Spaces:
Sleeping
Sleeping
from __future__ import division | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from torch.autograd import Variable | |
import numpy as np | |
import cv2 | |
import boto3 | |
from io import BytesIO | |
def get_data_s3(filename): | |
ACCESS_KEY = "AKIAUKUH7S3OIVOEIRWY" | |
SECRET_KEY = "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" | |
bucket = "root-models" | |
s3 = boto3.client( "s3" , aws_access_key_id=ACCESS_KEY , aws_secret_access_key=SECRET_KEY ) | |
response = s3.get_object(Bucket=bucket, Key=filename) | |
data = BytesIO( response["Body"].read() ) | |
return data | |
def parse_cfg_url(filename='yolov3.cfg'): | |
data = get_data_s3(filename) | |
lines = data.getvalue().decode().rstrip().lstrip().split('\n') #store the lines in a list | |
lines = [x.rstrip().lstrip() for x in lines] | |
lines = [x for x in lines if len(x) > 0] #get read of the empty lines | |
lines = [x for x in lines if x[0] != '#'] | |
lines = [x.rstrip().lstrip() for x in lines] | |
block = {} | |
blocks = [] | |
for line in lines: | |
# print('line:' , line) | |
if line[0] == "[": #This marks the start of a new block | |
if len(block) != 0: | |
blocks.append(block) | |
block = {} | |
block["type"] = line[1:-1].rstrip() | |
else: | |
key,value = line.split("=") | |
block[key.rstrip()] = value.lstrip() | |
blocks.append(block) | |
# print('blocks : 2 ' , blocks ) | |
return blocks | |
def predict_transform(prediction, inp_dim, anchors, num_classes, CUDA = True): | |
batch_size = prediction.size(0) | |
stride = inp_dim // prediction.size(2) | |
grid_size = inp_dim // stride | |
bbox_attrs = 5 + num_classes | |
num_anchors = len(anchors) | |
anchors = [(a[0]/stride, a[1]/stride) for a in anchors] | |
prediction = prediction.view(batch_size, bbox_attrs*num_anchors, grid_size*grid_size) | |
prediction = prediction.transpose(1,2).contiguous() | |
prediction = prediction.view(batch_size, grid_size*grid_size*num_anchors, bbox_attrs) | |
#Sigmoid the centre_X, centre_Y. and object confidencce | |
prediction[:,:,0] = torch.sigmoid(prediction[:,:,0]) | |
prediction[:,:,1] = torch.sigmoid(prediction[:,:,1]) | |
prediction[:,:,4] = torch.sigmoid(prediction[:,:,4]) | |
#Add the center offsets | |
grid_len = np.arange(grid_size) | |
a,b = np.meshgrid(grid_len, grid_len) | |
x_offset = torch.FloatTensor(a).view(-1,1) | |
y_offset = torch.FloatTensor(b).view(-1,1) | |
if CUDA: | |
x_offset = x_offset.cuda() | |
y_offset = y_offset.cuda() | |
x_y_offset = torch.cat((x_offset, y_offset), 1).repeat(1,num_anchors).view(-1,2).unsqueeze(0) | |
prediction[:,:,:2] += x_y_offset | |
#log space transform height and the width | |
anchors = torch.FloatTensor(anchors) | |
if CUDA: | |
anchors = anchors.cuda() | |
anchors = anchors.repeat(grid_size*grid_size, 1).unsqueeze(0) | |
prediction[:,:,2:4] = torch.exp(prediction[:,:,2:4])*anchors | |
#Softmax the class scores | |
prediction[:,:,5: 5 + num_classes] = torch.sigmoid((prediction[:,:, 5 : 5 + num_classes])) | |
prediction[:,:,:4] *= stride | |
return prediction | |
def write_results(prediction, confidence, num_classes, nms = True, nms_conf = 0.4): | |
conf_mask = (prediction[:,:,4] > confidence).float().unsqueeze(2) | |
prediction = prediction*conf_mask | |
try: | |
ind_nz = torch.nonzero(prediction[:,:,4]).transpose(0,1).contiguous() | |
except: | |
return 0 | |
box_a = prediction.new(prediction.shape) | |
box_a[:,:,0] = (prediction[:,:,0] - prediction[:,:,2]/2) | |
box_a[:,:,1] = (prediction[:,:,1] - prediction[:,:,3]/2) | |
box_a[:,:,2] = (prediction[:,:,0] + prediction[:,:,2]/2) | |
box_a[:,:,3] = (prediction[:,:,1] + prediction[:,:,3]/2) | |
prediction[:,:,:4] = box_a[:,:,:4] | |
batch_size = prediction.size(0) | |
output = prediction.new(1, prediction.size(2) + 1) | |
write = False | |
for ind in range(batch_size): | |
#select the image from the batch | |
image_pred = prediction[ind] | |
#Get the class having maximum score, and the index of that class | |
#Get rid of num_classes softmax scores | |
#Add the class index and the class score of class having maximum score | |
max_conf, max_conf_score = torch.max(image_pred[:,5:5+ num_classes], 1) | |
max_conf = max_conf.float().unsqueeze(1) | |
max_conf_score = max_conf_score.float().unsqueeze(1) | |
seq = (image_pred[:,:5], max_conf, max_conf_score) | |
image_pred = torch.cat(seq, 1) | |
#Get rid of the zero entries | |
non_zero_ind = (torch.nonzero(image_pred[:,4])) | |
image_pred_ = image_pred[non_zero_ind.squeeze(),:].view(-1,7) | |
#Get the various classes detected in the image | |
try: | |
img_classes = unique(image_pred_[:,-1]) | |
except: | |
continue | |
#WE will do NMS classwise | |
for cls in img_classes: | |
#get the detections with one particular class | |
cls_mask = image_pred_*(image_pred_[:,-1] == cls).float().unsqueeze(1) | |
class_mask_ind = torch.nonzero(cls_mask[:,-2]).squeeze() | |
image_pred_class = image_pred_[class_mask_ind].view(-1,7) | |
#sort the detections such that the entry with the maximum objectness | |
#confidence is at the top | |
conf_sort_index = torch.sort(image_pred_class[:,4], descending = True )[1] | |
image_pred_class = image_pred_class[conf_sort_index] | |
idx = image_pred_class.size(0) | |
#if nms has to be done | |
if nms: | |
#For each detection | |
for i in range(idx): | |
#Get the IOUs of all boxes that come after the one we are looking at | |
#in the loop | |
try: | |
ious = bbox_iou(image_pred_class[i].unsqueeze(0), image_pred_class[i+1:]) | |
except ValueError: | |
break | |
except IndexError: | |
break | |
#Zero out all the detections that have IoU > treshhold | |
iou_mask = (ious < nms_conf).float().unsqueeze(1) | |
image_pred_class[i+1:] *= iou_mask | |
#Remove the non-zero entries | |
non_zero_ind = torch.nonzero(image_pred_class[:,4]).squeeze() | |
image_pred_class = image_pred_class[non_zero_ind].view(-1,7) | |
#Concatenate the batch_id of the image to the detection | |
#this helps us identify which image does the detection correspond to | |
#We use a linear straucture to hold ALL the detections from the batch | |
#the batch_dim is flattened | |
#batch is identified by extra batch column | |
batch_ind = image_pred_class.new(image_pred_class.size(0), 1).fill_(ind) | |
seq = batch_ind, image_pred_class | |
if not write: | |
output = torch.cat(seq,1) | |
write = True | |
else: | |
out = torch.cat(seq,1) | |
output = torch.cat((output,out)) | |
try: | |
return output | |
except: | |
return 0 | |
def unique(tensor): | |
tensor_np = tensor.cpu().numpy() | |
unique_np = np.unique(tensor_np) | |
unique_tensor = torch.from_numpy(unique_np) | |
tensor_res = tensor.new(unique_tensor.shape) | |
tensor_res.copy_(unique_tensor) | |
return tensor_res | |
def load_classes_url(namesfile): | |
fp = get_data_s3(namesfile) | |
names = fp.getvalue().decode().split("\n")[:-1] | |
return names | |
def load_classes(namesfile): | |
fp = open(namesfile, "r") | |
names = fp.read().split("\n")[:-1] | |
return names | |
def bbox_iou(box1, box2): | |
""" | |
Returns the IoU of two bounding boxes | |
""" | |
#Get the coordinates of bounding boxes | |
b1_x1, b1_y1, b1_x2, b1_y2 = box1[:,0], box1[:,1], box1[:,2], box1[:,3] | |
b2_x1, b2_y1, b2_x2, b2_y2 = box2[:,0], box2[:,1], box2[:,2], box2[:,3] | |
#get the corrdinates of the intersection rectangle | |
inter_rect_x1 = torch.max(b1_x1, b2_x1) | |
inter_rect_y1 = torch.max(b1_y1, b2_y1) | |
inter_rect_x2 = torch.min(b1_x2, b2_x2) | |
inter_rect_y2 = torch.min(b1_y2, b2_y2) | |
#Intersection area | |
if torch.cuda.is_available(): | |
inter_area = torch.max(inter_rect_x2 - inter_rect_x1 + 1,torch.zeros(inter_rect_x2.shape).cuda())*torch.max(inter_rect_y2 - inter_rect_y1 + 1, torch.zeros(inter_rect_x2.shape).cuda()) | |
else: | |
inter_area = torch.max(inter_rect_x2 - inter_rect_x1 + 1,torch.zeros(inter_rect_x2.shape))*torch.max(inter_rect_y2 - inter_rect_y1 + 1, torch.zeros(inter_rect_x2.shape)) | |
#Union Area | |
b1_area = (b1_x2 - b1_x1 + 1)*(b1_y2 - b1_y1 + 1) | |
b2_area = (b2_x2 - b2_x1 + 1)*(b2_y2 - b2_y1 + 1) | |
iou = inter_area / (b1_area + b2_area - inter_area) | |
return iou | |
def letterbox_image(img, inp_dim): | |
'''resize image with unchanged aspect ratio using padding''' | |
img_w, img_h = img.shape[1], img.shape[0] | |
w, h = inp_dim | |
new_w = int(img_w * min(w/img_w, h/img_h)) | |
new_h = int(img_h * min(w/img_w, h/img_h)) | |
resized_image = cv2.resize(img, (new_w,new_h), interpolation = cv2.INTER_CUBIC) | |
canvas = np.full((inp_dim[1], inp_dim[0], 3), 128) | |
canvas[(h-new_h)//2:(h-new_h)//2 + new_h,(w-new_w)//2:(w-new_w)//2 + new_w, :] = resized_image | |
return canvas | |
def prep_image_org(orig_im, inp_dim): | |
""" | |
Prepare image for inputting to the neural network. | |
Returns a Variable | |
""" | |
# orig_im = cv2.imread(img) | |
dim = orig_im.shape[1], orig_im.shape[0] | |
img = (letterbox_image(orig_im, (inp_dim, inp_dim))) | |
img_ = img[:,:,::-1].transpose((2,0,1)).copy() | |
img_ = torch.from_numpy(img_).float().div(255.0).unsqueeze(0) | |
return img_, orig_im, dim | |
def prep_image(img, inp_dim): | |
""" | |
Prepare image for inputting to the neural network. | |
Returns a Variable | |
""" | |
orig_im = cv2.imread(img) | |
dim = orig_im.shape[1], orig_im.shape[0] | |
img = (letterbox_image(orig_im, (inp_dim, inp_dim))) | |
img_ = img[:,:,::-1].transpose((2,0,1)).copy() | |
img_ = torch.from_numpy(img_).float().div(255.0).unsqueeze(0) | |
return img_, orig_im, dim | |