Spaces:
Build error
Build error
File size: 8,452 Bytes
e88b792 e1cd6af e88b792 e1cd6af c070f8c e88b792 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 |
# Copyright 2021 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import logging
from os import mkdir
from os.path import isdir
from pathlib import Path
import streamlit as st
from data_measurements import dataset_statistics, dataset_utils
from data_measurements import streamlit_utils as st_utils
logs = logging.getLogger(__name__)
logs.setLevel(logging.WARNING)
logs.propagate = False
if not logs.handlers:
Path('./log_files').mkdir(exist_ok=True)
# Logging info to log file
file = logging.FileHandler("./log_files/app.log")
fileformat = logging.Formatter("%(asctime)s:%(message)s")
file.setLevel(logging.INFO)
file.setFormatter(fileformat)
# Logging debug messages to stream
stream = logging.StreamHandler()
streamformat = logging.Formatter("[data_measurements_tool] %(message)s")
stream.setLevel(logging.WARNING)
stream.setFormatter(streamformat)
logs.addHandler(file)
logs.addHandler(stream)
st.set_page_config(
page_title="Demo to showcase dataset metrics",
page_icon="https://huggingface.co/front/assets/huggingface_logo.svg",
layout="wide",
initial_sidebar_state="auto",
)
# colorblind-friendly colors
colors = [
"#332288",
"#117733",
"#882255",
"#AA4499",
"#CC6677",
"#44AA99",
"#DDCC77",
"#88CCEE",
]
CACHE_DIR = dataset_utils.CACHE_DIR
# String names we are using (not coming from the stored dataset).
OUR_TEXT_FIELD = dataset_utils.OUR_TEXT_FIELD
OUR_LABEL_FIELD = dataset_utils.OUR_LABEL_FIELD
TOKENIZED_FIELD = dataset_utils.TOKENIZED_FIELD
EMBEDDING_FIELD = dataset_utils.EMBEDDING_FIELD
LENGTH_FIELD = dataset_utils.LENGTH_FIELD
# TODO: Allow users to specify this.
_MIN_VOCAB_COUNT = 10
_SHOW_TOP_N_WORDS = 10
@st.cache(
hash_funcs={
dataset_statistics.DatasetStatisticsCacheClass: lambda dstats: dstats.cache_path
},
allow_output_mutation=True,
)
def load_or_prepare(ds_args, show_embeddings, use_cache=False):
"""
Takes the dataset arguments from the GUI and uses them to load a dataset from the Hub or, if
a cache for those arguments is available, to load it from the cache.
Args:
ds_args (dict): the dataset arguments defined via the streamlit app GUI
show_embeddings (Bool): whether embeddings should we loaded and displayed for this dataset
use_cache (Bool) : whether the cache is used by default or not
Returns:
dstats: the computed dataset statistics (from the dataset_statistics class)
"""
if not isdir(CACHE_DIR):
logs.warning("Creating cache")
# We need to preprocess everything.
# This should eventually all go into a prepare_dataset CLI
mkdir(CACHE_DIR)
if use_cache:
logs.warning("Using cache")
dstats = dataset_statistics.DatasetStatisticsCacheClass(CACHE_DIR, **ds_args)
logs.warning("Loading Dataset")
dstats.load_or_prepare_dataset(use_cache=use_cache)
logs.warning("Extracting Labels")
dstats.load_or_prepare_labels(use_cache=use_cache)
logs.warning("Computing Text Lengths")
dstats.load_or_prepare_text_lengths(use_cache=use_cache)
logs.warning("Extracting Vocabulary")
dstats.load_or_prepare_vocab(use_cache=use_cache)
logs.warning("Calculating General Statistics...")
dstats.load_or_prepare_general_stats(use_cache=use_cache)
logs.warning("Completed Calculation.")
logs.warning("Calculating Fine-Grained Statistics...")
if show_embeddings:
logs.warning("Loading Embeddings")
dstats.load_or_prepare_embeddings(use_cache=use_cache)
print(dstats.fig_tree)
# TODO: This has now been moved to calculation when the npmi widget is loaded.
logs.warning("Loading Terms for nPMI")
dstats.load_or_prepare_npmi_terms(use_cache=use_cache)
logs.warning("Loading Zipf")
dstats.load_or_prepare_zipf(use_cache=use_cache)
return dstats
def show_column(dstats, ds_name_to_dict, show_embeddings, column_id, use_cache=True):
"""
Function for displaying the elements in the right column of the streamlit app.
Args:
ds_name_to_dict (dict): the dataset name and options in dictionary form
show_embeddings (Bool): whether embeddings should we loaded and displayed for this dataset
column_id (str): what column of the dataset the analysis is done on
use_cache (Bool): whether the cache is used by default or not
Returns:
The function displays the information using the functions defined in the st_utils class.
"""
# Note that at this point we assume we can use cache; default value is True.
# start showing stuff
title_str = f"### Showing{column_id}: {dstats.dset_name} - {dstats.dset_config} - {'-'.join(dstats.text_field)}"
st.markdown(title_str)
logs.info("showing header")
st_utils.expander_header(dstats, ds_name_to_dict, column_id)
logs.info("showing general stats")
st_utils.expander_general_stats(dstats, _SHOW_TOP_N_WORDS, column_id)
st_utils.expander_label_distribution(dstats.label_df, dstats.fig_labels, column_id)
st_utils.expander_text_lengths(
dstats.tokenized_df,
dstats.fig_tok_length,
dstats.avg_length,
dstats.std_length,
OUR_TEXT_FIELD,
LENGTH_FIELD,
column_id,
)
st_utils.expander_text_duplicates(dstats.text_dup_counts_df, column_id)
# We do the loading of these after the others in order to have some time
# to compute while the user works with the details above.
# Uses an interaction; handled a bit differently than other widgets.
logs.info("showing npmi widget")
npmi_stats = dataset_statistics.nPMIStatisticsCacheClass(
dstats, use_cache=use_cache
)
available_terms = npmi_stats.get_available_terms(use_cache=use_cache)
st_utils.npmi_widget(
column_id, available_terms, npmi_stats, _MIN_VOCAB_COUNT, use_cache=use_cache
)
logs.info("showing zipf")
st_utils.expander_zipf(dstats.z, dstats.zipf_fig, column_id)
if show_embeddings:
st_utils.expander_text_embeddings(
dstats.text_dset,
dstats.fig_tree,
dstats.node_list,
dstats.embeddings,
OUR_TEXT_FIELD,
column_id,
)
def main():
""" Sidebar description and selection """
ds_name_to_dict = dataset_utils.get_dataset_info_dicts()
st.title("Data Measurements Tool")
# Get the sidebar details
st_utils.sidebar_header()
# Set up naming, configs, and cache path.
compare_mode = st.sidebar.checkbox("Comparison mode")
# When not doing new development, use the cache.
use_cache = True
# TODO: Better handling of this eg, st.sidebar.checkbox("Show clustering")=
show_embeddings = st.sidebar.checkbox("Show embeddings")
# List of datasets for which embeddings are hard to compute:
if compare_mode:
logs.warning("Using Comparison Mode")
dataset_args_left = st_utils.sidebar_selection(ds_name_to_dict, " A")
dataset_args_right = st_utils.sidebar_selection(ds_name_to_dict, " B")
left_col, _, right_col = st.columns([10, 1, 10])
dstats_left = load_or_prepare(
dataset_args_left, show_embeddings, use_cache=use_cache
)
with left_col:
show_column(dstats_left, ds_name_to_dict, show_embeddings, " A")
dstats_right = load_or_prepare(
dataset_args_right, show_embeddings, use_cache=use_cache
)
with right_col:
show_column(dstats_right, ds_name_to_dict, show_embeddings, " B")
else:
logs.warning("Using Single Dataset Mode")
dataset_args = st_utils.sidebar_selection(ds_name_to_dict, "")
dstats = load_or_prepare(dataset_args, show_embeddings, use_cache=use_cache)
show_column(dstats, ds_name_to_dict, show_embeddings, "")
if __name__ == "__main__":
main() |