File size: 30,026 Bytes
0add2d4
 
fc95975
0add2d4
6303415
 
5d56c36
6303415
4bbaeac
 
f217a73
693f997
0add2d4
4bbaeac
0add2d4
ffdfff7
fc95975
6f25c5c
d1e3e7b
f622ed0
0add2d4
 
611e98e
 
 
 
 
 
 
6f25c5c
 
 
 
0add2d4
6303415
0add2d4
 
 
 
 
 
6f25c5c
 
 
f217a73
6f25c5c
 
 
 
 
 
 
 
 
 
 
 
 
649ea6a
 
 
 
 
 
 
 
 
6303415
611e98e
 
6303415
 
 
 
 
611e98e
5d56c36
 
611e98e
5d56c36
 
 
611e98e
 
 
0add2d4
 
 
 
 
 
 
611e98e
 
 
 
 
 
0add2d4
 
 
611e98e
 
0add2d4
 
 
 
 
693f997
 
0add2d4
 
2c2527f
0add2d4
5d485e5
 
2c2527f
 
 
5d485e5
 
 
 
2c2527f
 
 
 
5d485e5
 
2c2527f
5d485e5
 
0add2d4
 
 
693f997
 
0add2d4
14574d7
ffdfff7
0add2d4
 
 
 
ffdfff7
0add2d4
5d485e5
6303415
0add2d4
ffdfff7
0add2d4
5d485e5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
14574d7
5d485e5
ffdfff7
693f997
5d485e5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5d56c36
 
 
5d485e5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
693f997
0add2d4
5d485e5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ffdfff7
0add2d4
5d485e5
5d56c36
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5d485e5
 
 
 
 
 
 
 
 
 
ffdfff7
f217a73
5d485e5
5d56c36
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5d485e5
 
 
 
 
 
 
 
 
 
0add2d4
 
5d485e5
 
 
 
 
 
 
 
 
 
 
0add2d4
 
5d485e5
 
 
2c2527f
5d485e5
 
 
 
 
 
0add2d4
 
 
693f997
bfbcd60
0add2d4
14574d7
 
0add2d4
2c2527f
 
 
 
 
14574d7
2c2527f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
14574d7
611e98e
2c2527f
 
f924b14
2c2527f
 
 
 
 
 
14574d7
2c2527f
 
 
 
 
 
14574d7
2c2527f
 
 
 
 
 
 
 
14574d7
2c2527f
 
 
 
 
 
693f997
2c2527f
 
 
 
 
 
 
 
14574d7
2c2527f
 
 
 
 
 
14574d7
2c2527f
 
 
 
 
 
14574d7
2c2527f
14574d7
2c2527f
14574d7
2c2527f
 
 
 
 
 
a446a8b
0add2d4
611e98e
 
a446a8b
5d485e5
 
 
 
 
 
 
 
 
 
 
 
 
0add2d4
5d485e5
 
2c2527f
 
 
a446a8b
2c2527f
 
 
 
 
 
a446a8b
2c2527f
 
 
 
0add2d4
2c2527f
 
 
 
 
 
 
 
0add2d4
2c2527f
 
 
 
 
 
 
 
0add2d4
bfbcd60
5d485e5
bfbcd60
 
 
 
 
 
2c2527f
0add2d4
611e98e
 
0add2d4
611e98e
0add2d4
611e98e
0add2d4
611e98e
 
 
 
 
0add2d4
611e98e
 
 
 
 
 
2c2527f
0add2d4
6f25c5c
2c2527f
 
6f25c5c
2c2527f
 
 
 
 
6f25c5c
2c2527f
6f25c5c
2c2527f
 
 
 
 
6f25c5c
2c2527f
bfbcd60
2c2527f
bfbcd60
2c2527f
 
 
 
 
 
 
bfbcd60
2c2527f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0add2d4
 
1bc0c1e
6303415
0add2d4
 
 
 
bfbcd60
6f25c5c
ffdfff7
 
693f997
 
 
07c617e
 
0add2d4
ffdfff7
6f25c5c
 
 
 
 
 
0add2d4
611e98e
 
 
 
 
 
6f25c5c
 
 
 
0add2d4
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
# Run with: streamlit run visualization.py

import streamlit as st

import os

from io import StringIO
import base64
import json
import pandas as pd

pd.options.mode.chained_assignment = None

import numpy as np

import matplotlib.pyplot as plt

from filtering import LoadParameters, ModifyingDocuments, Filtering


class Visualization:
    def __init__(
        self,
        path_instructions,
        path_data,
        lang,
        num_docs,
        num_docs_for_words,
        max_len_text_display,
        lang_dataset_id,
        path_fasttext_model,
        path_sentencepiece_model,
        path_kenlm_model,
    ):
        self.path_instructions = path_instructions
        self.path_data = path_data
        self.lang = lang
        self.num_docs = num_docs
        self.num_docs_for_words = num_docs_for_words
        self.max_len_text_display = max_len_text_display

        self.lang_dataset_id = lang_dataset_id
        self.param = LoadParameters.load_parameters(lang_dataset_id)
        self.stopwords = LoadParameters.load_stopwords(lang_dataset_id)
        self.flagged_words = LoadParameters.load_flagged_words(lang_dataset_id)
        self.model_lang_id = LoadParameters.load_model_lang_id(
            lang_dataset_id, path_fasttext_model
        )
        self.sentencepiece_model = LoadParameters.load_sentencepiece_model(
            lang_dataset_id, path_sentencepiece_model
        )
        self.sentencepiece_model_tok = (
            self.sentencepiece_model if self.param["tokenization"] else None
        )
        self.kenlm_model = LoadParameters.load_kenlm_model(
            lang_dataset_id, path_kenlm_model
        )

    def warning_preamble(self):
        st.markdown(
            "This demo can be a little slow, and only allows you to process up to 5000 documents "
            "for a decent speed. If you want to display up to three times more documents and have "
            "a faster visualization, we invite you to run this "
            "[code](https://github.com/bigscience-workshop/data_tooling/tree/master/ac_dc/visualization) "
            "on your computer."
        )

    def preamble(self):
        def get_binary_file_downloader_html(bin_file, file_label="File"):
            with open(bin_file, "rb") as f:
                data = f.read()
            bin_str = base64.b64encode(data).decode()
            href = f'<a href="data:application/octet-stream;base64,{bin_str}" download="{os.path.basename(bin_file)}">{file_label}</a>'
            return href

        st.markdown(
            "Before diving into this demo, you might want to take a look at how the filtering pipeline looks like in more detail in this "
            + get_binary_file_downloader_html(
                self.path_instructions,
                "pdf",
            )
            + ".",
            unsafe_allow_html=True,
        )

    def open_data(self):
        with open(self.path_data) as json_file:
            data = json.load(json_file)

        self.num_docs = min(self.num_docs, len(data))
        self.num_docs_for_words = min(self.num_docs_for_words, len(data))

        if "words" in data[0]:
            words = [doc["words"] for doc in data[: self.num_docs_for_words]]
            words = [word for doc in words for word in doc]
            self.words = pd.DataFrame(words)
        else:
            self.words = None

        docs = data[: self.num_docs]
        for doc in docs:
            if not (self.words is None):
                del doc["words"]
            if len(doc["text"]) > self.max_len_text_display:
                doc["text"] = (
                    doc["text"][: self.max_len_text_display]
                    + " [...] [THIS LONG TEXT HAS BEEN TRUNCATED FOR DISPLAY REASONS]"
                )
        self.docs_checkpoint = pd.DataFrame(docs)
        self.docs = self.docs_checkpoint

    def set_title(self):
        st.title(f"Filtering visualization")

    @staticmethod
    def plot_hist(dataframe, key, num_bins=50):
        checkbox = st.checkbox(
            "Diplay distribution", value=True, key=f"display_distribution_{key[0]}"
        )
        if checkbox:
            fig, ax = plt.subplots()
            val = dataframe[key[0]].values
            if np.median(val) != 0:
                val = val[
                    abs(val - np.median(val))
                    < 9 * np.median(np.absolute(val - np.median(val)))
                ]
            ax.hist(val, bins=num_bins, density=True)
            ax.set_title(" ".join(key[0].split("_")))
            ax.axvline(x=key[1], color="r", linestyle="dashed")
            st.pyplot(fig)

    def filtering_of_docs(self):
        st.sidebar.subheader("Parameters of the filtering on documents")

        def set_sliders():
            columns = list(self.docs)
            keys = []
            conds = {}

            def get_cond(key, cutoff, max_cutoff):
                if max_cutoff:
                    return self.docs[key] <= cutoff
                return self.docs[key] >= cutoff

            def print_discared_by_cond(cond):
                st.caption(
                    f"{(len(cond) - np.sum(1*cond)) / len(cond) * 100:.2f}% of the total is discarded with this filter."
                )

            if "number_words" in columns:
                with st.sidebar.expander("Number of words"):
                    cutoff_def = "If the number of words of a document is lower than this number, the document is removed."
                    max_nb_words = int(np.max(self.docs["number_words"])) + 1
                    cutoff_min_number_words = st.slider(
                        cutoff_def, 0, min(max_nb_words, 500), 0
                    )
                    new_key = ("number_words", cutoff_min_number_words, False)
                    keys.append(new_key)
                    Visualization.plot_hist(self.docs, new_key)
                    cond_1 = get_cond(new_key[0], new_key[1], new_key[2])
                    print_discared_by_cond(cond_1)

                    cutoff_def = "If the number of words of a document is higher than this number, the document is removed."
                    cutoff_max_number_words = st.slider(
                        cutoff_def, 0, max_nb_words, max_nb_words
                    )
                    new_key = ("number_words", cutoff_max_number_words, True)
                    keys.append(new_key)
                    cond_2 = get_cond(new_key[0], new_key[1], new_key[2])
                    print_discared_by_cond(cond_2)

                    conds["number_words"] = [cond_1, cond_2]

            if "repetitions_ratio" in columns:
                with st.sidebar.expander("Repetitions ratio"):
                    val_repetitions_lengths = list(
                        self.docs["repetitions_ratio"].iloc[0].keys()
                    )
                    default_index = (
                        val_repetitions_lengths.index("10")
                        if "10" in val_repetitions_lengths
                        else 0
                    )
                    label_selectbox = "Length of the repetitions (that will determine the repetitions ratio)."
                    repetitions_length = st.selectbox(
                        label=label_selectbox,
                        options=val_repetitions_lengths,
                        index=default_index,
                    )
                    st.caption(
                        "Choosing a higher or lower number does not mean that the filtering "
                        "is stronger or weaker. Be careful, choosing a low number (below 5 for languages like English) "
                        "tends to associate a high repetitions ratio to very long documents (like book chapters), but with "
                        "few or no repetitions, simply because their length gives them more diversity, and we do "
                        "not want to discard such documents."
                    )
                    self.docs["repetitions_ratio"] = self.docs_checkpoint[
                        "repetitions_ratio"
                    ]
                    for i in range(len(self.docs["repetitions_ratio"])):
                        self.docs["repetitions_ratio"].iloc[i] = self.docs[
                            "repetitions_ratio"
                        ].iloc[i][repetitions_length]

                    cutoff_def = "If the repetitions ratio of a document is higher than this number, the document is removed."
                    cutoff_repetitions_ratio = st.slider(
                        cutoff_def, 0.0, 1.0, 1.0, step=0.01
                    )
                    new_key = (
                        "repetitions_ratio",
                        cutoff_repetitions_ratio,
                        True,
                        repetitions_length,
                    )
                    keys.append(new_key)
                    Visualization.plot_hist(self.docs, new_key)
                    cond = get_cond(new_key[0], new_key[1], new_key[2])
                    print_discared_by_cond(cond)
                    conds["repetitions_ratio"] = [cond]

            if "special_characters_ratio" in columns:
                with st.sidebar.expander("Special characters ratio"):
                    cutoff_def = "If the special characters ratio of a document is higher than this number, the document is removed."
                    cutoff_special_characters_ratio = st.slider(
                        cutoff_def, 0.0, 1.0, 1.0, step=0.01
                    )
                    new_key = (
                        "special_characters_ratio",
                        cutoff_special_characters_ratio,
                        True,
                    )
                    keys.append(new_key)
                    Visualization.plot_hist(self.docs, new_key)
                    cond = get_cond(new_key[0], new_key[1], new_key[2])
                    print_discared_by_cond(cond)
                    conds["special_characters_ratio"] = [cond]

            if "stopwords_ratio" in columns:
                with st.sidebar.expander("Stop words ratio"):
                    stopwords_file = st.file_uploader(
                        "Upload your own list of stop words (one per line). If there is none, the default one is used."
                    )
                    if stopwords_file:
                        new_stopwords = StringIO(
                            stopwords_file.getvalue().decode("utf-8")
                        ).read()
                        new_stopwords = set(new_stopwords.split("\n"))
                        self.docs["stopwords_ratio"] = self.docs_checkpoint[
                            "stopwords_ratio"
                        ]
                        for i in range(len(self.docs["stopwords_ratio"])):
                            self.docs["stopwords_ratio"].iloc[
                                i
                            ] = Filtering.compute_stopwords_ratio(
                                self.docs["text"].iloc[i],
                                self.sentencepiece_model_tok,
                                self.param["strip_characters"],
                                self.param["cond_words_augmentation"],
                                self.param["words_augmentation_group_sizes"],
                                self.param["words_augmentation_join_char"],
                                new_stopwords,
                            )
                    cutoff_def = "If the stop words ratio of a document is lower than this number, the document is removed."
                    cutoff_stopwords_ratio = st.slider(
                        cutoff_def, 0.0, 1.0, 0.0, step=0.01
                    )
                    new_key = ("stopwords_ratio", cutoff_stopwords_ratio, False)
                    keys.append(new_key)
                    Visualization.plot_hist(self.docs, new_key)
                    cond = get_cond(new_key[0], new_key[1], new_key[2])
                    print_discared_by_cond(cond)
                    conds["stopwords_ratio"] = [cond]

            if "flagged_words_ratio" in columns:
                with st.sidebar.expander("Flagged words ratio"):
                    flagged_words_file = st.file_uploader(
                        "Upload your own list of flagged words (one per line). If there is none, the default one is used."
                    )
                    if flagged_words_file:
                        new_flagged_words = StringIO(
                            flagged_words_file.getvalue().decode("utf-8")
                        ).read()
                        new_flagged_words = set(new_flagged_words.split("\n"))
                        self.docs["flagged_words_ratio"] = self.docs_checkpoint[
                            "flagged_words_ratio"
                        ]
                        for i in range(len(self.docs["flagged_words_ratio"])):
                            self.docs["flagged_words_ratio"].iloc[
                                i
                            ] = Filtering.compute_flagged_words_ratio(
                                self.docs["text"].iloc[i],
                                self.sentencepiece_model_tok,
                                self.param["strip_characters"],
                                self.param["cond_words_augmentation"],
                                self.param["words_augmentation_group_sizes"],
                                self.param["words_augmentation_join_char"],
                                new_flagged_words,
                            )
                    cutoff_def = "If the flagged words ratio of a document is higher than this number, the document is removed."
                    cutoff_flagged_words_ratio = st.slider(
                        cutoff_def, 0.0, 1.0, 1.0, step=0.01
                    )
                    new_key = ("flagged_words_ratio", cutoff_flagged_words_ratio, True)
                    keys.append(new_key)
                    Visualization.plot_hist(self.docs, new_key)
                    cond = get_cond(new_key[0], new_key[1], new_key[2])
                    print_discared_by_cond(cond)
                    conds["flagged_words_ratio"] = [cond]

            if "lang_id_score" in columns:
                with st.sidebar.expander("Language ID confidence score"):
                    cutoff_def = "If the confidence score for the language identification prediction of a document is lower than this number, the document is removed."
                    cutoff_lang_id_score = st.slider(
                        cutoff_def, 0.0, 1.0, 0.0, step=0.01
                    )
                    new_key = ("lang_id_score", cutoff_lang_id_score, False)
                    keys.append(new_key)
                    Visualization.plot_hist(self.docs, new_key)
                    cond = get_cond(new_key[0], new_key[1], new_key[2])
                    print_discared_by_cond(cond)
                    conds["lang_id_score"] = [cond]

            if "perplexity_score" in columns:
                with st.sidebar.expander("Perplexity score"):
                    cutoff_def = "If the perplexity score of a document is higher than this number, the document is removed."
                    max_pp = int(np.max(self.docs["perplexity_score"])) + 1
                    cutoff_perplexity_score = st.slider(cutoff_def, 0, max_pp, max_pp)
                    new_key = ("perplexity_score", cutoff_perplexity_score, True)
                    keys.append(new_key)
                    Visualization.plot_hist(self.docs, new_key)
                    cond = get_cond(new_key[0], new_key[1], new_key[2])
                    print_discared_by_cond(cond)
                    conds["perplexity_score"] = [cond]

            return keys, conds

        self.keys, conds = set_sliders()
        self.parameters = self.keys * 1

        all_conds = [subcond for cond in list(conds.values()) for subcond in cond]
        all_conds = np.all(all_conds, axis=0)

        with st.expander(
            f"Filtering on documents, for {self.num_docs} {self.lang} documents"
        ):
            st.header(
                f"Filtering on documents, for {self.num_docs} {self.lang} documents"
            )

            def display_dataset(cond, description):
                displayed_docs = self.docs.loc[cond]
                st.subheader(
                    f"{description}: {len(displayed_docs)} docs ({len(displayed_docs) / self.num_docs * 100:.2f}%)"
                )
                st.markdown(
                    "Click on a column to sort by it, place the cursor on the text to display it."
                )
                st.dataframe(displayed_docs)

            display_dataset(np.invert(all_conds), "Discarded documents")

            # st.subheader("Display discarded documents by filter")
            display_discarded_documents_by_filter = st.checkbox(
                "Display discarded documents by filter"
            )

            if display_discarded_documents_by_filter:
                columns = list(self.docs)

                if "number_words" in columns:
                    cond_filter = np.invert(np.all(conds["number_words"], axis=0))
                    display_dataset(
                        cond_filter,
                        "Discarded documents for the filter on the number of words",
                    )

                if "repetitions_ratio" in columns:
                    cond_filter = np.invert(np.all(conds["repetitions_ratio"], axis=0))
                    display_dataset(
                        cond_filter,
                        "Discarded documents for the filter on the repetitions ratio",
                    )

                if "special_characters_ratio" in columns:
                    cond_filter = np.invert(
                        np.all(conds["special_characters_ratio"], axis=0)
                    )
                    display_dataset(
                        cond_filter,
                        "Discarded documents for the filter on the special characters ratio",
                    )

                if "stopwords_ratio" in columns:
                    cond_filter = np.invert(np.all(conds["stopwords_ratio"], axis=0))
                    display_dataset(
                        cond_filter,
                        "Discarded documents for the filter on the stop words ratio",
                    )

                if "flagged_words_ratio" in columns:
                    cond_filter = np.invert(
                        np.all(conds["flagged_words_ratio"], axis=0)
                    )
                    display_dataset(
                        cond_filter,
                        "Discarded documents for the filter on the flagged words ratio",
                    )

                if "lang_id_score" in columns:
                    cond_filter = np.invert(np.all(conds["lang_id_score"], axis=0))
                    display_dataset(
                        cond_filter,
                        "Discarded documents for the filter on the language identification confidence score",
                    )

                if "perplexity_score" in columns:
                    cond_filter = np.invert(np.all(conds["perplexity_score"], axis=0))
                    display_dataset(
                        cond_filter,
                        "Discarded documents for the filter on the perplexity score",
                    )

            display_dataset(all_conds, "Retained documents")

            st.header("Download data")

            with open(self.path_data) as json_file:
                btn = st.download_button(
                    label="Download data as json",
                    data=json_file,
                    file_name="data.json",
                )

    def filtering_of_words(self):
        if not (self.words is None):
            st.sidebar.subheader("Parameter of the filtering on words")

            with st.sidebar.expander("Length of words"):
                cutoff_def = "If the length of a word is higher than this number, the word is removed."
                max_len_word = min(int(np.max(self.words["len_word"])) + 1, 200)
                cutoff_word = st.slider(cutoff_def, 0, max_len_word, max_len_word)
                new_key = ("len_word", cutoff_word, True)
                self.parameters.append(new_key)
                Visualization.plot_hist(self.words, new_key)

            with st.sidebar.expander("Words with incorrect substrings"):
                incorrect_substrings = st.checkbox(
                    "Remove words with incorrect substrings."
                )
                self.parameters.append(("incorrect_substrings", incorrect_substrings))

                cond_words = self.words["len_word"] <= cutoff_word
                if incorrect_substrings:
                    cond_words = cond_words & np.invert(
                        self.words["incorrect_substring"]
                    )

            with st.expander(
                f"Filtering on words, for {self.num_docs} {self.lang} documents"
            ):
                st.header(
                    f"Filtering on words, for {self.num_docs} {self.lang} documents"
                )

                st.markdown(
                    f"Since the number of words is way larger than the number of documents, "
                    f"we consider in this section words for the first {self.num_docs_for_words} documents only."
                )

                discarded_words = self.words.loc[np.invert(cond_words)]
                st.subheader(
                    f"Discarded words: {len(discarded_words)} words ({len(discarded_words) / len(self.words) * 100:.2f}%)"
                )
                st.markdown(
                    "Click on a column to sort by it, place the cursor on the text to display it."
                )
                st.dataframe(discarded_words)

                retained_words = self.words.loc[cond_words]
                st.subheader(
                    f"Retained words: {len(retained_words)} words ({len(retained_words) / len(self.words) * 100:.2f}%)"
                )
                st.markdown(
                    "Click on a column to sort by it, place the cursor on the text to display it."
                )
                st.dataframe(retained_words)

    def download_parameters(self):
        st.sidebar.subheader("Download parameters")
        btn = st.sidebar.download_button(
            label="Download current parameters as json",
            data=json.dumps(self.parameters),
            file_name=f"parameters_{self.lang_dataset_id}.json",
        )

    """
    def plot_zipf_law(self):
        if not (self.words is None):
            st.header("Zipf's Law")

            display_zipf_law = st.checkbox("Display Zipf's Law")

            if display_zipf_law:

                freq_words = {}
                for _, row in self.words.iterrows():
                    freq_words[row["word"]] = freq_words.get(row["word"], 0) + 1
                freq_words = np.array(list(freq_words.values()))
                freq_words = -np.sort(-freq_words)

                fig, ax = plt.subplots()
                ax.loglog(freq_words)
                ax.set_title("Zipf's Law")
                ax.set_xlabel("$i$-th most frequent word")
                ax.set_ylabel("frequency in the documents")
                st.pyplot(fig)
    """

    def analyse_personal_doc(self):
        with st.expander("Analyse your own document"):
            st.header("Analyse your own document")

            personal_doc = st.text_area(
                label="Paste here the document you want to analyse",
                value="",
                max_chars=10000,
            )

            is_discarded = False

            def is_doc_discarded(key, score):
                if key[2]:  # max cutoff
                    return score > key[1]
                else:
                    return score < key[1]

            if personal_doc:

                st.markdown("Statistics of the document:")

                for key in self.keys:
                    if key[0] == "number_words":
                        words = ModifyingDocuments.get_words_from_document(
                            personal_doc,
                            self.sentencepiece_model_tok,
                            lower_case=False,
                            strip_characters=self.param["strip_characters"],
                        )
                        if key[2]:
                            st.markdown(f"Number of words: {len(words)}")
                        if is_doc_discarded(key, len(words)):
                            is_discarded = True

                    elif key[0] == "repetitions_ratio":
                        repetitions_ratio = Filtering.compute_repetitions_ratio(
                            personal_doc, int(key[3])
                        )
                        repetitions_ratio = round(repetitions_ratio, 3)
                        st.markdown(f"Repetitions ratio: {repetitions_ratio}")
                        if is_doc_discarded(key, repetitions_ratio):
                            is_discarded = True

                    elif key[0] == "special_characters_ratio":
                        special_characters_ratio = (
                            Filtering.compute_special_characters_ratio(
                                personal_doc, self.param["special_characters"]
                            )
                        )
                        special_characters_ratio = round(special_characters_ratio, 3)
                        st.markdown(
                            f"Special characters ratio: {special_characters_ratio}"
                        )
                        if is_doc_discarded(key, special_characters_ratio):
                            is_discarded = True

                    elif key[0] == "stopwords_ratio":
                        stopwords_ratio = Filtering.compute_stopwords_ratio(
                            personal_doc,
                            self.sentencepiece_model_tok,
                            self.param["strip_characters"],
                            self.param["cond_words_augmentation"],
                            self.param["words_augmentation_group_sizes"],
                            self.param["words_augmentation_join_char"],
                            self.stopwords,
                        )
                        stopwords_ratio = round(stopwords_ratio, 3)
                        st.markdown(f"Stop words ratio: {stopwords_ratio}")
                        if is_doc_discarded(key, stopwords_ratio):
                            is_discarded = True

                    elif key[0] == "flagged_words_ratio":
                        flagged_words_ratio = Filtering.compute_flagged_words_ratio(
                            personal_doc,
                            self.sentencepiece_model_tok,
                            self.param["strip_characters"],
                            self.param["cond_words_augmentation"],
                            self.param["words_augmentation_group_sizes"],
                            self.param["words_augmentation_join_char"],
                            self.flagged_words,
                        )
                        flagged_words_ratio = round(flagged_words_ratio, 3)
                        st.markdown(f"Flagged words ratio: {flagged_words_ratio}")
                        if is_doc_discarded(key, flagged_words_ratio):
                            is_discarded = True

                    elif key[0] == "lang_id_score":
                        (
                            lang_pred_dataset_id,
                            lang_id_score,
                        ) = Filtering.compute_lang_id_pred_score(
                            personal_doc, self.model_lang_id
                        )
                        lang_id_score = round(lang_id_score, 3)
                        st.markdown(
                            f"Language identification confidence score: {lang_id_score}"
                        )
                        if is_doc_discarded(key, flagged_words_ratio) or (
                            self.lang_dataset_id != lang_pred_dataset_id
                        ):
                            is_discarded = True

                    elif key[0] == "perplexity_score":
                        perplexity_score = Filtering.compute_perplexity_score(
                            personal_doc,
                            self.sentencepiece_model,
                            self.kenlm_model,
                        )
                        perplexity_score = round(perplexity_score, 3)
                        st.markdown(f"Perplexity score: {perplexity_score}")
                        if is_doc_discarded(key, perplexity_score):
                            is_discarded = True

                is_discarded = "" if is_discarded else "not "
                st.markdown(
                    f"With the current filtering parameters, this document **is {is_discarded}discarded**."
                )

    def visualization(self):
        self.warning_preamble()
        self.preamble()
        self.open_data()
        self.set_title()
        self.filtering_of_docs()
        self.filtering_of_words()
        self.download_parameters()
        self.analyse_personal_doc()


path_instructions = "./explanation_filtering_pipeline.pdf"
path_data = "./en_examples_with_stats.json"
lang = "English"
num_docs = 5000
num_docs_for_words = 500
max_len_text_display = 10000

# Only useful for analyse_personal_doc
lang_dataset_id = "en"
path_fasttext_model = "./lid.176.bin"
path_sentencepiece_model = "./en.sp.model"
path_kenlm_model = "./en.arpa.bin"

visualization = Visualization(
    path_instructions,
    path_data,
    lang,
    num_docs,
    num_docs_for_words,
    max_len_text_display,
    lang_dataset_id,
    path_fasttext_model,
    path_sentencepiece_model,
    path_kenlm_model,
)
visualization.visualization()