KolorsPlusPlus / app.py
gokaygokay's picture
kolorsplusplus
4659d74
raw
history blame
8.09 kB
import spaces
import gradio as gr
import torch
from transformers import PaliGemmaForConditionalGeneration, PaliGemmaProcessor, pipeline
import re
import random
import os
from huggingface_hub import snapshot_download
from kolors.pipelines.pipeline_stable_diffusion_xl_chatglm_256 import StableDiffusionXLPipeline
from kolors.models.modeling_chatglm import ChatGLMModel
from kolors.models.tokenization_chatglm import ChatGLMTokenizer
from diffusers import UNet2DConditionModel, AutoencoderKL
from diffusers import EulerDiscreteScheduler
# Initialize models
device = "cuda" if torch.cuda.is_available() else "cpu"
dtype = torch.float16
# Download Kolors model
ckpt_dir = snapshot_download(repo_id="Kwai-Kolors/Kolors")
# Load Kolors models
text_encoder = ChatGLMModel.from_pretrained(os.path.join(ckpt_dir, 'text_encoder'), torch_dtype=dtype).to(device)
tokenizer = ChatGLMTokenizer.from_pretrained(os.path.join(ckpt_dir, 'text_encoder'))
vae = AutoencoderKL.from_pretrained(os.path.join(ckpt_dir, "vae"), revision=None).to(dtype).to(device)
scheduler = EulerDiscreteScheduler.from_pretrained(os.path.join(ckpt_dir, "scheduler"))
unet = UNet2DConditionModel.from_pretrained(os.path.join(ckpt_dir, "unet"), revision=None).to(dtype).to(device)
kolors_pipe = StableDiffusionXLPipeline(
vae=vae,
text_encoder=text_encoder,
tokenizer=tokenizer,
unet=unet,
scheduler=scheduler,
force_zeros_for_empty_prompt=False
).to(device)
kolors_pipe.enable_model_cpu_offload()
# VLM Captioner
vlm_model = PaliGemmaForConditionalGeneration.from_pretrained("gokaygokay/sd3-long-captioner-v2").to(device).eval()
vlm_processor = PaliGemmaProcessor.from_pretrained("gokaygokay/sd3-long-captioner-v2")
# Prompt Enhancer
enhancer_medium = pipeline("summarization", model="gokaygokay/Lamini-Prompt-Enchance", device=device)
enhancer_long = pipeline("summarization", model="gokaygokay/Lamini-Prompt-Enchance-Long", device=device)
MAX_SEED = 2**32 - 1
# VLM Captioner function
def create_captions_rich(image):
prompt = "caption en"
model_inputs = vlm_processor(text=prompt, images=image, return_tensors="pt").to(device)
input_len = model_inputs["input_ids"].shape[-1]
with torch.inference_mode():
generation = vlm_model.generate(**model_inputs, repetition_penalty=1.10, max_new_tokens=256, do_sample=False)
generation = generation[0][input_len:]
decoded = vlm_processor.decode(generation, skip_special_tokens=True)
return modify_caption(decoded)
# Helper function for caption modification
def modify_caption(caption: str) -> str:
prefix_substrings = [
('captured from ', ''),
('captured at ', '')
]
pattern = '|'.join([re.escape(opening) for opening, _ in prefix_substrings])
replacers = {opening: replacer for opening, replacer in prefix_substrings}
def replace_fn(match):
return replacers[match.group(0)]
return re.sub(pattern, replace_fn, caption, count=1, flags=re.IGNORECASE)
# Prompt Enhancer function
def enhance_prompt(input_prompt, model_choice):
if model_choice == "Medium":
result = enhancer_medium("Enhance the description: " + input_prompt)
enhanced_text = result[0]['summary_text']
pattern = r'^.*?of\s+(.*?(?:\.|$))'
match = re.match(pattern, enhanced_text, re.IGNORECASE | re.DOTALL)
if match:
remaining_text = enhanced_text[match.end():].strip()
modified_sentence = match.group(1).capitalize()
enhanced_text = modified_sentence + ' ' + remaining_text
else: # Long
result = enhancer_long("Enhance the description: " + input_prompt)
enhanced_text = result[0]['summary_text']
return enhanced_text
def generate_image(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps):
if randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator(device=device).manual_seed(seed)
image = kolors_pipe(
prompt=prompt,
negative_prompt=negative_prompt,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
width=width,
height=height,
generator=generator
).images[0]
return image, seed
# Gradio Interface
@spaces.GPU
def process_workflow(image, text_prompt, use_vlm, use_enhancer, model_choice, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps):
if use_vlm and image is not None:
prompt = create_captions_rich(image)
else:
prompt = text_prompt
if use_enhancer:
prompt = enhance_prompt(prompt, model_choice)
generated_image, used_seed = generate_image(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps)
return generated_image, prompt, used_seed
custom_css = """
.input-group, .output-group {
border: 1px solid #e0e0e0;
border-radius: 10px;
padding: 20px;
margin-bottom: 20px;
background-color: #f9f9f9;
}
.submit-btn {
background-color: #2980b9 !important;
color: white !important;
}
.submit-btn:hover {
background-color: #3498db !important;
}
"""
title = """<h1 align="center">VLM Captioner + Prompt Enhancer + Kolors Image Generator</h1>
<p><center>
<a href="https://huggingface.co/spaces/gokaygokay/SD3-Long-Captioner-V2" target="_blank">[VLM Model]</a>
<a href="https://huggingface.co/gokaygokay/Lamini-Prompt-Enchance-Long" target="_blank">[Prompt Enhancer Long]</a>
<a href="https://huggingface.co/gokaygokay/Lamini-Prompt-Enchance" target="_blank">[Prompt Enhancer Medium]</a>
<a href="https://huggingface.co/Kwai-Kolors/Kolors" target="_blank">[Kolors Model]</a>
<p align="center">Don't forget to click <b>Use VLM Captioner</b> or <b>Use Prompt Enhancer</b> Buttons!</p>
</center></p>
"""
# Gradio Interface
with gr.Blocks(css=custom_css, theme=gr.themes.Soft(primary_hue="blue", secondary_hue="gray")) as demo:
gr.HTML(title)
with gr.Row():
with gr.Column(scale=1):
with gr.Group(elem_classes="input-group"):
input_image = gr.Image(label="Input Image for VLM")
use_vlm = gr.Checkbox(label="Use VLM Captioner", value=False)
with gr.Group(elem_classes="input-group"):
text_prompt = gr.Textbox(label="Text Prompt")
use_enhancer = gr.Checkbox(label="Use Prompt Enhancer", value=False)
model_choice = gr.Radio(["Medium", "Long"], label="Enhancer Model", value="Long")
with gr.Accordion("Advanced Settings", open=False):
negative_prompt = gr.Textbox(label="Negative Prompt")
seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0)
randomize_seed = gr.Checkbox(label="Randomize Seed", value=True)
width = gr.Slider(label="Width", minimum=512, maximum=2048, step=64, value=1024)
height = gr.Slider(label="Height", minimum=512, maximum=2048, step=64, value=1024)
guidance_scale = gr.Slider(label="Guidance Scale", minimum=1.0, maximum=20.0, step=0.5, value=5.0)
num_inference_steps = gr.Slider(label="Inference Steps", minimum=20, maximum=50, step=1, value=20)
generate_btn = gr.Button("Generate Image", elem_classes="submit-btn")
with gr.Column(scale=1):
with gr.Group(elem_classes="output-group"):
output_image = gr.Image(label="Generated Image")
final_prompt = gr.Textbox(label="Final Prompt Used")
used_seed = gr.Number(label="Seed Used")
generate_btn.click(
fn=process_workflow,
inputs=[
input_image, text_prompt, use_vlm, use_enhancer, model_choice,
negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps
],
outputs=[output_image, final_prompt, used_seed]
)
demo.launch(debug=True)