|
|
|
|
|
|
|
|
|
|
|
import collections |
|
import unittest |
|
|
|
import numpy as np |
|
from fairseq.data import ListDataset, ResamplingDataset |
|
|
|
|
|
class TestResamplingDataset(unittest.TestCase): |
|
def setUp(self): |
|
self.strings = ["ab", "c", "def", "ghij"] |
|
self.weights = [4.0, 2.0, 7.0, 1.5] |
|
self.size_ratio = 2 |
|
self.dataset = ListDataset( |
|
self.strings, np.array([len(s) for s in self.strings]) |
|
) |
|
|
|
def _test_common(self, resampling_dataset, iters): |
|
assert len(self.dataset) == len(self.strings) == len(self.weights) |
|
assert len(resampling_dataset) == self.size_ratio * len(self.strings) |
|
|
|
results = {"ordered_by_size": True, "max_distribution_diff": 0.0} |
|
|
|
totalfreqs = 0 |
|
freqs = collections.defaultdict(int) |
|
|
|
for epoch_num in range(iters): |
|
resampling_dataset.set_epoch(epoch_num) |
|
|
|
indices = resampling_dataset.ordered_indices() |
|
assert len(indices) == len(resampling_dataset) |
|
|
|
prev_size = -1 |
|
|
|
for i in indices: |
|
cur_size = resampling_dataset.size(i) |
|
|
|
assert resampling_dataset[i] == resampling_dataset[i] |
|
|
|
|
|
assert cur_size == len(resampling_dataset[i]) |
|
|
|
freqs[resampling_dataset[i]] += 1 |
|
totalfreqs += 1 |
|
|
|
if prev_size > cur_size: |
|
results["ordered_by_size"] = False |
|
|
|
prev_size = cur_size |
|
|
|
assert set(freqs.keys()) == set(self.strings) |
|
for s, weight in zip(self.strings, self.weights): |
|
freq = freqs[s] / totalfreqs |
|
expected_freq = weight / sum(self.weights) |
|
results["max_distribution_diff"] = max( |
|
results["max_distribution_diff"], abs(expected_freq - freq) |
|
) |
|
|
|
return results |
|
|
|
def test_resampling_dataset_batch_by_size_false(self): |
|
resampling_dataset = ResamplingDataset( |
|
self.dataset, |
|
self.weights, |
|
size_ratio=self.size_ratio, |
|
batch_by_size=False, |
|
seed=0, |
|
) |
|
|
|
results = self._test_common(resampling_dataset, iters=1000) |
|
|
|
|
|
|
|
assert not results["ordered_by_size"] |
|
|
|
|
|
assert results["max_distribution_diff"] < 0.02 |
|
|
|
def test_resampling_dataset_batch_by_size_true(self): |
|
resampling_dataset = ResamplingDataset( |
|
self.dataset, |
|
self.weights, |
|
size_ratio=self.size_ratio, |
|
batch_by_size=True, |
|
seed=0, |
|
) |
|
|
|
results = self._test_common(resampling_dataset, iters=1000) |
|
|
|
|
|
|
|
assert results["ordered_by_size"] |
|
|
|
|
|
assert results["max_distribution_diff"] < 0.02 |
|
|
|
|
|
if __name__ == "__main__": |
|
unittest.main() |
|
|