Spaces:
Running
Running
import argparse | |
import gradio as gr | |
from llama2_wrapper import LLAMA2_WRAPPER | |
FIM_PREFIX = "<PRE> " | |
FIM_MIDDLE = " <MID>" | |
FIM_SUFFIX = " <SUF>" | |
FIM_INDICATOR = "<FILL_ME>" | |
EOS_STRING = "</s>" | |
EOT_STRING = "<EOT>" | |
def main(): | |
parser = argparse.ArgumentParser() | |
parser.add_argument( | |
"--model_path", | |
type=str, | |
default="./models/codellama-7b-instruct.ggmlv3.Q4_0.bin", | |
help="model path", | |
) | |
parser.add_argument( | |
"--backend_type", | |
type=str, | |
default="llama.cpp", | |
help="Backend options: llama.cpp, gptq, transformers", | |
) | |
parser.add_argument( | |
"--max_tokens", | |
type=int, | |
default=4000, | |
help="Maximum context size.", | |
) | |
parser.add_argument( | |
"--load_in_8bit", | |
type=bool, | |
default=False, | |
help="Whether to use bitsandbytes 8 bit.", | |
) | |
parser.add_argument( | |
"--share", | |
type=bool, | |
default=False, | |
help="Whether to share public for gradio.", | |
) | |
args = parser.parse_args() | |
llama2_wrapper = LLAMA2_WRAPPER( | |
model_path=args.model_path, | |
backend_type=args.backend_type, | |
max_tokens=args.max_tokens, | |
load_in_8bit=args.load_in_8bit, | |
) | |
def generate( | |
prompt, | |
temperature=0.9, | |
max_new_tokens=256, | |
top_p=0.95, | |
repetition_penalty=1.0, | |
): | |
temperature = float(temperature) | |
if temperature < 1e-2: | |
temperature = 1e-2 | |
top_p = float(top_p) | |
fim_mode = False | |
generate_kwargs = dict( | |
temperature=temperature, | |
max_new_tokens=max_new_tokens, | |
top_p=top_p, | |
repetition_penalty=repetition_penalty, | |
stream=True, | |
) | |
if FIM_INDICATOR in prompt: | |
fim_mode = True | |
try: | |
prefix, suffix = prompt.split(FIM_INDICATOR) | |
except: | |
raise ValueError(f"Only one {FIM_INDICATOR} allowed in prompt!") | |
prompt = f"{FIM_PREFIX}{prefix}{FIM_SUFFIX}{suffix}{FIM_MIDDLE}" | |
stream = llama2_wrapper.__call__(prompt, **generate_kwargs) | |
if fim_mode: | |
output = prefix | |
else: | |
output = prompt | |
# for response in stream: | |
# output += response | |
# yield output | |
# return output | |
previous_token = "" | |
for response in stream: | |
if any([end_token in response for end_token in [EOS_STRING, EOT_STRING]]): | |
if fim_mode: | |
output += suffix | |
yield output | |
return output | |
print("output", output) | |
else: | |
return output | |
else: | |
output += response | |
previous_token = response | |
yield output | |
return output | |
examples = [ | |
'def remove_non_ascii(s: str) -> str:\n """ <FILL_ME>\nprint(remove_non_ascii(\'afkdj$$(\'))', | |
"X_train, y_train, X_test, y_test = train_test_split(X, y, test_size=0.1)\n\n# Train a logistic regression model, predict the labels on the test set and compute the accuracy score", | |
"// Returns every other value in the array as a new array.\nfunction everyOther(arr) {", | |
"Poor English: She no went to the market. Corrected English:", | |
"def alternating(list1, list2):\n results = []\n for i in range(min(len(list1), len(list2))):\n results.append(list1[i])\n results.append(list2[i])\n if len(list1) > len(list2):\n <FILL_ME>\n else:\n results.extend(list2[i+1:])\n return results", | |
] | |
def process_example(args): | |
for x in generate(args): | |
pass | |
return x | |
description = """ | |
<div style="text-align: center;"> | |
<h1>Code Llama Playground</h1> | |
</div> | |
<div style="text-align: center;"> | |
<p>This is a demo to complete code with Code Llama. For instruction purposes, please use llama2-webui app.py with CodeLlama-Instruct models. </p> | |
</div> | |
""" | |
with gr.Blocks() as demo: | |
with gr.Column(): | |
gr.Markdown(description) | |
with gr.Row(): | |
with gr.Column(): | |
instruction = gr.Textbox( | |
placeholder="Enter your code here", | |
lines=5, | |
label="Input", | |
elem_id="q-input", | |
) | |
submit = gr.Button("Generate", variant="primary") | |
output = gr.Code(elem_id="q-output", lines=30, label="Output") | |
with gr.Row(): | |
with gr.Column(): | |
with gr.Accordion("Advanced settings", open=False): | |
with gr.Row(): | |
column_1, column_2 = gr.Column(), gr.Column() | |
with column_1: | |
temperature = gr.Slider( | |
label="Temperature", | |
value=0.1, | |
minimum=0.0, | |
maximum=1.0, | |
step=0.05, | |
interactive=True, | |
info="Higher values produce more diverse outputs", | |
) | |
max_new_tokens = gr.Slider( | |
label="Max new tokens", | |
value=256, | |
minimum=0, | |
maximum=8192, | |
step=64, | |
interactive=True, | |
info="The maximum numbers of new tokens", | |
) | |
with column_2: | |
top_p = gr.Slider( | |
label="Top-p (nucleus sampling)", | |
value=0.90, | |
minimum=0.0, | |
maximum=1, | |
step=0.05, | |
interactive=True, | |
info="Higher values sample more low-probability tokens", | |
) | |
repetition_penalty = gr.Slider( | |
label="Repetition penalty", | |
value=1.05, | |
minimum=1.0, | |
maximum=2.0, | |
step=0.05, | |
interactive=True, | |
info="Penalize repeated tokens", | |
) | |
gr.Examples( | |
examples=examples, | |
inputs=[instruction], | |
cache_examples=False, | |
fn=process_example, | |
outputs=[output], | |
) | |
submit.click( | |
generate, | |
inputs=[ | |
instruction, | |
temperature, | |
max_new_tokens, | |
top_p, | |
repetition_penalty, | |
], | |
outputs=[output], | |
) | |
demo.queue(concurrency_count=16).launch(share=args.share) | |
if __name__ == "__main__": | |
main() | |