Spaces:
Running
Running
import gradio as gr | |
from huggingface_hub import InferenceClient | |
import matplotlib.pyplot as plt | |
from PIL import Image | |
from rdkit.Chem import Descriptors, QED, Draw | |
from rdkit.Chem.Crippen import MolLogP | |
import pandas as pd | |
from rdkit.Contrib.SA_Score import sascorer | |
from rdkit.Chem import DataStructs, AllChem | |
from transformers import BartForConditionalGeneration, AutoTokenizer, AutoModel | |
from transformers.modeling_outputs import BaseModelOutput | |
import selfies as sf | |
from rdkit import Chem | |
import torch | |
import numpy as np | |
import umap | |
import pickle | |
import xgboost as xgb | |
from sklearn.svm import SVR | |
from sklearn.linear_model import LinearRegression | |
from sklearn.kernel_ridge import KernelRidge | |
import json | |
import os | |
os.environ["OMP_MAX_ACTIVE_LEVELS"] = "1" | |
# my_theme = gr.Theme.from_hub("ysharma/steampunk") | |
# my_theme = gr.themes.Glass() | |
""" | |
# カスタムテーマ設定 | |
theme = gr.themes.Default().set( | |
body_background_fill="#000000", # 背景色を黒に設定 | |
text_color="#FFFFFF", # テキスト色を白に設定 | |
) | |
""" | |
""" | |
import sys | |
sys.path.append("models") | |
sys.path.append("../models") | |
sys.path.append("../")""" | |
# Get the current file's directory | |
base_dir = os.path.dirname(__file__) | |
print("Base Dir : ", base_dir) | |
import models.fm4m as fm4m | |
# Function to display molecule image from SMILES | |
def smiles_to_image(smiles): | |
mol = Chem.MolFromSmiles(smiles) | |
if mol: | |
img = Draw.MolToImage(mol) | |
return img | |
return None | |
# Function to get canonical SMILES | |
def get_canonical_smiles(smiles): | |
mol = Chem.MolFromSmiles(smiles) | |
if mol: | |
return Chem.MolToSmiles(mol, canonical=True) | |
return None | |
# Dictionary for SMILES strings and corresponding images (you can replace with your actual image paths) | |
smiles_image_mapping = { | |
"Mol 1": {"smiles": "C=C(C)CC(=O)NC[C@H](CO)NC(=O)C=Cc1ccc(C)c(Cl)c1", "image": "img/img1.png"}, | |
# Example SMILES for ethanol | |
"Mol 2": {"smiles": "C=CC1(CC(=O)NC[C@@H](CCCC)NC(=O)c2cc(Cl)cc(Br)c2)CC1", "image": "img/img2.png"}, | |
# Example SMILES for butane | |
"Mol 3": {"smiles": "C=C(C)C[C@H](NC(C)=O)C(=O)N1CC[C@H](NC(=O)[C@H]2C[C@@]2(C)Br)C(C)(C)C1", | |
"image": "img/img3.png"}, # Example SMILES for ethylamine | |
"Mol 4": {"smiles": "C=C1CC(CC(=O)N[C@H]2CCN(C(=O)c3ncccc3SC)C23CC3)C1", "image": "img/img4.png"}, | |
# Example SMILES for diethyl ether | |
"Mol 5": {"smiles": "C=CCS[C@@H](C)CC(=O)OCC", "image": "img/img5.png"} # Example SMILES for chloroethane | |
} | |
datasets = ["BACE", "ESOL", "Custom Dataset"] | |
models_enabled = ["SELFIES-TED", "MHG-GED", "MolFormer", "SMI-TED"] | |
fusion_available = ["Concat"] | |
global log_df | |
log_df = pd.DataFrame(columns=["Selected Models", "Dataset", "Task", "Result"]) | |
def log_selection(models, dataset, task_type, result, log_df): | |
# Append the new entry to the DataFrame | |
new_entry = {"Selected Models": str(models), "Dataset": dataset, "Task": task_type, "Result": result} | |
updated_log_df = log_df.append(new_entry, ignore_index=True) | |
return updated_log_df | |
# Function to handle evaluation and logging | |
def save_rep(models, dataset, task_type, eval_output): | |
return | |
def evaluate_and_log(models, dataset, task_type, eval_output): | |
task_dic = {'Classification': 'CLS', 'Regression': 'RGR'} | |
result = f"{eval_output}"#display_eval(models, dataset, task_type, fusion_type=None) | |
result = result.replace(" Score", "") | |
new_entry = {"Selected Models": str(models), "Dataset": dataset, "Task": task_dic[task_type], "Result": result} | |
new_entry_df = pd.DataFrame([new_entry]) | |
log_df = pd.read_csv('log.csv', index_col=0) | |
log_df = pd.concat([new_entry_df, log_df]) | |
log_df.to_csv('log.csv') | |
return log_df | |
log_df = pd.read_csv('log.csv', index_col=0) | |
# Load images for selection | |
def load_image(path): | |
return Image.open(smiles_image_mapping[path]["image"])# Image.1open(path) | |
# Function to handle image selection | |
def handle_image_selection(image_key): | |
smiles = smiles_image_mapping[image_key]["smiles"] | |
mol_image = smiles_to_image(smiles) | |
return smiles, mol_image | |
def calculate_properties(smiles): | |
mol = Chem.MolFromSmiles(smiles) | |
if mol: | |
qed = QED.qed(mol) | |
logp = MolLogP(mol) | |
sa = sascorer.calculateScore(mol) | |
wt = Descriptors.MolWt(mol) | |
return qed, sa, logp, wt | |
return None, None, None, None | |
# Function to calculate Tanimoto similarity | |
def calculate_tanimoto(smiles1, smiles2): | |
mol1 = Chem.MolFromSmiles(smiles1) | |
mol2 = Chem.MolFromSmiles(smiles2) | |
if mol1 and mol2: | |
# fp1 = FingerprintMols.FingerprintMol(mol1) | |
# fp2 = FingerprintMols.FingerprintMol(mol2) | |
fp1 = AllChem.GetMorganFingerprintAsBitVect(mol1, 2) | |
fp2 = AllChem.GetMorganFingerprintAsBitVect(mol2, 2) | |
return round(DataStructs.FingerprintSimilarity(fp1, fp2), 2) | |
return None | |
#with open("models/selfies_model/bart-2908.pickle", "rb") as input_file: | |
# gen_model, gen_tokenizer = pickle.load(input_file) | |
gen_tokenizer = AutoTokenizer.from_pretrained("ibm/materials.selfies-ted") | |
gen_model = BartForConditionalGeneration.from_pretrained("ibm/materials.selfies-ted") | |
def generate(latent_vector, mask): | |
encoder_outputs = BaseModelOutput(latent_vector) | |
decoder_output = gen_model.generate(encoder_outputs=encoder_outputs, attention_mask=mask, | |
max_new_tokens=64, do_sample=True, top_k=5, top_p=0.95, num_return_sequences=1) | |
selfies = gen_tokenizer.batch_decode(decoder_output, skip_special_tokens=True) | |
outs = [] | |
for i in selfies: | |
outs.append(sf.decoder(i.replace("] [", "]["))) | |
return outs | |
def perturb_latent(latent_vecs, noise_scale=0.5): | |
modified_vec = torch.tensor(np.random.uniform(0, 1, latent_vecs.shape) * noise_scale, | |
dtype=torch.float32) + latent_vecs | |
return modified_vec | |
def encode(selfies): | |
encoding = gen_tokenizer(selfies, return_tensors='pt', max_length=128, truncation=True, padding='max_length') | |
input_ids = encoding['input_ids'] | |
attention_mask = encoding['attention_mask'] | |
outputs = gen_model.model.encoder(input_ids=input_ids, attention_mask=attention_mask) | |
model_output = outputs.last_hidden_state | |
"""input_mask_expanded = attention_mask.unsqueeze(-1).expand(model_output.size()).float() | |
sum_embeddings = torch.sum(model_output * input_mask_expanded, 1) | |
sum_mask = torch.clamp(input_mask_expanded.sum(1), min=1e-9) | |
model_output = sum_embeddings / sum_mask""" | |
return model_output, attention_mask | |
# Function to generate canonical SMILES and molecule image | |
def generate_canonical(smiles): | |
s = sf.encoder(smiles) | |
selfie = s.replace("][", "] [") | |
latent_vec, mask = encode([selfie]) | |
gen_mol = None | |
for i in range(5, 51): | |
noise = i / 10 | |
perturbed_latent = perturb_latent(latent_vec, noise_scale=noise) | |
gen = generate(perturbed_latent, mask) | |
gen_mol = Chem.MolToSmiles(Chem.MolFromSmiles(gen[0])) | |
if gen_mol != Chem.MolToSmiles(Chem.MolFromSmiles(smiles)): break | |
if gen_mol: | |
# Calculate properties for ref and gen molecules | |
ref_properties = calculate_properties(smiles) | |
gen_properties = calculate_properties(gen_mol) | |
tanimoto_similarity = calculate_tanimoto(smiles, gen_mol) | |
# Prepare the table with ref mol and gen mol | |
data = { | |
"Property": ["QED", "SA", "LogP", "Mol Wt", "Tanimoto Similarity"], | |
"Reference Mol": [ref_properties[0], ref_properties[1], ref_properties[2], ref_properties[3], | |
tanimoto_similarity], | |
"Generated Mol": [gen_properties[0], gen_properties[1], gen_properties[2], gen_properties[3], ""] | |
} | |
df = pd.DataFrame(data) | |
# Display molecule image of canonical smiles | |
mol_image = smiles_to_image(gen_mol) | |
return df, gen_mol, mol_image | |
return "Invalid SMILES", None, None | |
# Function to display evaluation score | |
def display_eval(selected_models, dataset, task_type, downstream, fusion_type): | |
result = None | |
try: | |
downstream_model = downstream.split("*")[0].lstrip() | |
downstream_model = downstream_model.rstrip() | |
hyp_param = downstream.split("*")[-1].lstrip() | |
hyp_param = hyp_param.rstrip() | |
hyp_param = hyp_param.replace("nan", "float('nan')") | |
params = eval(hyp_param) | |
except: | |
downstream_model = downstream.split("*")[0].lstrip() | |
downstream_model = downstream_model.rstrip() | |
params = None | |
try: | |
if not selected_models: | |
return "Please select at least one enabled model." | |
if task_type == "Classification": | |
global roc_auc, fpr, tpr, x_batch, y_batch | |
elif task_type == "Regression": | |
global RMSE, y_batch_test, y_prob | |
if len(selected_models) > 1: | |
if task_type == "Classification": | |
#result, roc_auc, fpr, tpr, x_batch, y_batch = fm4m.multi_modal(model_list=selected_models, | |
# downstream_model="XGBClassifier", | |
# dataset=dataset.lower()) | |
if downstream_model == "Default Settings": | |
downstream_model = "DefaultClassifier" | |
params = None | |
result, roc_auc, fpr, tpr, x_batch, y_batch = fm4m.multi_modal(model_list=selected_models, | |
downstream_model=downstream_model, | |
params = params, | |
dataset=dataset) | |
elif task_type == "Regression": | |
#result, RMSE, y_batch_test, y_prob = fm4m.multi_modal(model_list=selected_models, | |
# downstream_model="XGBRegressor", | |
# dataset=dataset.lower()) | |
if downstream_model == "Default Settings": | |
downstream_model = "DefaultRegressor" | |
params = None | |
result, RMSE, y_batch_test, y_prob, x_batch, y_batch = fm4m.multi_modal(model_list=selected_models, | |
downstream_model=downstream_model, | |
params=params, | |
dataset=dataset) | |
else: | |
if task_type == "Classification": | |
#result, roc_auc, fpr, tpr, x_batch, y_batch = fm4m.single_modal(model=selected_models[0], | |
# downstream_model="XGBClassifier", | |
# dataset=dataset.lower()) | |
if downstream_model == "Default Settings": | |
downstream_model = "DefaultClassifier" | |
params = None | |
result, roc_auc, fpr, tpr, x_batch, y_batch = fm4m.single_modal(model=selected_models[0], | |
downstream_model=downstream_model, | |
params=params, | |
dataset=dataset) | |
elif task_type == "Regression": | |
#result, RMSE, y_batch_test, y_prob = fm4m.single_modal(model=selected_models[0], | |
# downstream_model="XGBRegressor", | |
# dataset=dataset.lower()) | |
if downstream_model == "Default Settings": | |
downstream_model = "DefaultRegressor" | |
params = None | |
result, RMSE, y_batch_test, y_prob, x_batch, y_batch = fm4m.single_modal(model=selected_models[0], | |
downstream_model=downstream_model, | |
params=params, | |
dataset=dataset) | |
if result == None: | |
result = "Data & Model Setting is incorrect" | |
except Exception as e: | |
return f"An error occurred: {e}" | |
return f"{result}" | |
# Function to handle plot display | |
def display_plot(plot_type): | |
fig, ax = plt.subplots() | |
if plot_type == "Latent Space": | |
global x_batch, y_batch | |
ax.set_title("T-SNE Plot") | |
# reducer = umap.UMAP(metric='euclidean', n_neighbors= 10, n_components=2, low_memory=True, min_dist=0.1, verbose=False) | |
# features_umap = reducer.fit_transform(x_batch[:500]) | |
# x = y_batch.values[:500] | |
# index_0 = [index for index in range(len(x)) if x[index] == 0] | |
# index_1 = [index for index in range(len(x)) if x[index] == 1] | |
class_0 = x_batch # features_umap[index_0] | |
class_1 = y_batch # features_umap[index_1] | |
"""with open("latent_multi_bace.pkl", "rb") as f: | |
class_0, class_1 = pickle.load(f) | |
""" | |
plt.scatter(class_1[:, 0], class_1[:, 1], c='red', label='Class 1') | |
plt.scatter(class_0[:, 0], class_0[:, 1], c='blue', label='Class 0') | |
ax.set_xlabel('Feature 1') | |
ax.set_ylabel('Feature 2') | |
ax.set_title('Dataset Distribution') | |
elif plot_type == "ROC-AUC": | |
global roc_auc, fpr, tpr | |
ax.set_title("ROC-AUC Curve") | |
try: | |
ax.plot(fpr, tpr, color='darkorange', lw=2, label=f'ROC curve (area = {roc_auc:.4f})') | |
ax.plot([0, 1], [0, 1], color='navy', lw=2, linestyle='--') | |
ax.set_xlim([0.0, 1.0]) | |
ax.set_ylim([0.0, 1.05]) | |
except: | |
pass | |
ax.set_xlabel('False Positive Rate') | |
ax.set_ylabel('True Positive Rate') | |
ax.set_title('Receiver Operating Characteristic') | |
ax.legend(loc='lower right') | |
elif plot_type == "Parity Plot": | |
global RMSE, y_batch_test, y_prob | |
ax.set_title("Parity plot") | |
# change format | |
try: | |
print(y_batch_test) | |
print(y_prob) | |
y_batch_test = np.array(y_batch_test, dtype=float) | |
y_prob = np.array(y_prob, dtype=float) | |
ax.scatter(y_batch_test, y_prob, color="blue", label=f"Predicted vs Actual (RMSE: {RMSE:.4f})") | |
min_val = min(min(y_batch_test), min(y_prob)) | |
max_val = max(max(y_batch_test), max(y_prob)) | |
ax.plot([min_val, max_val], [min_val, max_val], 'r-') | |
except: | |
y_batch_test = [] | |
y_prob = [] | |
RMSE = None | |
print(y_batch_test) | |
print(y_prob) | |
ax.set_xlabel('Actual Values') | |
ax.set_ylabel('Predicted Values') | |
ax.legend(loc='lower right') | |
return fig | |
# Predefined dataset paths (these should be adjusted to your file paths) | |
predefined_datasets = { | |
"Bace": f"./data/bace/train.csv, ./data/bace/test.csv, smiles, Class", | |
"ESOL": f"./data/esol/train.csv, ./data/esol/test.csv, smiles, prop", | |
} | |
# Function to load a predefined dataset from the local path | |
def load_predefined_dataset(dataset_name): | |
val = predefined_datasets.get(dataset_name) | |
try: file_path = val.split(",")[0] | |
except:file_path=False | |
if file_path: | |
df = pd.read_csv(file_path) | |
return df.head(), gr.update(choices=list(df.columns)), gr.update(choices=list(df.columns)), f"{dataset_name.lower()}" | |
return pd.DataFrame(), gr.update(choices=[]), gr.update(choices=[]), f"Dataset not found" | |
# Function to display the head of the uploaded CSV file | |
def display_csv_head(file): | |
if file is not None: | |
# Load the CSV file into a DataFrame | |
df = pd.read_csv(file.name) | |
return df.head(), gr.update(choices=list(df.columns)), gr.update(choices=list(df.columns)) | |
return pd.DataFrame(), gr.update(choices=[]), gr.update(choices=[]) | |
# Function to handle dataset selection (predefined or custom) | |
def handle_dataset_selection(selected_dataset): | |
if selected_dataset == "Custom Dataset": | |
# Show file upload fields for train and test datasets if "Custom Dataset" is selected | |
return gr.update(visible=True), gr.update(visible=True), gr.update(visible=True), gr.update(visible=True), gr.update( | |
visible=True), gr.update(visible=False), gr.update(visible=True), gr.update(visible=True) | |
else: | |
#[dataset_name, train_file, train_display, test_file, test_display, predefined_display, | |
# input_column_selector, output_column_selector] | |
# Load the predefined dataset from its local path | |
#return gr.update(visible=True), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update( | |
# visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False) | |
#return gr.update(visible=True), gr.update(visible=False), gr.update(visible=True), gr.update( | |
# visible=False), gr.update(visible=True), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False) | |
return gr.update(visible=True), gr.update(visible=False), gr.update(visible=False), gr.update( | |
visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False) | |
# Function to select input and output columns and display a message | |
def select_columns(input_column, output_column, train_data, test_data,dataset_name): | |
if input_column and output_column: | |
return f"{train_data.name},{test_data.name},{input_column},{output_column},{dataset_name}" | |
return "Please select both input and output columns." | |
def set_dataname(dataset_name, dataset_selector ): | |
if dataset_selector == "Custom Dataset": | |
return f"{dataset_name}" | |
return f"{dataset_selector}" | |
# Function to create model based on user input | |
def create_model(model_name, max_depth=None, n_estimators=None, alpha=None, degree=None, kernel=None): | |
if model_name == "XGBClassifier": | |
model = xgb.XGBClassifier(objective='binary:logistic',eval_metric= 'auc', max_depth=max_depth, n_estimators=n_estimators, alpha=alpha) | |
elif model_name == "SVR": | |
model = SVR(degree=degree, kernel=kernel) | |
elif model_name == "Kernel Ridge": | |
model = KernelRidge(alpha=alpha, degree=degree, kernel=kernel) | |
elif model_name == "Linear Regression": | |
model = LinearRegression() | |
elif model_name == "Default - Auto": | |
model = "Default Settings" | |
return f"{model}" | |
else: | |
return "Model not supported." | |
return f"{model_name} * {model.get_params()}" | |
def model_selector(model_name): | |
# Dynamically return the appropriate hyperparameter components based on the selected model | |
if model_name == "XGBClassifier": | |
return ( | |
gr.Slider(1, 10, label="max_depth"), | |
gr.Slider(50, 500, label="n_estimators"), | |
gr.Slider(0.1, 10.0, step=0.1, label="alpha") | |
) | |
elif model_name == "SVR": | |
return ( | |
gr.Slider(1, 5, label="degree"), | |
gr.Dropdown(["rbf", "poly", "linear"], label="kernel") | |
) | |
elif model_name == "Kernel Ridge": | |
return ( | |
gr.Slider(0.1, 10.0, step=0.1, label="alpha"), | |
gr.Slider(1, 5, label="degree"), | |
gr.Dropdown(["rbf", "poly", "linear"], label="kernel") | |
) | |
elif model_name == "Linear Regression": | |
return () # No hyperparameters for Linear Regression | |
else: | |
return () | |
# Define the Gradio layout | |
# with gr.Blocks(theme=my_theme) as demo: | |
with gr.Blocks() as demo: | |
with gr.Row(): | |
# Left Column | |
with gr.Column(): | |
gr.HTML(''' | |
<div style="background-color: #6A8EAE; color: #FFFFFF; padding: 10px;"> | |
<h3 style="color: #FFFFFF; margin: 0;font-size: 20px;"> Data & Model Setting</h3> | |
</div> | |
''') | |
# gr.Markdown("## Data & Model Setting") | |
#dataset_dropdown = gr.Dropdown(choices=datasets, label="Select Dat") | |
# Dropdown menu for predefined datasets including "Custom Dataset" option | |
dataset_selector = gr.Dropdown(label="Select Dataset", | |
choices=list(predefined_datasets.keys()) + ["Custom Dataset"]) | |
# Display the message for selected columns | |
selected_columns_message = gr.Textbox(label="Selected Columns Info", visible=False) | |
with gr.Accordion("Dataset Settings", open=True): | |
# File upload options for custom dataset (train and test) | |
dataset_name = gr.Textbox(label="Dataset Name", visible=False) | |
train_file = gr.File(label="Upload Custom Train Dataset", file_types=[".csv"], visible=False) | |
train_display = gr.Dataframe(label="Train Dataset Preview (First 5 Rows)", visible=False, interactive=False) | |
test_file = gr.File(label="Upload Custom Test Dataset", file_types=[".csv"], visible=False) | |
test_display = gr.Dataframe(label="Test Dataset Preview (First 5 Rows)", visible=False, interactive=False) | |
# Predefined dataset displays | |
predefined_display = gr.Dataframe(label="Predefined Dataset Preview (First 5 Rows)", visible=False, | |
interactive=False) | |
# Dropdowns for selecting input and output columns for the custom dataset | |
input_column_selector = gr.Dropdown(label="Select Input Column", choices=[], visible=False) | |
output_column_selector = gr.Dropdown(label="Select Output Column", choices=[], visible=False) | |
#selected_columns_message = gr.Textbox(label="Selected Columns Info", visible=True) | |
# When a dataset is selected, show either file upload fields (for custom) or load predefined datasets | |
dataset_selector.change(handle_dataset_selection, | |
inputs=dataset_selector, | |
outputs=[dataset_name, train_file, train_display, test_file, test_display, predefined_display, | |
input_column_selector, output_column_selector]) | |
# When a predefined dataset is selected, load its head and update column selectors | |
dataset_selector.change(load_predefined_dataset, | |
inputs=dataset_selector, | |
outputs=[predefined_display, input_column_selector, output_column_selector, selected_columns_message]) | |
# When a custom train file is uploaded, display its head and update column selectors | |
train_file.change(display_csv_head, inputs=train_file, | |
outputs=[train_display, input_column_selector, output_column_selector]) | |
# When a custom test file is uploaded, display its head | |
test_file.change(display_csv_head, inputs=test_file, | |
outputs=[test_display, input_column_selector, output_column_selector]) | |
dataset_selector.change(set_dataname, | |
inputs=[dataset_name, dataset_selector], | |
outputs=dataset_name) | |
# Update the selected columns information when dropdown values are changed | |
input_column_selector.change(select_columns, | |
inputs=[input_column_selector, output_column_selector, train_file, test_file, dataset_name], | |
outputs=selected_columns_message) | |
output_column_selector.change(select_columns, | |
inputs=[input_column_selector, output_column_selector, train_file, test_file, dataset_name], | |
outputs=selected_columns_message) | |
model_checkbox = gr.CheckboxGroup(choices=models_enabled, label="Select Model") | |
# Add disabled checkboxes for GNN and FNN | |
# gnn_checkbox = gr.Checkbox(label="GNN (Disabled)", value=False, interactive=False) | |
# fnn_checkbox = gr.Checkbox(label="FNN (Disabled)", value=False, interactive=False) | |
task_radiobutton = gr.Radio(choices=["Classification", "Regression"], label="Task Type") | |
####### adding hyper parameter tuning ########### | |
model_name = gr.Dropdown(["Default - Auto", "XGBClassifier", "SVR", "Kernel Ridge", "Linear Regression"], label="Select Downstream Model") | |
with gr.Accordion("Downstream Hyperparameter Settings", open=True): | |
# Create placeholders for hyperparameter components | |
max_depth = gr.Slider(1, 20, step=1,visible=False, label="max_depth") | |
n_estimators = gr.Slider(100, 5000, step=100, visible=False, label="n_estimators") | |
alpha = gr.Slider(0.1, 10.0, step=0.1, visible=False, label="alpha") | |
degree = gr.Slider(1, 20, step=1,visible=False, label="degree") | |
kernel = gr.Dropdown(choices=["rbf", "poly", "linear"], visible=False, label="kernel") | |
# Output textbox | |
output = gr.Textbox(label="Loaded Parameters") | |
# Dynamically show relevant hyperparameters based on selected model | |
def update_hyperparameters(model_name): | |
if model_name == "XGBClassifier": | |
return gr.update(visible=True), gr.update(visible=True), gr.update(visible=True), gr.update( | |
visible=False), gr.update(visible=False) | |
elif model_name == "SVR": | |
return gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update( | |
visible=True), gr.update(visible=True) | |
elif model_name == "Kernel Ridge": | |
return gr.update(visible=False), gr.update(visible=False), gr.update(visible=True), gr.update( | |
visible=True), gr.update(visible=True) | |
elif model_name == "Linear Regression": | |
return gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update( | |
visible=False), gr.update(visible=False) | |
elif model_name == "Default - Auto": | |
return gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update( | |
visible=False), gr.update(visible=False) | |
# When model is selected, update which hyperparameters are visible | |
model_name.change(update_hyperparameters, inputs=[model_name], | |
outputs=[max_depth, n_estimators, alpha, degree, kernel]) | |
# Submit button to create the model with selected hyperparameters | |
submit_button = gr.Button("Create Downstream Model") | |
# Function to handle model creation based on input parameters | |
def on_submit(model_name, max_depth, n_estimators, alpha, degree, kernel): | |
if model_name == "XGBClassifier": | |
return create_model(model_name, max_depth=max_depth, n_estimators=n_estimators, alpha=alpha) | |
elif model_name == "SVR": | |
return create_model(model_name, degree=degree, kernel=kernel) | |
elif model_name == "Kernel Ridge": | |
return create_model(model_name, alpha=alpha, degree=degree, kernel=kernel) | |
elif model_name == "Linear Regression": | |
return create_model(model_name) | |
elif model_name == "Default - Auto": | |
return create_model(model_name) | |
# When the submit button is clicked, run the on_submit function | |
submit_button.click(on_submit, inputs=[model_name, max_depth, n_estimators, alpha, degree, kernel], | |
outputs=output) | |
###### End of hyper param tuning ######### | |
fusion_radiobutton = gr.Radio(choices=fusion_available, label="Fusion Type") | |
eval_button = gr.Button("Train downstream model") | |
#eval_button.style(css_class="custom-button-left") | |
# Middle Column | |
with gr.Column(): | |
gr.HTML(''' | |
<div style="background-color: #8F9779; color: #FFFFFF; padding: 10px;"> | |
<h3 style="color: #FFFFFF; margin: 0;font-size: 20px;"> Downstream Task 1: Property Prediction</h3> | |
</div> | |
''') | |
# gr.Markdown("## Downstream task Result") | |
eval_output = gr.Textbox(label="Train downstream model") | |
plot_radio = gr.Radio(choices=["ROC-AUC", "Parity Plot", "Latent Space"], label="Select Plot Type") | |
plot_output = gr.Plot(label="Visualization")#, height=250, width=250) | |
#download_rep = gr.Button("Download representation") | |
create_log = gr.Button("Store log") | |
log_table = gr.Dataframe(value=log_df, label="Log of Selections and Results", interactive=False) | |
eval_button.click(display_eval, | |
inputs=[model_checkbox, selected_columns_message, task_radiobutton, output, fusion_radiobutton], | |
outputs=eval_output) | |
plot_radio.change(display_plot, inputs=plot_radio, outputs=plot_output) | |
# Function to gather selected models | |
def gather_selected_models(*models): | |
selected = [model for model in models if model] | |
return selected | |
create_log.click(evaluate_and_log, inputs=[model_checkbox, dataset_name, task_radiobutton, eval_output], | |
outputs=log_table) | |
#download_rep.click(save_rep, inputs=[model_checkbox, dataset_name, task_radiobutton, eval_output], | |
# outputs=None) | |
# Right Column | |
with gr.Column(): | |
gr.HTML(''' | |
<div style="background-color: #D2B48C; color: #FFFFFF; padding: 10px;"> | |
<h3 style="color: #FFFFFF; margin: 0;font-size: 20px;"> Downstream Task 2: Molecule Generation</h3> | |
</div> | |
''') | |
# gr.Markdown("## Molecular Generation") | |
smiles_input = gr.Textbox(label="Input SMILES String") | |
image_display = gr.Image(label="Molecule Image", height=250, width=250) | |
# Show images for selection | |
with gr.Accordion("Select from sample molecules", open=False): | |
image_selector = gr.Radio( | |
choices=list(smiles_image_mapping.keys()), | |
label="Select from sample molecules", | |
value=None, | |
#item_images=[load_image(smiles_image_mapping[key]["image"]) for key in smiles_image_mapping.keys()] | |
) | |
image_selector.change(load_image, image_selector, image_display) | |
generate_button = gr.Button("Generate") | |
gen_image_display = gr.Image(label="Generated Molecule Image", height=250, width=250) | |
generated_output = gr.Textbox(label="Generated Output") | |
property_table = gr.Dataframe(label="Molecular Properties Comparison") | |
# Handle image selection | |
image_selector.change(handle_image_selection, inputs=image_selector, outputs=[smiles_input, image_display]) | |
smiles_input.change(smiles_to_image, inputs=smiles_input, outputs=image_display) | |
# Generate button to display canonical SMILES and molecule image | |
generate_button.click(generate_canonical, inputs=smiles_input, | |
outputs=[property_table, generated_output, gen_image_display]) | |
if __name__ == "__main__": | |
demo.launch(share=True) | |