File size: 20,697 Bytes
87e21d1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
#!/usr/bin/env python
# Copyright 2024 NVIDIA CORPORATION & AFFILIATES
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# SPDX-License-Identifier: Apache-2.0
from __future__ import annotations

import argparse
import os
import random
import uuid
from datetime import datetime

import gradio as gr
import numpy as np
import spaces
import torch
from diffusers import FluxPipeline
from PIL import Image
from torchvision.utils import make_grid, save_image
from transformers import AutoModelForCausalLM, AutoTokenizer

from app import safety_check
from app.sana_pipeline import SanaPipeline

MAX_SEED = np.iinfo(np.int32).max
CACHE_EXAMPLES = torch.cuda.is_available() and os.getenv("CACHE_EXAMPLES", "1") == "1"
MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "4096"))
USE_TORCH_COMPILE = os.getenv("USE_TORCH_COMPILE", "0") == "1"
ENABLE_CPU_OFFLOAD = os.getenv("ENABLE_CPU_OFFLOAD", "0") == "1"
DEMO_PORT = int(os.getenv("DEMO_PORT", "15432"))
os.environ["GRADIO_EXAMPLES_CACHE"] = "./.gradio/cache"

device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

style_list = [
    {
        "name": "(No style)",
        "prompt": "{prompt}",
        "negative_prompt": "",
    },
    {
        "name": "Cinematic",
        "prompt": "cinematic still {prompt} . emotional, harmonious, vignette, highly detailed, high budget, bokeh, "
        "cinemascope, moody, epic, gorgeous, film grain, grainy",
        "negative_prompt": "anime, cartoon, graphic, text, painting, crayon, graphite, abstract, glitch, deformed, mutated, ugly, disfigured",
    },
    {
        "name": "Photographic",
        "prompt": "cinematic photo {prompt} . 35mm photograph, film, bokeh, professional, 4k, highly detailed",
        "negative_prompt": "drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly",
    },
    {
        "name": "Anime",
        "prompt": "anime artwork {prompt} . anime style, key visual, vibrant, studio anime,  highly detailed",
        "negative_prompt": "photo, deformed, black and white, realism, disfigured, low contrast",
    },
    {
        "name": "Manga",
        "prompt": "manga style {prompt} . vibrant, high-energy, detailed, iconic, Japanese comic style",
        "negative_prompt": "ugly, deformed, noisy, blurry, low contrast, realism, photorealistic, Western comic style",
    },
    {
        "name": "Digital Art",
        "prompt": "concept art {prompt} . digital artwork, illustrative, painterly, matte painting, highly detailed",
        "negative_prompt": "photo, photorealistic, realism, ugly",
    },
    {
        "name": "Pixel art",
        "prompt": "pixel-art {prompt} . low-res, blocky, pixel art style, 8-bit graphics",
        "negative_prompt": "sloppy, messy, blurry, noisy, highly detailed, ultra textured, photo, realistic",
    },
    {
        "name": "Fantasy art",
        "prompt": "ethereal fantasy concept art of  {prompt} . magnificent, celestial, ethereal, painterly, epic, "
        "majestic, magical, fantasy art, cover art, dreamy",
        "negative_prompt": "photographic, realistic, realism, 35mm film, dslr, cropped, frame, text, deformed, "
        "glitch, noise, noisy, off-center, deformed, cross-eyed, closed eyes, bad anatomy, ugly, "
        "disfigured, sloppy, duplicate, mutated, black and white",
    },
    {
        "name": "Neonpunk",
        "prompt": "neonpunk style {prompt} . cyberpunk, vaporwave, neon, vibes, vibrant, stunningly beautiful, crisp, "
        "detailed, sleek, ultramodern, magenta highlights, dark purple shadows, high contrast, cinematic, "
        "ultra detailed, intricate, professional",
        "negative_prompt": "painting, drawing, illustration, glitch, deformed, mutated, cross-eyed, ugly, disfigured",
    },
    {
        "name": "3D Model",
        "prompt": "professional 3d model {prompt} . octane render, highly detailed, volumetric, dramatic lighting",
        "negative_prompt": "ugly, deformed, noisy, low poly, blurry, painting",
    },
]

styles = {k["name"]: (k["prompt"], k["negative_prompt"]) for k in style_list}
STYLE_NAMES = list(styles.keys())
DEFAULT_STYLE_NAME = "(No style)"
SCHEDULE_NAME = ["Flow_DPM_Solver"]
DEFAULT_SCHEDULE_NAME = "Flow_DPM_Solver"
NUM_IMAGES_PER_PROMPT = 1
TEST_TIMES = 0
FILENAME = f"output/port{DEMO_PORT}_inference_count.txt"


def set_env(seed=0):
    torch.manual_seed(seed)
    torch.set_grad_enabled(False)


def read_inference_count():
    global TEST_TIMES
    try:
        with open(FILENAME) as f:
            count = int(f.read().strip())
    except FileNotFoundError:
        count = 0
    TEST_TIMES = count

    return count


def write_inference_count(count):
    with open(FILENAME, "w") as f:
        f.write(str(count))


def run_inference(num_imgs=1):
    TEST_TIMES = read_inference_count()
    TEST_TIMES += int(num_imgs)
    write_inference_count(TEST_TIMES)

    return (
        f"<span style='font-size: 16px; font-weight: bold;'>Total inference runs: </span><span style='font-size: "
        f"16px; color:red; font-weight: bold;'>{TEST_TIMES}</span>"
    )


def update_inference_count():
    count = read_inference_count()
    return (
        f"<span style='font-size: 16px; font-weight: bold;'>Total inference runs: </span><span style='font-size: "
        f"16px; color:red; font-weight: bold;'>{count}</span>"
    )


def apply_style(style_name: str, positive: str, negative: str = "") -> tuple[str, str]:
    p, n = styles.get(style_name, styles[DEFAULT_STYLE_NAME])
    if not negative:
        negative = ""
    return p.replace("{prompt}", positive), n + negative


def get_args():
    parser = argparse.ArgumentParser()
    parser.add_argument("--config", type=str, help="config")
    parser.add_argument(
        "--model_path",
        nargs="?",
        default="output/Sana_D20/SANA.pth",
        type=str,
        help="Path to the model file (positional)",
    )
    parser.add_argument("--output", default="./", type=str)
    parser.add_argument("--bs", default=1, type=int)
    parser.add_argument("--image_size", default=1024, type=int)
    parser.add_argument("--cfg_scale", default=5.0, type=float)
    parser.add_argument("--pag_scale", default=2.0, type=float)
    parser.add_argument("--seed", default=42, type=int)
    parser.add_argument("--step", default=-1, type=int)
    parser.add_argument("--custom_image_size", default=None, type=int)
    parser.add_argument(
        "--shield_model_path",
        type=str,
        help="The path to shield model, we employ ShieldGemma-2B by default.",
        default="google/shieldgemma-2b",
    )

    return parser.parse_args()


args = get_args()

if torch.cuda.is_available():
    weight_dtype = torch.float16
    model_path = args.model_path
    pipe = SanaPipeline(args.config)
    pipe.from_pretrained(model_path)
    pipe.register_progress_bar(gr.Progress())

    repo_name = "black-forest-labs/FLUX.1-dev"
    pipe2 = FluxPipeline.from_pretrained(repo_name, torch_dtype=torch.float16).to("cuda")

    # safety checker
    safety_checker_tokenizer = AutoTokenizer.from_pretrained(args.shield_model_path)
    safety_checker_model = AutoModelForCausalLM.from_pretrained(
        args.shield_model_path,
        device_map="auto",
        torch_dtype=torch.bfloat16,
    ).to(device)

    set_env(42)


def save_image_sana(img, seed="", save_img=False):
    unique_name = f"{str(uuid.uuid4())}_{seed}.png"
    save_path = os.path.join(f"output/online_demo_img/{datetime.now().date()}")
    os.umask(0o000)  # file permission: 666; dir permission: 777
    os.makedirs(save_path, exist_ok=True)
    unique_name = os.path.join(save_path, unique_name)
    if save_img:
        save_image(img, unique_name, nrow=1, normalize=True, value_range=(-1, 1))

    return unique_name


def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)
    return seed


@spaces.GPU(enable_queue=True)
async def generate_2(
    prompt: str = None,
    negative_prompt: str = "",
    style: str = DEFAULT_STYLE_NAME,
    use_negative_prompt: bool = False,
    num_imgs: int = 1,
    seed: int = 0,
    height: int = 1024,
    width: int = 1024,
    flow_dpms_guidance_scale: float = 5.0,
    flow_dpms_pag_guidance_scale: float = 2.0,
    flow_dpms_inference_steps: int = 20,
    randomize_seed: bool = False,
):
    seed = int(randomize_seed_fn(seed, randomize_seed))
    generator = torch.Generator(device=device).manual_seed(seed)
    print(f"PORT: {DEMO_PORT}, model_path: {model_path}")
    if safety_check.is_dangerous(safety_checker_tokenizer, safety_checker_model, prompt):
        prompt = "A red heart."

    print(prompt)

    if not use_negative_prompt:
        negative_prompt = None  # type: ignore
    prompt, negative_prompt = apply_style(style, prompt, negative_prompt)

    with torch.no_grad():
        images = pipe2(
            prompt=prompt,
            height=height,
            width=width,
            guidance_scale=3.5,
            num_inference_steps=50,
            num_images_per_prompt=num_imgs,
            max_sequence_length=256,
            generator=generator,
        ).images

    save_img = False
    img = images
    if save_img:
        img = [save_image_sana(img, seed, save_img=save_image) for img in images]
        print(img)
    torch.cuda.empty_cache()

    return img


@spaces.GPU(enable_queue=True)
async def generate(
    prompt: str = None,
    negative_prompt: str = "",
    style: str = DEFAULT_STYLE_NAME,
    use_negative_prompt: bool = False,
    num_imgs: int = 1,
    seed: int = 0,
    height: int = 1024,
    width: int = 1024,
    flow_dpms_guidance_scale: float = 5.0,
    flow_dpms_pag_guidance_scale: float = 2.0,
    flow_dpms_inference_steps: int = 20,
    randomize_seed: bool = False,
):
    global TEST_TIMES
    # seed = 823753551
    seed = int(randomize_seed_fn(seed, randomize_seed))
    generator = torch.Generator(device=device).manual_seed(seed)
    print(f"PORT: {DEMO_PORT}, model_path: {model_path}, time_times: {TEST_TIMES}")
    if safety_check.is_dangerous(safety_checker_tokenizer, safety_checker_model, prompt):
        prompt = "A red heart."

    print(prompt)

    num_inference_steps = flow_dpms_inference_steps
    guidance_scale = flow_dpms_guidance_scale
    pag_guidance_scale = flow_dpms_pag_guidance_scale

    if not use_negative_prompt:
        negative_prompt = None  # type: ignore
    prompt, negative_prompt = apply_style(style, prompt, negative_prompt)

    pipe.progress_fn(0, desc="Sana Start")

    with torch.no_grad():
        images = pipe(
            prompt=prompt,
            height=height,
            width=width,
            negative_prompt=negative_prompt,
            guidance_scale=guidance_scale,
            pag_guidance_scale=pag_guidance_scale,
            num_inference_steps=num_inference_steps,
            num_images_per_prompt=num_imgs,
            generator=generator,
        )

    pipe.progress_fn(1.0, desc="Sana End")

    save_img = False
    if save_img:
        img = [save_image_sana(img, seed, save_img=save_image) for img in images]
        print(img)
    else:
        if num_imgs > 1:
            nrow = 2
        else:
            nrow = 1
        img = make_grid(images, nrow=nrow, normalize=True, value_range=(-1, 1))
        img = img.mul(255).add_(0.5).clamp_(0, 255).permute(1, 2, 0).to("cpu", torch.uint8).numpy()
        img = [Image.fromarray(img.astype(np.uint8))]

    torch.cuda.empty_cache()

    return img


TEST_TIMES = read_inference_count()
model_size = "1.6" if "D20" in args.model_path else "0.6"
title = f"""
    <div style='display: flex; align-items: center; justify-content: center; text-align: center;'>
        <img src="https://raw.githubusercontent.com/NVlabs/Sana/refs/heads/main/asset/logo.png" width="50%" alt="logo"/>
    </div>
"""
DESCRIPTION = f"""
        <p><span style="font-size: 36px; font-weight: bold;">Sana-{model_size}B</span><span style="font-size: 20px; font-weight: bold;">{args.image_size}px</span></p>
        <p style="font-size: 16px; font-weight: bold;">Sana: Efficient High-Resolution Image Synthesis with Linear Diffusion Transformer</p>
        <p><span style="font-size: 16px;"><a href="https://arxiv.org/abs/2410.10629">[Paper]</a></span> <span style="font-size: 16px;"><a href="https://github.com/NVlabs/Sana">[Github(coming soon)]</a></span> <span style="font-size: 16px;"><a href="https://nvlabs.github.io/Sana">[Project]</a></span</p>
        <p style="font-size: 16px; font-weight: bold;">Powered by <a href="https://hanlab.mit.edu/projects/dc-ae">DC-AE</a> with 32x latent space</p>
        <p style="font-size: 16px; font-weight: bold;">Unsafe word will give you a 'Red Heart' in the image instead.</p>
        """
if model_size == "0.6":
    DESCRIPTION += "\n<p>0.6B model's text rendering ability is limited.</p>"
if not torch.cuda.is_available():
    DESCRIPTION += "\n<p>Running on CPU 🥶 This demo does not work on CPU.</p>"

examples = [
    'a cyberpunk cat with a neon sign that says "Sana"',
    "A very detailed and realistic full body photo set of a tall, slim, and athletic Shiba Inu in a white oversized straight t-shirt, white shorts, and short white shoes.",
    "Pirate ship trapped in a cosmic maelstrom nebula, rendered in cosmic beach whirlpool engine, volumetric lighting, spectacular, ambient lights, light pollution, cinematic atmosphere, art nouveau style, illustration art artwork by SenseiJaye, intricate detail.",
    "portrait photo of a girl, photograph, highly detailed face, depth of field",
    'make me a logo that says "So Fast"  with a really cool flying dragon shape with lightning sparks all over the sides and all of it contains Indonesian language',
    "🐶 Wearing 🕶 flying on the 🌈",
    # "👧 with 🌹 in the ❄️",
    # "an old rusted robot wearing pants and a jacket riding skis in a supermarket.",
    # "professional portrait photo of an anthropomorphic cat wearing fancy gentleman hat and jacket walking in autumn forest.",
    # "Astronaut in a jungle, cold color palette, muted colors, detailed",
    # "a stunning and luxurious bedroom carved into a rocky mountainside seamlessly blending nature with modern design with a plush earth-toned bed textured stone walls circular fireplace massive uniquely shaped window framing snow-capped mountains dense forests",
]

css = """
.gradio-container{max-width: 1024px !important}
h1{text-align:center}
"""
with gr.Blocks(css=css) as demo:
    gr.Markdown(title)
    gr.Markdown(DESCRIPTION)
    gr.DuplicateButton(
        value="Duplicate Space for private use",
        elem_id="duplicate-button",
        visible=os.getenv("SHOW_DUPLICATE_BUTTON") == "1",
    )
    info_box = gr.Markdown(
        value=f"<span style='font-size: 16px; font-weight: bold;'>Total inference runs: </span><span style='font-size: 16px; color:red; font-weight: bold;'>{read_inference_count()}</span>"
    )
    demo.load(fn=update_inference_count, outputs=info_box)  # update the value when re-loading the page
    # with gr.Row(equal_height=False):
    with gr.Group():
        with gr.Row():
            prompt = gr.Text(
                label="Prompt",
                show_label=False,
                max_lines=1,
                placeholder="Enter your prompt",
                container=False,
            )
            run_button = gr.Button("Run-sana", scale=0)
            run_button2 = gr.Button("Run-flux", scale=0)

        with gr.Row():
            result = gr.Gallery(label="Result from Sana", show_label=True, columns=NUM_IMAGES_PER_PROMPT, format="webp")
            result_2 = gr.Gallery(
                label="Result from FLUX", show_label=True, columns=NUM_IMAGES_PER_PROMPT, format="webp"
            )

    with gr.Accordion("Advanced options", open=False):
        with gr.Group():
            with gr.Row(visible=True):
                height = gr.Slider(
                    label="Height",
                    minimum=256,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=1024,
                )
                width = gr.Slider(
                    label="Width",
                    minimum=256,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=1024,
                )
            with gr.Row():
                flow_dpms_inference_steps = gr.Slider(
                    label="Sampling steps",
                    minimum=5,
                    maximum=40,
                    step=1,
                    value=18,
                )
                flow_dpms_guidance_scale = gr.Slider(
                    label="CFG Guidance scale",
                    minimum=1,
                    maximum=10,
                    step=0.1,
                    value=5.0,
                )
                flow_dpms_pag_guidance_scale = gr.Slider(
                    label="PAG Guidance scale",
                    minimum=1,
                    maximum=4,
                    step=0.5,
                    value=2.0,
                )
            with gr.Row():
                use_negative_prompt = gr.Checkbox(label="Use negative prompt", value=False, visible=True)
            negative_prompt = gr.Text(
                label="Negative prompt",
                max_lines=1,
                placeholder="Enter a negative prompt",
                visible=True,
            )
            style_selection = gr.Radio(
                show_label=True,
                container=True,
                interactive=True,
                choices=STYLE_NAMES,
                value=DEFAULT_STYLE_NAME,
                label="Image Style",
            )
            seed = gr.Slider(
                label="Seed",
                minimum=0,
                maximum=MAX_SEED,
                step=1,
                value=0,
            )
            randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
            with gr.Row(visible=True):
                schedule = gr.Radio(
                    show_label=True,
                    container=True,
                    interactive=True,
                    choices=SCHEDULE_NAME,
                    value=DEFAULT_SCHEDULE_NAME,
                    label="Sampler Schedule",
                    visible=True,
                )
                num_imgs = gr.Slider(
                    label="Num Images",
                    minimum=1,
                    maximum=6,
                    step=1,
                    value=1,
                )

    run_button.click(fn=run_inference, inputs=num_imgs, outputs=info_box)

    gr.Examples(
        examples=examples,
        inputs=prompt,
        outputs=[result],
        fn=generate,
        cache_examples=CACHE_EXAMPLES,
    )
    gr.Examples(
        examples=examples,
        inputs=prompt,
        outputs=[result_2],
        fn=generate_2,
        cache_examples=CACHE_EXAMPLES,
    )

    use_negative_prompt.change(
        fn=lambda x: gr.update(visible=x),
        inputs=use_negative_prompt,
        outputs=negative_prompt,
        api_name=False,
    )

    run_button.click(
        fn=generate,
        inputs=[
            prompt,
            negative_prompt,
            style_selection,
            use_negative_prompt,
            num_imgs,
            seed,
            height,
            width,
            flow_dpms_guidance_scale,
            flow_dpms_pag_guidance_scale,
            flow_dpms_inference_steps,
            randomize_seed,
        ],
        outputs=[result],
        queue=True,
    )

    run_button2.click(
        fn=generate_2,
        inputs=[
            prompt,
            negative_prompt,
            style_selection,
            use_negative_prompt,
            num_imgs,
            seed,
            height,
            width,
            flow_dpms_guidance_scale,
            flow_dpms_pag_guidance_scale,
            flow_dpms_inference_steps,
            randomize_seed,
        ],
        outputs=[result_2],
        queue=True,
    )


if __name__ == "__main__":
    demo.queue(max_size=20).launch(server_name="0.0.0.0", server_port=DEMO_PORT, debug=True, share=True)