Spaces:
Runtime error
Runtime error
#!/usr/bin/env python | |
from __future__ import annotations | |
import argparse | |
import functools | |
import io | |
import os | |
import pathlib | |
import tarfile | |
import deepdanbooru as dd | |
import gradio as gr | |
import huggingface_hub | |
import numpy as np | |
import PIL.Image | |
import tensorflow as tf | |
from huggingface_hub import hf_hub_download | |
TITLE = 'TADNE Image Search with DeepDanbooru' | |
DESCRIPTION = '''The original TADNE site is https://thisanimedoesnotexist.ai/. | |
This app shows images similar to the query image from images generated | |
by the TADNE model with seed 0-99999. | |
Here, image similarity is measured by the L2 distance of the intermediate | |
features by the [DeepDanbooru](https://github.com/KichangKim/DeepDanbooru) | |
model. | |
Known issues: | |
- The `Seed` table in the output doesn't refresh properly in gradio 2.9.1. | |
https://github.com/gradio-app/gradio/issues/921 | |
''' | |
ARTICLE = None | |
TOKEN = os.environ['TOKEN'] | |
def parse_args() -> argparse.Namespace: | |
parser = argparse.ArgumentParser() | |
parser.add_argument('--theme', type=str, default='dark-grass') | |
parser.add_argument('--live', action='store_true') | |
parser.add_argument('--share', action='store_true') | |
parser.add_argument('--port', type=int) | |
parser.add_argument('--disable-queue', | |
dest='enable_queue', | |
action='store_false') | |
parser.add_argument('--allow-flagging', type=str, default='never') | |
parser.add_argument('--allow-screenshot', action='store_true') | |
return parser.parse_args() | |
def download_image_tarball(size: int, dirname: str) -> pathlib.Path: | |
path = hf_hub_download('hysts/TADNE-sample-images', | |
f'{size}/{dirname}.tar', | |
repo_type='dataset', | |
use_auth_token=TOKEN) | |
return path | |
def load_deepdanbooru_predictions(dirname: str) -> np.ndarray: | |
path = hf_hub_download( | |
'hysts/TADNE-sample-images', | |
f'prediction_results/deepdanbooru/intermediate_features/{dirname}.npy', | |
repo_type='dataset', | |
use_auth_token=TOKEN) | |
return np.load(path) | |
def load_sample_image_paths() -> list[pathlib.Path]: | |
image_dir = pathlib.Path('images') | |
if not image_dir.exists(): | |
dataset_repo = 'hysts/sample-images-TADNE' | |
path = huggingface_hub.hf_hub_download(dataset_repo, | |
'images.tar.gz', | |
repo_type='dataset', | |
use_auth_token=TOKEN) | |
with tarfile.open(path) as f: | |
f.extractall() | |
return sorted(image_dir.glob('*')) | |
def create_model() -> tf.keras.Model: | |
path = huggingface_hub.hf_hub_download('hysts/DeepDanbooru', | |
'model-resnet_custom_v3.h5', | |
use_auth_token=TOKEN) | |
model = tf.keras.models.load_model(path) | |
model = tf.keras.Model(model.input, model.layers[-4].output) | |
layer = tf.keras.layers.GlobalAveragePooling2D() | |
model = tf.keras.Sequential([model, layer]) | |
return model | |
def predict(image: PIL.Image.Image, model: tf.keras.Model) -> np.ndarray: | |
_, height, width, _ = model.input_shape | |
image = np.asarray(image) | |
image = tf.image.resize(image, | |
size=(height, width), | |
method=tf.image.ResizeMethod.AREA, | |
preserve_aspect_ratio=True) | |
image = image.numpy() | |
image = dd.image.transform_and_pad_image(image, width, height) | |
image = image / 255. | |
features = model.predict(image[None, ...])[0] | |
features = features.astype(float) | |
return features | |
def run( | |
image: PIL.Image.Image, | |
nrows: int, | |
ncols: int, | |
image_size: int, | |
dirname: str, | |
tarball_path: pathlib.Path, | |
deepdanbooru_predictions: np.ndarray, | |
model: tf.keras.Model, | |
) -> tuple[np.ndarray, np.ndarray]: | |
features = predict(image, model) | |
distances = ((deepdanbooru_predictions - features)**2).sum(axis=1) | |
image_indices = np.argsort(distances) | |
seeds = [] | |
images = [] | |
with tarfile.TarFile(tarball_path) as tar_file: | |
for index in range(nrows * ncols): | |
image_index = image_indices[index] | |
seeds.append(image_index) | |
member = tar_file.getmember(f'{dirname}/{image_index:07d}.jpg') | |
with tar_file.extractfile(member) as f: | |
data = io.BytesIO(f.read()) | |
image = PIL.Image.open(data) | |
image = np.asarray(image) | |
images.append(image) | |
res = np.asarray(images).reshape(nrows, ncols, image_size, image_size, | |
3).transpose(0, 2, 1, 3, 4).reshape( | |
nrows * image_size, | |
ncols * image_size, 3) | |
seeds = np.asarray(seeds).reshape(nrows, ncols) | |
return res, seeds | |
def main(): | |
gr.close_all() | |
args = parse_args() | |
image_size = 128 | |
dirname = '0-99999' | |
tarball_path = download_image_tarball(image_size, dirname) | |
deepdanbooru_predictions = load_deepdanbooru_predictions(dirname) | |
model = create_model() | |
image_paths = load_sample_image_paths() | |
examples = [[path.as_posix(), 2, 5] for path in image_paths] | |
func = functools.partial( | |
run, | |
image_size=image_size, | |
dirname=dirname, | |
tarball_path=tarball_path, | |
deepdanbooru_predictions=deepdanbooru_predictions, | |
model=model, | |
) | |
func = functools.update_wrapper(func, run) | |
gr.Interface( | |
func, | |
[ | |
gr.inputs.Image(type='pil', label='Input'), | |
gr.inputs.Slider(1, 10, step=1, default=2, label='Number of Rows'), | |
gr.inputs.Slider( | |
1, 10, step=1, default=5, label='Number of Columns'), | |
], | |
[ | |
gr.outputs.Image(type='numpy', label='Output'), | |
gr.outputs.Dataframe(type='numpy', label='Seed'), | |
], | |
examples=examples, | |
title=TITLE, | |
description=DESCRIPTION, | |
article=ARTICLE, | |
theme=args.theme, | |
allow_screenshot=args.allow_screenshot, | |
allow_flagging=args.allow_flagging, | |
live=args.live, | |
).launch( | |
enable_queue=args.enable_queue, | |
server_port=args.port, | |
share=args.share, | |
) | |
if __name__ == '__main__': | |
main() | |