Juliofc's picture
Update app.py
b9b13c1
import pandas as pd
from torch.utils.data import DataLoader
from torchvision import transforms
from tqdm.notebook import tqdm
import torch
from torch.autograd import Variable
import torchvision
import pickle
from PIL import Image
import torch.nn as nn
import math
import random
import gradio as gr
device = "cpu"
max_seq_len=67
with open('index_to_word.pkl', 'rb') as handle:
index_to_word = pickle.load(handle)
with open('word_to_index.pkl', 'rb') as handle:
word_to_index = pickle.load(handle)
resnet18 = torchvision.models.resnet18(pretrained=True).to(device)
resnet18.eval()
resNet18Layer4 = resnet18._modules.get('layer4').to(device)
def create_df(img):
df = pd.DataFrame({"image": [img]})
return df
def get_vector(t_img):
t_img = Variable(t_img)
my_embedding = torch.zeros(1, 512, 7, 7)
def copy_data(m, i, o):
my_embedding.copy_(o.data)
h = resNet18Layer4.register_forward_hook(copy_data)
resnet18(t_img)
h.remove()
return my_embedding
class extractImageFeatureResNetDataSet():
from PIL import Image
def __init__(self, data):
self.data = data
self.scaler = transforms.Resize([224, 224])
self.normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
self.to_tensor = transforms.ToTensor()
def __len__(self):
return len(self.data)
def __getitem__(self, idx):
image_name = self.data.iloc[idx]['image']
img_loc = str(image_name) #os.getcwd()+'/imput_img/'+str(image_name)
img = Image.open(img_loc)
t_img = self.normalize(self.to_tensor(self.scaler(img)))
return image_name, t_img
def feature_exctractor(df):
extract_imgFtr_ResNet_input = {}
input_ImageDataset_ResNet = extractImageFeatureResNetDataSet(df[['image']])
input_ImageDataloader_ResNet = DataLoader(input_ImageDataset_ResNet, batch_size = 1, shuffle=False)
for image_name, t_img in tqdm(input_ImageDataloader_ResNet):
t_img = t_img.to("cpu")
embdg = get_vector(t_img)
extract_imgFtr_ResNet_input[image_name[0]] = embdg
return extract_imgFtr_ResNet_input
class PositionalEncoding(nn.Module):
def __init__(self, d_model, dropout=0.1, max_len=max_seq_len):
super(PositionalEncoding, self).__init__()
self.dropout = nn.Dropout(p=dropout)
pe = torch.zeros(max_len, d_model)
position = torch.arange(0, max_len, dtype=torch.float).unsqueeze(1)
div_term = torch.exp(torch.arange(0, d_model, 2).float() * (-math.log(10000.0) / d_model))
pe[:, 0::2] = torch.sin(position * div_term)
pe[:, 1::2] = torch.cos(position * div_term)
pe = pe.unsqueeze(0)
self.register_buffer('pe', pe)
def forward(self, x):
if self.pe.size(0) < x.size(0):
self.pe = self.pe.repeat(x.size(0), 1, 1).to(device)
self.pe = self.pe[:x.size(0), : , : ]
x = x + self.pe
return self.dropout(x)
class ImageCaptionModel(nn.Module):
def __init__(self, n_head, n_decoder_layer, vocab_size, embedding_size):
super(ImageCaptionModel, self).__init__()
self.pos_encoder = PositionalEncoding(embedding_size, 0.1)
self.TransformerDecoderLayer = nn.TransformerDecoderLayer(d_model = embedding_size, nhead = n_head)
self.TransformerDecoder = nn.TransformerDecoder(decoder_layer = self.TransformerDecoderLayer, num_layers = n_decoder_layer)
self.embedding_size = embedding_size
self.embedding = nn.Embedding(vocab_size , embedding_size)
self.last_linear_layer = nn.Linear(embedding_size, vocab_size)
self.init_weights()
def init_weights(self):
initrange = 0.1
self.embedding.weight.data.uniform_(-initrange, initrange)
self.last_linear_layer.bias.data.zero_()
self.last_linear_layer.weight.data.uniform_(-initrange, initrange)
def generate_Mask(self, size, decoder_inp):
decoder_input_mask = (torch.triu(torch.ones(size, size)) == 1).transpose(0, 1)
decoder_input_mask = decoder_input_mask.float().masked_fill(decoder_input_mask == 0, float('-inf')).masked_fill(decoder_input_mask == 1, float(0.0))
decoder_input_pad_mask = decoder_inp.float().masked_fill(decoder_inp == 0, float(0.0)).masked_fill(decoder_inp > 0, float(1.0))
decoder_input_pad_mask_bool = decoder_inp == 0
return decoder_input_mask, decoder_input_pad_mask, decoder_input_pad_mask_bool
def forward(self, encoded_image, decoder_inp):
encoded_image = encoded_image.permute(1,0,2)
decoder_inp_embed = self.embedding(decoder_inp)* math.sqrt(self.embedding_size)
decoder_inp_embed = self.pos_encoder(decoder_inp_embed)
decoder_inp_embed = decoder_inp_embed.permute(1,0,2)
decoder_input_mask, decoder_input_pad_mask, decoder_input_pad_mask_bool = self.generate_Mask(decoder_inp.size(1), decoder_inp)
decoder_input_mask = decoder_input_mask.to(device)
decoder_input_pad_mask = decoder_input_pad_mask.to(device)
decoder_input_pad_mask_bool = decoder_input_pad_mask_bool.to(device)
decoder_output = self.TransformerDecoder(tgt = decoder_inp_embed, memory = encoded_image, tgt_mask = decoder_input_mask, tgt_key_padding_mask = decoder_input_pad_mask_bool)
final_output = self.last_linear_layer(decoder_output)
return final_output, decoder_input_pad_mask
def generate_caption(K, img_nm, extract_imgFtr_ResNet_input):
from PIL import Image
img_loc = str(img_nm)#os.getcwd()+'/imput_img/'+
image = Image.open(img_loc).convert("RGB")
#plt.imshow(image)
model.eval()
img_embed = extract_imgFtr_ResNet_input[img_nm].to(device)
img_embed = img_embed.permute(0,2,3,1)
img_embed = img_embed.view(img_embed.size(0), -1, img_embed.size(3))
input_seq = [pad_token]*max_seq_len
input_seq[0] = start_token
input_seq = torch.tensor(input_seq).unsqueeze(0).to(device)
predicted_sentence = []
with torch.no_grad():
for eval_iter in range(0, max_seq_len):
output, padding_mask = model.forward(img_embed, input_seq)
output = output[eval_iter, 0, :]
values = torch.topk(output, K).values.tolist()
indices = torch.topk(output, K).indices.tolist()
next_word_index = random.choices(indices, values, k = 1)[0]
next_word = index_to_word[next_word_index]
input_seq[:, eval_iter+1] = next_word_index
if next_word == '<end>' :
break
predicted_sentence.append(next_word)
return " ".join(predicted_sentence + ["."])
device = torch.device('cpu')
model = torch.load('./BestModel_20000_Datos', map_location=device)
start_token = word_to_index['<start>']
end_token = word_to_index['<end>']
pad_token = word_to_index['<pad>']
def predict(inp):
device = "cpu"
max_seq_len=67
with open('index_to_word.pkl', 'rb') as handle:
index_to_word = pickle.load(handle)
with open('word_to_index.pkl', 'rb') as handle:
word_to_index = pickle.load(handle)
resnet18 = torchvision.models.resnet18(pretrained=True).to(device)
resnet18.eval()
resNet18Layer4 = resnet18._modules.get('layer4').to(device)
df = create_df(inp)
extract_imgFtr_ResNet_input = feature_exctractor(df)
prediction = generate_caption(1, inp, extract_imgFtr_ResNet_input)
return prediction
gr.Interface(fn=predict,
inputs=gr.Image(type="filepath"),
outputs=gr.Text(),
title = "Clothe captioning model",
description = "A clothe image captioning model to get descriptions of your code.\n Take your phone, make a picture of your clothes, upload it and you are ready to go").launch()