Spaces:
Running
on
A10G
Running
on
A10G
Update app.py
#12
by
reach-vb
HF staff
- opened
app.py
CHANGED
@@ -27,83 +27,87 @@ def process_model(model_id, q_method, hf_token):
|
|
27 |
MODEL_NAME = model_id.split('/')[-1]
|
28 |
fp16 = f"{MODEL_NAME}/{MODEL_NAME.lower()}.fp16.bin"
|
29 |
|
30 |
-
|
|
|
31 |
|
32 |
-
|
|
|
|
|
|
|
33 |
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
"
|
106 |
-
|
107 |
|
108 |
# Create Gradio interface
|
109 |
iface = gr.Interface(
|
|
|
27 |
MODEL_NAME = model_id.split('/')[-1]
|
28 |
fp16 = f"{MODEL_NAME}/{MODEL_NAME.lower()}.fp16.bin"
|
29 |
|
30 |
+
try:
|
31 |
+
api = HfApi(token=hf_token)
|
32 |
|
33 |
+
username = whoami(hf_token)["name"]
|
34 |
+
|
35 |
+
snapshot_download(repo_id=model_id, local_dir = f"{MODEL_NAME}", local_dir_use_symlinks=False)
|
36 |
+
print("Model downloaded successully!")
|
37 |
|
38 |
+
conversion_script = script_to_use(model_id, api)
|
39 |
+
fp16_conversion = f"python llama.cpp/{conversion_script} {MODEL_NAME} --outtype f16 --outfile {fp16}"
|
40 |
+
result = subprocess.run(fp16_conversion, shell=True, capture_output=True)
|
41 |
+
if result.returncode != 0:
|
42 |
+
raise Exception(f"Error converting to fp16: {result.stderr}")
|
43 |
+
print("Model converted to fp16 successully!")
|
44 |
+
|
45 |
+
qtype = f"{MODEL_NAME}/{MODEL_NAME.lower()}.{q_method.upper()}.gguf"
|
46 |
+
quantise_ggml = f"./llama.cpp/quantize {fp16} {qtype} {q_method}"
|
47 |
+
result = subprocess.run(quantise_ggml, shell=True, capture_output=True)
|
48 |
+
if result.returncode != 0:
|
49 |
+
raise Exception(f"Error quantizing: {result.stderr}")
|
50 |
+
print("Quantised successfully!")
|
51 |
+
|
52 |
+
# Create empty repo
|
53 |
+
repo_id = f"{username}/{MODEL_NAME}-{q_method}-GGUF"
|
54 |
+
repo_url = create_repo(
|
55 |
+
repo_id = repo_id,
|
56 |
+
repo_type="model",
|
57 |
+
exist_ok=True,
|
58 |
+
token=hf_token
|
59 |
+
)
|
60 |
+
print("Repo created successfully!")
|
61 |
+
|
62 |
+
card = ModelCard.load(model_id)
|
63 |
+
card.data.tags = ["llama-cpp"] if card.data.tags is None else card.data.tags + ["llama-cpp"]
|
64 |
+
card.text = dedent(
|
65 |
+
f"""
|
66 |
+
# {repo_id}
|
67 |
+
This model was converted to GGUF format from [`{model_id}`](https://huggingface.co/{model_id}) using llama.cpp.
|
68 |
+
Refer to the [original model card](https://huggingface.co/{model_id}) for more details on the model.
|
69 |
+
## Use with llama.cpp
|
70 |
+
|
71 |
+
```bash
|
72 |
+
brew install ggerganov/ggerganov/llama.cpp
|
73 |
+
```
|
74 |
+
|
75 |
+
```bash
|
76 |
+
llama-cli --hf-repo {repo_id} --model {qtype.split("/")[-1]} -p "The meaning to life and the universe is "
|
77 |
+
```
|
78 |
+
|
79 |
+
```bash
|
80 |
+
llama-server --hf-repo {repo_id} --model {qtype.split("/")[-1]} -c 2048
|
81 |
+
```
|
82 |
+
"""
|
83 |
+
)
|
84 |
+
card.save(os.path.join(MODEL_NAME, "README-new.md"))
|
85 |
+
|
86 |
+
api.upload_file(
|
87 |
+
path_or_fileobj=qtype,
|
88 |
+
path_in_repo=qtype.split("/")[-1],
|
89 |
+
repo_id=repo_id,
|
90 |
+
repo_type="model",
|
91 |
+
)
|
92 |
+
|
93 |
+
api.upload_file(
|
94 |
+
path_or_fileobj=f"{MODEL_NAME}/README-new.md",
|
95 |
+
path_in_repo="README.md",
|
96 |
+
repo_id=repo_id,
|
97 |
+
repo_type="model",
|
98 |
+
)
|
99 |
+
print("Uploaded successfully!")
|
100 |
+
|
101 |
+
return (
|
102 |
+
f'Find your repo <a href=\'{repo_url}\' target="_blank" style="text-decoration:underline">here</a>',
|
103 |
+
"llama.png",
|
104 |
+
)
|
105 |
+
except Exception as e:
|
106 |
+
return (f"Error: {e}", "error.png")
|
107 |
+
finally:
|
108 |
+
shutil.rmtree(MODEL_NAME, ignore_errors=True)
|
109 |
+
print("Folder cleaned up successfully!")
|
110 |
+
|
111 |
|
112 |
# Create Gradio interface
|
113 |
iface = gr.Interface(
|