Spaces:
Runtime error
Runtime error
File size: 6,674 Bytes
11dad4e 312a92e 0bccd0d 9d6732b 11dad4e bb41be0 11dad4e bb41be0 11dad4e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 |
#!/usr/bin/env python
from __future__ import annotations
import argparse
import functools
import io
import os
import pathlib
import tarfile
import deepdanbooru as dd
import gradio as gr
import huggingface_hub
import numpy as np
import PIL.Image
import tensorflow as tf
from huggingface_hub import hf_hub_download
TITLE = 'TADNE Image Search with DeepDanbooru'
DESCRIPTION = '''The original TADNE site is https://thisanimedoesnotexist.ai/.
This app shows images similar to the query image from images generated
by the TADNE model with seed 0-99999.
Here, image similarity is measured by the L2 distance of the intermediate
features by the [DeepDanbooru](https://github.com/KichangKim/DeepDanbooru)
model.
The resolution of the output images in this app is 128x128, but you can
check the original 512x512 images from URLs like
https://thisanimedoesnotexist.ai/slider.html?seed=10000 using the output seeds.
Expected execution time on Hugging Face Spaces: 25s
Related Apps:
- [TADNE](https://huggingface.co/spaces/hysts/TADNE)
- [TADNE Image Viewer](https://huggingface.co/spaces/hysts/TADNE-image-viewer)
- [TADNE Image Selector](https://huggingface.co/spaces/hysts/TADNE-image-selector)
- [TADNE Interpolation](https://huggingface.co/spaces/hysts/TADNE-interpolation)
'''
ARTICLE = None
TOKEN = os.environ['TOKEN']
def parse_args() -> argparse.Namespace:
parser = argparse.ArgumentParser()
parser.add_argument('--theme', type=str)
parser.add_argument('--live', action='store_true')
parser.add_argument('--share', action='store_true')
parser.add_argument('--port', type=int)
parser.add_argument('--disable-queue',
dest='enable_queue',
action='store_false')
parser.add_argument('--allow-flagging', type=str, default='never')
return parser.parse_args()
def download_image_tarball(size: int, dirname: str) -> pathlib.Path:
path = hf_hub_download('hysts/TADNE-sample-images',
f'{size}/{dirname}.tar',
repo_type='dataset',
use_auth_token=TOKEN)
return path
def load_deepdanbooru_predictions(dirname: str) -> np.ndarray:
path = hf_hub_download(
'hysts/TADNE-sample-images',
f'prediction_results/deepdanbooru/intermediate_features/{dirname}.npy',
repo_type='dataset',
use_auth_token=TOKEN)
return np.load(path)
def load_sample_image_paths() -> list[pathlib.Path]:
image_dir = pathlib.Path('images')
if not image_dir.exists():
dataset_repo = 'hysts/sample-images-TADNE'
path = huggingface_hub.hf_hub_download(dataset_repo,
'images.tar.gz',
repo_type='dataset',
use_auth_token=TOKEN)
with tarfile.open(path) as f:
f.extractall()
return sorted(image_dir.glob('*'))
def create_model() -> tf.keras.Model:
path = huggingface_hub.hf_hub_download('hysts/DeepDanbooru',
'model-resnet_custom_v3.h5',
use_auth_token=TOKEN)
model = tf.keras.models.load_model(path)
model = tf.keras.Model(model.input, model.layers[-4].output)
layer = tf.keras.layers.GlobalAveragePooling2D()
model = tf.keras.Sequential([model, layer])
return model
def predict(image: PIL.Image.Image, model: tf.keras.Model) -> np.ndarray:
_, height, width, _ = model.input_shape
image = np.asarray(image)
image = tf.image.resize(image,
size=(height, width),
method=tf.image.ResizeMethod.AREA,
preserve_aspect_ratio=True)
image = image.numpy()
image = dd.image.transform_and_pad_image(image, width, height)
image = image / 255.
features = model.predict(image[None, ...])[0]
features = features.astype(float)
return features
def run(
image: PIL.Image.Image,
nrows: int,
ncols: int,
image_size: int,
dirname: str,
tarball_path: pathlib.Path,
deepdanbooru_predictions: np.ndarray,
model: tf.keras.Model,
) -> tuple[np.ndarray, np.ndarray]:
features = predict(image, model)
distances = ((deepdanbooru_predictions - features)**2).sum(axis=1)
image_indices = np.argsort(distances)
seeds = []
images = []
with tarfile.TarFile(tarball_path) as tar_file:
for index in range(nrows * ncols):
image_index = image_indices[index]
seeds.append(image_index)
member = tar_file.getmember(f'{dirname}/{image_index:07d}.jpg')
with tar_file.extractfile(member) as f:
data = io.BytesIO(f.read())
image = PIL.Image.open(data)
image = np.asarray(image)
images.append(image)
res = np.asarray(images).reshape(nrows, ncols, image_size, image_size,
3).transpose(0, 2, 1, 3, 4).reshape(
nrows * image_size,
ncols * image_size, 3)
seeds = np.asarray(seeds).reshape(nrows, ncols)
return res, seeds
def main():
args = parse_args()
image_size = 128
dirname = '0-99999'
tarball_path = download_image_tarball(image_size, dirname)
deepdanbooru_predictions = load_deepdanbooru_predictions(dirname)
model = create_model()
image_paths = load_sample_image_paths()
examples = [[path.as_posix(), 2, 5] for path in image_paths]
func = functools.partial(
run,
image_size=image_size,
dirname=dirname,
tarball_path=tarball_path,
deepdanbooru_predictions=deepdanbooru_predictions,
model=model,
)
func = functools.update_wrapper(func, run)
gr.Interface(
func,
[
gr.inputs.Image(type='pil', label='Input'),
gr.inputs.Slider(1, 10, step=1, default=2, label='Number of Rows'),
gr.inputs.Slider(
1, 10, step=1, default=5, label='Number of Columns'),
],
[
gr.outputs.Image(type='numpy', label='Output'),
gr.outputs.Dataframe(type='numpy', label='Seed'),
],
examples=examples,
title=TITLE,
description=DESCRIPTION,
article=ARTICLE,
theme=args.theme,
allow_flagging=args.allow_flagging,
live=args.live,
).launch(
enable_queue=args.enable_queue,
server_port=args.port,
share=args.share,
)
if __name__ == '__main__':
main()
|