HuBERT / fairseq /quantization_utils.py
aliabd
full working demo
d5175d3
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import logging
from fairseq.modules.quantization import pq, quantization_options, scalar
from omegaconf import DictConfig
logger = logging.getLogger(__name__)
def quantize_model_scalar(model, model_cfg: DictConfig):
quant_noise_scalar = getattr(model_cfg, "quant_noise_scalar", 0) or 0
if quant_noise_scalar > 0:
# quantize_model edits the model in place
scalar.quantize_model_(model, p=quant_noise_scalar, bits=8, update_step=1000)
return model
class Quantizer(object):
def __init__(self, config_path, max_epoch, max_update):
try:
import yaml
except ImportError:
raise ImportError("Please install yaml with: pip install yaml")
# parse config
if config_path:
with open(config_path) as config_file:
config = quantization_options.parse_config_yaml(
yaml.safe_load(config_file)
)
else:
config = quantization_options.parse_config_yaml({})
self.n_centroids_config = config["n_centroids"]
self.block_sizes_config = config["block_sizes"]
self.layers_to_quantize = config["layers_to_quantize"]
# We assume that training will run for a fixed number of epochs
# (or updates) and that we should train for equal durations
# between iterations of PQ.
num_iterations = len(self.layers_to_quantize)
if max_epoch > 0:
assert max_epoch % num_iterations == 0, (
"for iterative PQ, --max-epoch (={}) must be evenly divisible by "
"len(layers_to_quantize) (={})".format(max_epoch, num_iterations)
)
self.epoch_schedule = max_epoch // num_iterations
else:
self.epoch_schedule = None
if max_update > 0:
assert max_update % num_iterations == 0, (
"for iterative PQ, --max-update (={}) must be evenly divisible by "
"len(layers_to_quantize) (={})".format(max_update, num_iterations)
)
self.update_schedule = max_update // num_iterations
else:
self.update_schedule = None
assert (self.epoch_schedule is not None) ^ (
self.update_schedule is not None
), "for iterative PQ, cannot specify both --max-update and --max-epoch"
# 0 is a special value for quantization step, which will force
# the first call to begin_epoch() to call step()
self.quantization_step = 0
def set_trainer(self, trainer):
self.trainer = trainer
self.size_tracker = pq.SizeTracker(self.trainer.get_model())
def step(self):
"""Move to the next stage of quantization."""
if self.quantization_step >= len(self.layers_to_quantize):
# Maybe we just finished the last training step or we loaded
# a checkpoint for an iterative PQ model which previously
# finished training. Either way, don't quantize again.
return
logger.info(
"quantizing model (step={}; layers_to_quantize[step]={})".format(
self.quantization_step, self.layers_to_quantize[self.quantization_step]
)
)
quantized_layers = pq.quantize_model_(
self.trainer.get_model(),
self.size_tracker,
self.layers_to_quantize,
self.block_sizes_config,
self.n_centroids_config,
step=self.quantization_step,
)
logger.info("quantized layers: {}".format(quantized_layers))
logger.info(self.size_tracker)
self.quantization_step += 1
# reintialize the Trainer since model parameters have changed
self.trainer.reinitialize()
def begin_epoch(self, epoch):
"""Called at the beginning of each epoch (epochs start at 1)."""
if (
(
self.epoch_schedule is not None
and epoch > 0
and (epoch - 1) % self.epoch_schedule == 0
)
# we always step once in the beginning, even if using
# update-based quantization
or self.quantization_step == 0
):
self.step()
def step_update(self, num_updates):
"""Called at the end of each step."""
if (
self.update_schedule is not None
and num_updates > 0
and num_updates % self.update_schedule == 0
):
self.step()
def state_dict(self):
return {
"n_centroids_config": self.n_centroids_config,
"block_sizes_config": self.block_sizes_config,
"layers_to_quantize": self.layers_to_quantize,
"epoch_schedule": self.epoch_schedule,
"update_schedule": self.update_schedule,
"quantization_step": self.quantization_step,
}
def load_state_dict(self, state_dict):
self.n_centroids_config = state_dict["n_centroids_config"]
self.block_sizes_config = state_dict["block_sizes_config"]
self.layers_to_quantize = state_dict["layers_to_quantize"]
self.epoch_schedule = state_dict["epoch_schedule"]
self.update_schedule = state_dict["update_schedule"]
self.quantization_step = state_dict["quantization_step"]