Spaces:
Running
on
Zero
Running
on
Zero
File size: 4,429 Bytes
319cffc 17aaf2d 319cffc 17aaf2d 319cffc 339ab7c 26ef7d6 319cffc 17aaf2d 319cffc 17aaf2d 319cffc 17aaf2d 319cffc 17aaf2d 319cffc 26ef7d6 319cffc 17aaf2d 319cffc 17aaf2d 319cffc 17aaf2d e09ffb3 319cffc 17aaf2d 319cffc 17aaf2d 319cffc 97448a3 319cffc 17aaf2d 319cffc 97448a3 17aaf2d 97448a3 17aaf2d 319cffc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 |
# Standard Libraries
import time
from io import BytesIO
import base64
# Data Handling and Image Processing
import numpy as np
from PIL import Image
# Machine Learning and AI Models
import torch
from transformers import pipeline
from diffusers import AutoPipelineForInpainting
from ultralytics import YOLO
# Text and Data Manipulation
import difflib
# UI and Application Framework
import gradio as gr
import spaces
# Constants
DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu'
# Load
DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu'
yoloModel = YOLO('yolov8x-seg.pt')
sdxl = AutoPipelineForInpainting.from_pretrained(
"diffusers/stable-diffusion-xl-1.0-inpainting-0.1",
torch_dtype=torch.float32
).to(DEVICE)
image_captioner = pipeline("image-to-text", model="Abdou/vit-swin-base-224-gpt2-image-captioning", device=DEVICE)
def image_to_base64(image: Image.Image):
buffered = BytesIO()
image.save(buffered, format="JPEG")
return base64.b64encode(buffered.getvalue()).decode("utf-8")
def get_most_similar_string(target_string, string_array):
differ = difflib.Differ()
best_match = string_array[0]
best_match_ratio = 0
for candidate_string in string_array:
similarity_ratio = difflib.SequenceMatcher(None, target_string, candidate_string).ratio()
if similarity_ratio > best_match_ratio:
best_match = candidate_string
best_match_ratio = similarity_ratio
return best_match
# Yolo
@spaces.GPU
def getClasses(model, img1):
results = model([img1])
out = []
for r in results:
im_array = r.plot()
out.append(r)
return r, im_array[..., ::-1], results
def getMasks(out):
allout = {}
class_masks = {}
for a in out:
class_name = a['name']
mask = a['img']
if class_name in class_masks:
class_masks[class_name] = Image.fromarray(
np.maximum(np.array(class_masks[class_name]), np.array(mask))
)
else:
class_masks[class_name] = mask
for class_name, mask in class_masks.items():
allout[class_name] = mask
return allout
def joinClasses(classes):
i = 0
out = []
for r in classes:
masks = r.masks
name0 = r.names[int(r.boxes.cls.cpu().numpy()[0])]
mask1 = masks[0]
mask = mask1.data[0].cpu().numpy()
polygon = mask1.xy[0]
# Normalize the mask values to 0-255 if needed
mask_normalized = ((mask - mask.min()) * (255 / (mask.max() - mask.min()))).astype(np.uint8)
mask_img = Image.fromarray(mask_normalized, "L")
out.append({'name': name0, 'img': mask_img})
i += 1
allMask = getMasks(out)
return allMask
def getSegments(yoloModel, img1):
classes, image, results1 = getClasses(yoloModel, img1)
allMask = joinClasses(classes)
return allMask
# Gradio UI
@spaces.GPU
def captionMaker(base64_img):
return image_captioner(base64_img)[0]['generated_text']
def getDescript(image_captioner, img1):
base64_img = image_to_base64(img1)
caption = captionMaker(base64_img)
return caption
def rmGPT(caption, remove_class):
arstr = caption.split(' ')
popular = get_most_similar_string(remove_class, arstr)
ind = arstr.index(popular)
new = []
for i in range(len(arstr)):
if i not in list(range(ind - 2, ind + 3)):
new.append(arstr[i])
return ' '.join(new)
@spaces.GPU
def ChangeOBJ(sdxl_m, img1, response, mask1):
size = img1.size
image = sdxl_m(prompt=response, image=img1, mask_image=mask1).images[0]
return image.resize((size[0], size[1]))
def full_pipeline(image, target):
img1 = Image.fromarray(image.astype('uint8'), 'RGB')
allMask = getSegments(yoloModel, img1)
tartget_to_remove = get_most_similar_string(target, list(allMask.keys()))
caption = getDescript(image_captioner, img1)
response = rmGPT(caption, tartget_to_remove)
mask1 = allMask[tartget_to_remove]
remimg = ChangeOBJ(sdxl, img1, response, mask1)
return remimg, caption, response
iface = gr.Interface(
fn=full_pipeline,
inputs=[
gr.Image(label="Upload Image"),
gr.Textbox(label="What to delete?"),
],
outputs=[
gr.Image(label="Result Image", type="numpy"),
gr.Textbox(label="Caption"),
gr.Textbox(label="Message"),
],
live=False
)
iface.launch()
|