HuBERT / fairseq /models /nat /nat_crf_transformer.py
aliabd
full working demo
d5175d3
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
from fairseq.models import register_model, register_model_architecture
from fairseq.models.nat import NATransformerModel, base_architecture
from fairseq.modules import DynamicCRF
@register_model("nacrf_transformer")
class NACRFTransformerModel(NATransformerModel):
def __init__(self, args, encoder, decoder):
super().__init__(args, encoder, decoder)
self.crf_layer = DynamicCRF(
num_embedding=len(self.tgt_dict),
low_rank=args.crf_lowrank_approx,
beam_size=args.crf_beam_approx,
)
@property
def allow_ensemble(self):
return False
@staticmethod
def add_args(parser):
NATransformerModel.add_args(parser)
parser.add_argument(
"--crf-lowrank-approx",
type=int,
help="the dimension of low-rank approximation of transition",
)
parser.add_argument(
"--crf-beam-approx",
type=int,
help="the beam size for apporixmating the normalizing factor",
)
parser.add_argument(
"--word-ins-loss-factor",
type=float,
help="weights on NAT loss used to co-training with CRF loss.",
)
def forward(
self, src_tokens, src_lengths, prev_output_tokens, tgt_tokens, **kwargs
):
# encoding
encoder_out = self.encoder(src_tokens, src_lengths=src_lengths, **kwargs)
# length prediction
length_out = self.decoder.forward_length(
normalize=False, encoder_out=encoder_out
)
length_tgt = self.decoder.forward_length_prediction(
length_out, encoder_out, tgt_tokens
)
# decoding
word_ins_out = self.decoder(
normalize=False,
prev_output_tokens=prev_output_tokens,
encoder_out=encoder_out,
)
word_ins_tgt, word_ins_mask = tgt_tokens, tgt_tokens.ne(self.pad)
# compute the log-likelihood of CRF
crf_nll = -self.crf_layer(word_ins_out, word_ins_tgt, word_ins_mask)
crf_nll = (crf_nll / word_ins_mask.type_as(crf_nll).sum(-1)).mean()
return {
"word_ins": {
"out": word_ins_out,
"tgt": word_ins_tgt,
"mask": word_ins_mask,
"ls": self.args.label_smoothing,
"nll_loss": True,
"factor": self.args.word_ins_loss_factor,
},
"word_crf": {"loss": crf_nll},
"length": {
"out": length_out,
"tgt": length_tgt,
"factor": self.decoder.length_loss_factor,
},
}
def forward_decoder(self, decoder_out, encoder_out, decoding_format=None, **kwargs):
output_tokens = decoder_out.output_tokens
output_scores = decoder_out.output_scores
history = decoder_out.history
# execute the decoder and get emission scores
output_masks = output_tokens.ne(self.pad)
word_ins_out = self.decoder(
normalize=False, prev_output_tokens=output_tokens, encoder_out=encoder_out
)
# run viterbi decoding through CRF
_scores, _tokens = self.crf_layer.forward_decoder(word_ins_out, output_masks)
output_tokens.masked_scatter_(output_masks, _tokens[output_masks])
output_scores.masked_scatter_(output_masks, _scores[output_masks])
if history is not None:
history.append(output_tokens.clone())
return decoder_out._replace(
output_tokens=output_tokens,
output_scores=output_scores,
attn=None,
history=history,
)
@register_model_architecture("nacrf_transformer", "nacrf_transformer")
def nacrf_base_architecture(args):
args.crf_lowrank_approx = getattr(args, "crf_lowrank_approx", 32)
args.crf_beam_approx = getattr(args, "crf_beam_approx", 64)
args.word_ins_loss_factor = getattr(args, "word_ins_loss_factor", 0.5)
args.encoder_normalize_before = getattr(args, "encoder_normalize_before", True)
args.decoder_normalize_before = getattr(args, "decoder_normalize_before", True)
base_architecture(args)