HuBERT / fairseq /sequence_scorer.py
aliabd
full working demo
d5175d3
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import sys
import torch
from fairseq import utils
class SequenceScorer(object):
"""Scores the target for a given source sentence."""
def __init__(
self,
tgt_dict,
softmax_batch=None,
compute_alignment=False,
eos=None,
symbols_to_strip_from_output=None,
):
self.pad = tgt_dict.pad()
self.eos = tgt_dict.eos() if eos is None else eos
self.softmax_batch = softmax_batch or sys.maxsize
assert self.softmax_batch > 0
self.compute_alignment = compute_alignment
self.symbols_to_strip_from_output = (
symbols_to_strip_from_output.union({self.eos})
if symbols_to_strip_from_output is not None
else {self.eos}
)
@torch.no_grad()
def generate(self, models, sample, **kwargs):
"""Score a batch of translations."""
net_input = sample["net_input"]
def batch_for_softmax(dec_out, target):
# assumes decoder_out[0] is the only thing needed (may not be correct for future models!)
first, rest = dec_out[0], dec_out[1:]
bsz, tsz, dim = first.shape
if bsz * tsz < self.softmax_batch:
yield dec_out, target, True
else:
flat = first.contiguous().view(1, -1, dim)
flat_tgt = target.contiguous().view(flat.shape[:-1])
s = 0
while s < flat.size(1):
e = s + self.softmax_batch
yield (flat[:, s:e],) + rest, flat_tgt[:, s:e], False
s = e
def gather_target_probs(probs, target):
probs = probs.gather(
dim=2,
index=target.unsqueeze(-1),
)
return probs
orig_target = sample["target"]
# compute scores for each model in the ensemble
avg_probs = None
avg_attn = None
for model in models:
model.eval()
decoder_out = model(**net_input)
attn = decoder_out[1] if len(decoder_out) > 1 else None
if type(attn) is dict:
attn = attn.get("attn", None)
batched = batch_for_softmax(decoder_out, orig_target)
probs, idx = None, 0
for bd, tgt, is_single in batched:
sample["target"] = tgt
curr_prob = model.get_normalized_probs(
bd, log_probs=len(models) == 1, sample=sample
).data
if is_single:
probs = gather_target_probs(curr_prob, orig_target)
else:
if probs is None:
probs = curr_prob.new(orig_target.numel())
step = curr_prob.size(0) * curr_prob.size(1)
end = step + idx
tgt_probs = gather_target_probs(
curr_prob.view(tgt.shape + (curr_prob.size(-1),)), tgt
)
probs[idx:end] = tgt_probs.view(-1)
idx = end
sample["target"] = orig_target
probs = probs.view(sample["target"].shape)
if avg_probs is None:
avg_probs = probs
else:
avg_probs.add_(probs)
if attn is not None:
if torch.is_tensor(attn):
attn = attn.data
else:
attn = attn[0]
if avg_attn is None:
avg_attn = attn
else:
avg_attn.add_(attn)
if len(models) > 1:
avg_probs.div_(len(models))
avg_probs.log_()
if avg_attn is not None:
avg_attn.div_(len(models))
bsz = avg_probs.size(0)
hypos = []
start_idxs = sample["start_indices"] if "start_indices" in sample else [0] * bsz
for i in range(bsz):
# remove padding from ref
ref = (
utils.strip_pad(sample["target"][i, start_idxs[i] :], self.pad)
if sample["target"] is not None
else None
)
tgt_len = ref.numel()
avg_probs_i = avg_probs[i][start_idxs[i] : start_idxs[i] + tgt_len]
score_i = avg_probs_i.sum() / tgt_len
if avg_attn is not None:
avg_attn_i = avg_attn[i]
if self.compute_alignment:
alignment = utils.extract_hard_alignment(
avg_attn_i,
sample["net_input"]["src_tokens"][i],
sample["target"][i],
self.pad,
self.eos,
)
else:
alignment = None
else:
avg_attn_i = alignment = None
hypos.append(
[
{
"tokens": ref,
"score": score_i,
"attention": avg_attn_i,
"alignment": alignment,
"positional_scores": avg_probs_i,
}
]
)
return hypos