prepare the inputs for the model
prepare_inputs = vl_chat_processor(
conversations=conversation, images=pil_images, force_batchify=True
).to(vl_gpt.device)
# Prepare input embeddings
inputs_embeds = vl_gpt.prepare_inputs_embeds(**prepare_inputs)
# Generate the response from the model
outputs = vl_gpt.language_model.generate(
inputs_embeds=inputs_embeds,
attention_mask=prepare_inputs.attention_mask,
pad_token_id=tokenizer.eos_token_id,
bos_token_id=tokenizer.bos_token_id,
eos_token_id=tokenizer.eos_token_id,
max_new_tokens=512,
do_sample=False,
use_cache=True,
)
# Decode the generated tokens to get the answer
answer = tokenizer.decode(outputs[0].cpu().tolist(), skip_special_tokens=True)
return answer
@spaces.GPU(duration=120)
def text_to_image(prompt: str) -> Image.Image:
"""
Generate an image based on the input text prompt.
"""
# Define the conversation with the user prompt
conversation = [
{
"role": "User",
"content": prompt,
},
{"role": "Assistant", "content": ""},
]
# Apply the SFT template to format the prompt
sft_format = vl_chat_processor.apply_sft_template_for_multi_turn_prompts(
conversations=conversation,
sft_format=vl_chat_processor.sft_format,
system_prompt="",
)
prompt_text = sft_format + vl_chat_processor.image_start_tag
# Encode the prompt
input_ids = vl_chat_processor.tokenizer.encode(prompt_text)
input_ids = torch.LongTensor(input_ids)
# Prepare tokens for generation
tokens = torch.zeros((2, len(input_ids)), dtype=torch.int).cuda()
tokens[0, :] = input_ids
tokens[1, :] = vl_chat_processor.pad_id
# Get input embeddings
inputs_embeds = vl_gpt.language_model.get_input_embeddings()(tokens)
# Generation parameters
image_token_num_per_image = 576
img_size = 384
patch_size = 16
cfg_weight = 5
temperature = 1
# Initialize tensor to store generated tokens
generated_tokens = torch.zeros((1, image_token_num_per_image), dtype=torch.int).cuda()
for i in range(image_token_num_per_image):
if i == 0:
outputs = vl_gpt.language_model.model(inputs_embeds=inputs_embeds, use_cache=True)
else:
outputs = vl_gpt.language_model.model(inputs_embeds=inputs_embeds, use_cache=True, past_key_values=outputs.past_key_values)
hidden_states = outputs.last_hidden_state
# Get logits and apply classifier-free guidance
logits = vl_gpt.gen_head(hidden_states[:, -1, :])
logit_cond = logits[0::2, :]
logit_uncond = logits[1::2, :]
logits = logit_uncond + cfg_weight * (logit_cond - logit_uncond)
# Sample the next token
probs = torch.softmax(logits / temperature, dim=-1)
next_token = torch.multinomial(probs, num_samples=1)
generated_tokens[:, i] = next_token.squeeze(dim=-1)
# Prepare for the next step
next_token_combined = torch.cat([next_token.unsqueeze(dim=1), next_token.unsqueeze(dim=1)], dim=1).view(-1)
img_embeds = vl_gpt.prepare_gen_img_embeds(next_token_combined)
inputs_embeds = img_embeds.unsqueeze(dim=1)
# Decode the generated tokens to get the image
dec = vl_gpt.gen_vision_model.decode_code(
generated_tokens.to(dtype=torch.int),
shape=[1, 8, img_size//patch_size, img_size//patch_size]
)
dec = dec.to(torch.float32).cpu().numpy().transpose(0, 2, 3, 1)
dec = np.clip((dec + 1) / 2 * 255, 0, 255).astype(np.uint8)
# Convert to PIL Image
visual_img = dec[0]
image = Image.fromarray(visual_img)
return image
# Create the Gradio interface
with gr.Blocks() as demo:
gr.Markdown(
"""
# Janus-1.3B Gradio Demo
This demo showcases two functionalities using the Janus-1.3B model:
1. **Image to LaTeX**: Upload an image of a mathematical formula to convert it into LaTeX code.
2. **Text to Image**: Enter a descriptive text prompt to generate a corresponding image.
"""
)
with gr.Tab("Image to LaTeX"):
gr.Markdown("### Convert Formula Image to LaTeX Code")
with gr.Row():
with gr.Column():
image_input = gr.Image(
type="pil",
label="Upload Formula Image",
tool="editor",
)
submit_btn = gr.Button("Convert to LaTeX")
with gr.Column():
latex_output = gr.Textbox(
label="LaTeX Code",
lines=10,
)
submit_btn.click(fn=image_to_latex, inputs=image_input, outputs=latex_output)
with gr.Tab("Text to Image"):
gr.Markdown("### Generate Image from Text Prompt")
with gr.Row():
with gr.Column():
prompt_input = gr.Textbox(
lines=2,
placeholder="Enter your image description here...",
label="Text Prompt",
)
generate_btn = gr.Button("Generate Image")
with gr.Column():
image_output = gr.Image(
label="Generated Image",
)
generate_btn.click(fn=text_to_image, inputs=prompt_input, outputs=image_output)
)
# Launch the Gradio app
if __name__ == "__main__":
demo.launch()