File size: 8,514 Bytes
2afcb7e dd9e7d8 2afcb7e bd9110a 0b34766 2afcb7e bd9110a 2afcb7e bd9110a 2afcb7e 0b34766 5708a7c 39f6ea0 5708a7c 39f6ea0 5708a7c ff35174 39f6ea0 5708a7c 39f6ea0 5708a7c f3b9b59 5708a7c dd9e7d8 39f6ea0 dd9e7d8 5708a7c 868bbe7 0b34766 5708a7c 4353573 5708a7c c21a3e5 5708a7c 4353573 5708a7c 0b34766 4353573 5708a7c 2afcb7e 4353573 5708a7c dd9e7d8 418a4e2 dd9e7d8 5708a7c 2afcb7e 5708a7c 44f95cd 5708a7c 16d15ba f3b9b59 16d15ba d8b3099 39f6ea0 5708a7c 39f6ea0 44f95cd 5708a7c 2afcb7e 5708a7c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 |
from __future__ import annotations
import math
import os
import random
import gradio as gr
import torch
from diffusers import StableDiffusionInstructPix2PixPipeline
from PIL import Image, ImageOps
help_text = """
If you're not getting what you want, there may be a few reasons:
1. Is the image not changing enough? Your Image CFG weight may be too high. This value dictates how similar the output should be to the input. It's possible your edit requires larger changes from the original image, and your Image CFG weight isn't allowing that. Alternatively, your Text CFG weight may be too low. This value dictates how much to listen to the text instruction. The default Image CFG of 1.5 and Text CFG of 7.5 are a good starting point, but aren't necessarily optimal for each edit. Try:
* Decreasing the Image CFG weight, or
* Increasing the Text CFG weight, or
2. Conversely, is the image changing too much, such that the details in the original image aren't preserved? Try:
* Increasing the Image CFG weight, or
* Decreasing the Text CFG weight
3. Try generating results with different random seeds by setting "Randomize Seed" and running generation multiple times. You can also try setting "Randomize CFG" to sample new Text CFG and Image CFG values each time.
4. Rephrasing the instruction sometimes improves results (e.g., "turn him into a dog" vs. "make him a dog" vs. "as a dog").
5. Increasing the number of steps sometimes improves results.
6. Do faces look weird? The Stable Diffusion autoencoder has a hard time with faces that are small in the image. Try:
* Cropping the image so the face takes up a larger portion of the frame.
"""
example_instructions = [
"Make it a picasso painting",
"as if it were by modigliani",
"convert to a bronze statue",
"Turn it into an anime.",
"have it look like a graphic novel",
"make him gain weight",
"what would he look like bald?",
"Have him smile",
"Put him in a cocktail party.",
"move him at the beach.",
"add dramatic lighting",
"Convert to black and white",
"What if it were snowing?",
"Give him a leather jacket",
"Turn him into a cyborg!",
"make him wear a beanie",
]
model_id = "timbrooks/instruct-pix2pix"
pipe = StableDiffusionInstructPix2PixPipeline.from_pretrained(
model_id, torch_dtype=torch.float16, safety_checker=None
).to("cuda")
example_image = Image.open("imgs/example.jpg").convert("RGB")
def randomize(
randomize_seed: bool,
seed: int,
randomize_cfg: bool,
text_cfg_scale: float,
image_cfg_scale: float,
) -> tuple[int, float, float]:
seed = random.randint(0, 100000) if randomize_seed else seed
text_cfg_scale = round(random.uniform(6.0, 9.0), ndigits=2) if randomize_cfg else text_cfg_scale
image_cfg_scale = round(random.uniform(1.2, 1.8), ndigits=2) if randomize_cfg else image_cfg_scale
return seed, text_cfg_scale, image_cfg_scale
def generate(
input_image: Image.Image,
instruction: str,
steps: int,
seed: int,
text_cfg_scale: float,
image_cfg_scale: float,
progress=gr.Progress(track_tqdm=True),
) -> Image.Image:
width, height = input_image.size
factor = 512 / max(width, height)
factor = math.ceil(min(width, height) * factor / 64) * 64 / min(width, height)
width = int((width * factor) // 64) * 64
height = int((height * factor) // 64) * 64
input_image = ImageOps.fit(input_image, (width, height), method=Image.Resampling.LANCZOS)
if instruction == "":
return [input_image, seed]
generator = torch.manual_seed(seed)
edited_image = pipe(
instruction,
image=input_image,
guidance_scale=text_cfg_scale,
image_guidance_scale=image_cfg_scale,
num_inference_steps=steps,
generator=generator,
).images[0]
return edited_image
def load_example(
steps: int,
randomize_seed: bool,
seed: int,
randomize_cfg: bool,
text_cfg_scale: float,
image_cfg_scale: float,
progress=gr.Progress(track_tqdm=True),
):
example_instruction = random.choice(example_instructions)
seed, text_cfg_scale, image_cfg_scale = randomize(
randomize_seed, seed, randomize_cfg, text_cfg_scale, image_cfg_scale
)
return [
example_image,
example_instruction,
seed,
text_cfg_scale,
image_cfg_scale,
generate(
example_image,
example_instruction,
steps,
seed,
text_cfg_scale,
image_cfg_scale,
),
]
def reset():
return [None, 50, "Randomize Seed", 1371, "Fix CFG", 7.5, 1.5, None]
def process_example(input_image: Image.Image, instruction: str, seed: int) -> Image.Image:
return generate(input_image, instruction, 50, seed, 7.5, 1.5)
with gr.Blocks() as demo:
gr.HTML(
"""<h1 style="font-weight: 900; margin-bottom: 7px;">
InstructPix2Pix: Learning to Follow Image Editing Instructions
</h1>
<p>For faster inference without waiting in queue, you may duplicate the space and upgrade to GPU in settings.
<br/>
<a href="https://huggingface.co/spaces/timbrooks/instruct-pix2pix?duplicate=true">
<img style="margin-top: 0em; margin-bottom: 0em" src="https://bit.ly/3gLdBN6" alt="Duplicate Space"></a>
<p/>"""
)
with gr.Row():
with gr.Column(scale=1, min_width=100):
generate_button = gr.Button("Generate")
with gr.Column(scale=1, min_width=100):
load_button = gr.Button("Load Example")
with gr.Column(scale=1, min_width=100):
reset_button = gr.Button("Reset")
with gr.Column(scale=3):
instruction = gr.Textbox(lines=1, label="Edit Instruction")
with gr.Row():
input_image = gr.Image(label="Input Image", type="pil", height=512, width=512)
edited_image = gr.Image(label="Edited Image", type="pil", height=512, width=512)
with gr.Row():
steps = gr.Number(value=50, precision=0, label="Steps")
randomize_seed = gr.Radio(
["Fix Seed", "Randomize Seed"],
value="Randomize Seed",
type="index",
show_label=False,
)
seed = gr.Number(value=1371, precision=0, label="Seed")
randomize_cfg = gr.Radio(
["Fix CFG", "Randomize CFG"],
value="Fix CFG",
type="index",
show_label=False,
)
text_cfg_scale = gr.Number(value=7.5, label="Text CFG")
image_cfg_scale = gr.Number(value=1.5, label="Image CFG")
gr.Examples(
examples=[
["imgs/example.jpg", "Turn him into a cyborg", 0],
["imgs/example.jpg", "Have him smile", 0],
["imgs/cats.jpg", "Turn kittens into baby lions", 0],
],
inputs=[input_image, instruction, seed],
outputs=edited_image,
fn=process_example,
cache_examples=os.getenv("CACHE_EXAMPLES") == "1",
)
gr.Markdown(help_text)
load_button.click(
fn=load_example,
inputs=[
steps,
randomize_seed,
seed,
randomize_cfg,
text_cfg_scale,
image_cfg_scale,
],
outputs=[input_image, instruction, seed, text_cfg_scale, image_cfg_scale, edited_image],
api_name=False,
)
reset_button.click(
fn=reset,
outputs=[
instruction,
steps,
randomize_seed,
seed,
randomize_cfg,
text_cfg_scale,
image_cfg_scale,
edited_image,
],
queue=False,
api_name=False,
)
gr.on(
triggers=[
generate_button.click,
instruction.submit,
steps.submit,
seed.submit,
text_cfg_scale.submit,
image_cfg_scale.submit,
],
fn=randomize,
inputs=[
randomize_seed,
seed,
randomize_cfg,
text_cfg_scale,
image_cfg_scale,
],
outputs=[seed, text_cfg_scale, image_cfg_scale],
queue=False,
api_name=False,
).then(
fn=generate,
inputs=[
input_image,
instruction,
steps,
seed,
text_cfg_scale,
image_cfg_scale,
],
outputs=edited_image,
api_name="run",
)
if __name__ == "__main__":
demo.queue(max_size=20).launch()
|