File size: 16,605 Bytes
87e21d1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
# Copyright 2024 NVIDIA CORPORATION & AFFILIATES
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# SPDX-License-Identifier: Apache-2.0

# This file is modified from https://github.com/PixArt-alpha/PixArt-sigma
import os

import numpy as np
import torch
import torch.nn as nn
from timm.models.layers import DropPath

from diffusion.model.builder import MODELS
from diffusion.model.nets.basic_modules import DWMlp, GLUMBConv, MBConvPreGLU, Mlp
from diffusion.model.nets.fastlinear.modules import TritonLiteMLA, TritonMBConvPreGLU
from diffusion.model.nets.sana_blocks import (
    Attention,
    CaptionEmbedder,
    FlashAttention,
    LiteLA,
    MultiHeadCrossAttention,
    PatchEmbed,
    T2IFinalLayer,
    TimestepEmbedder,
    t2i_modulate,
)
from diffusion.model.norms import RMSNorm
from diffusion.model.utils import auto_grad_checkpoint, to_2tuple
from diffusion.utils.dist_utils import get_rank
from diffusion.utils.logger import get_root_logger


class SanaBlock(nn.Module):
    """
    A Sana block with global shared adaptive layer norm (adaLN-single) conditioning.
    """

    def __init__(
        self,
        hidden_size,
        num_heads,
        mlp_ratio=4.0,
        drop_path=0,
        input_size=None,
        qk_norm=False,
        attn_type="flash",
        ffn_type="mlp",
        mlp_acts=("silu", "silu", None),
        linear_head_dim=32,
        **block_kwargs,
    ):
        super().__init__()
        self.norm1 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
        if attn_type == "flash":
            # flash self attention
            self.attn = FlashAttention(
                hidden_size,
                num_heads=num_heads,
                qkv_bias=True,
                qk_norm=qk_norm,
                **block_kwargs,
            )
        elif attn_type == "linear":
            # linear self attention
            # TODO: Here the num_heads set to 36 for tmp used
            self_num_heads = hidden_size // linear_head_dim
            self.attn = LiteLA(hidden_size, hidden_size, heads=self_num_heads, eps=1e-8, qk_norm=qk_norm)
        elif attn_type == "triton_linear":
            # linear self attention with triton kernel fusion
            # TODO: Here the num_heads set to 36 for tmp used
            self_num_heads = hidden_size // linear_head_dim
            self.attn = TritonLiteMLA(hidden_size, num_heads=self_num_heads, eps=1e-8)
        elif attn_type == "vanilla":
            # vanilla self attention
            self.attn = Attention(hidden_size, num_heads=num_heads, qkv_bias=True)
        else:
            raise ValueError(f"{attn_type} type is not defined.")

        self.cross_attn = MultiHeadCrossAttention(hidden_size, num_heads, **block_kwargs)
        self.norm2 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
        # to be compatible with lower version pytorch
        if ffn_type == "dwmlp":
            approx_gelu = lambda: nn.GELU(approximate="tanh")
            self.mlp = DWMlp(
                in_features=hidden_size, hidden_features=int(hidden_size * mlp_ratio), act_layer=approx_gelu, drop=0
            )
        elif ffn_type == "glumbconv":
            self.mlp = GLUMBConv(
                in_features=hidden_size,
                hidden_features=int(hidden_size * mlp_ratio),
                use_bias=(True, True, False),
                norm=(None, None, None),
                act=mlp_acts,
            )
        elif ffn_type == "glumbconv_dilate":
            self.mlp = GLUMBConv(
                in_features=hidden_size,
                hidden_features=int(hidden_size * mlp_ratio),
                use_bias=(True, True, False),
                norm=(None, None, None),
                act=mlp_acts,
                dilation=2,
            )
        elif ffn_type == "mbconvpreglu":
            self.mlp = MBConvPreGLU(
                in_dim=hidden_size,
                out_dim=hidden_size,
                mid_dim=int(hidden_size * mlp_ratio),
                use_bias=(True, True, False),
                norm=None,
                act=("silu", "silu", None),
            )
        elif ffn_type == "triton_mbconvpreglu":
            self.mlp = TritonMBConvPreGLU(
                in_dim=hidden_size,
                out_dim=hidden_size,
                mid_dim=int(hidden_size * mlp_ratio),
                use_bias=(True, True, False),
                norm=None,
                act=("silu", "silu", None),
            )
        elif ffn_type == "mlp":
            approx_gelu = lambda: nn.GELU(approximate="tanh")
            self.mlp = Mlp(
                in_features=hidden_size, hidden_features=int(hidden_size * mlp_ratio), act_layer=approx_gelu, drop=0
            )
        else:
            raise ValueError(f"{ffn_type} type is not defined.")
        self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity()
        self.scale_shift_table = nn.Parameter(torch.randn(6, hidden_size) / hidden_size**0.5)

    def forward(self, x, y, t, mask=None, **kwargs):
        B, N, C = x.shape

        shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = (
            self.scale_shift_table[None] + t.reshape(B, 6, -1)
        ).chunk(6, dim=1)
        x = x + self.drop_path(gate_msa * self.attn(t2i_modulate(self.norm1(x), shift_msa, scale_msa)).reshape(B, N, C))
        x = x + self.cross_attn(x, y, mask)
        x = x + self.drop_path(gate_mlp * self.mlp(t2i_modulate(self.norm2(x), shift_mlp, scale_mlp)))

        return x


#############################################################################
#                                 Core Sana Model                                #
#################################################################################
@MODELS.register_module()
class Sana(nn.Module):
    """
    Diffusion model with a Transformer backbone.
    """

    def __init__(
        self,
        input_size=32,
        patch_size=2,
        in_channels=4,
        hidden_size=1152,
        depth=28,
        num_heads=16,
        mlp_ratio=4.0,
        class_dropout_prob=0.1,
        pred_sigma=True,
        drop_path: float = 0.0,
        caption_channels=2304,
        pe_interpolation=1.0,
        config=None,
        model_max_length=120,
        qk_norm=False,
        y_norm=False,
        norm_eps=1e-5,
        attn_type="flash",
        ffn_type="mlp",
        use_pe=True,
        y_norm_scale_factor=1.0,
        patch_embed_kernel=None,
        mlp_acts=("silu", "silu", None),
        linear_head_dim=32,
        **kwargs,
    ):
        super().__init__()
        self.pred_sigma = pred_sigma
        self.in_channels = in_channels
        self.out_channels = in_channels * 2 if pred_sigma else in_channels
        self.patch_size = patch_size
        self.num_heads = num_heads
        self.pe_interpolation = pe_interpolation
        self.depth = depth
        self.use_pe = use_pe
        self.y_norm = y_norm
        self.fp32_attention = kwargs.get("use_fp32_attention", False)

        kernel_size = patch_embed_kernel or patch_size
        self.x_embedder = PatchEmbed(
            input_size, patch_size, in_channels, hidden_size, kernel_size=kernel_size, bias=True
        )
        self.t_embedder = TimestepEmbedder(hidden_size)
        num_patches = self.x_embedder.num_patches
        self.base_size = input_size // self.patch_size
        # Will use fixed sin-cos embedding:
        self.register_buffer("pos_embed", torch.zeros(1, num_patches, hidden_size))

        approx_gelu = lambda: nn.GELU(approximate="tanh")
        self.t_block = nn.Sequential(nn.SiLU(), nn.Linear(hidden_size, 6 * hidden_size, bias=True))
        self.y_embedder = CaptionEmbedder(
            in_channels=caption_channels,
            hidden_size=hidden_size,
            uncond_prob=class_dropout_prob,
            act_layer=approx_gelu,
            token_num=model_max_length,
        )
        if self.y_norm:
            self.attention_y_norm = RMSNorm(hidden_size, scale_factor=y_norm_scale_factor, eps=norm_eps)
        drop_path = [x.item() for x in torch.linspace(0, drop_path, depth)]  # stochastic depth decay rule
        self.blocks = nn.ModuleList(
            [
                SanaBlock(
                    hidden_size,
                    num_heads,
                    mlp_ratio=mlp_ratio,
                    drop_path=drop_path[i],
                    input_size=(input_size // patch_size, input_size // patch_size),
                    qk_norm=qk_norm,
                    attn_type=attn_type,
                    ffn_type=ffn_type,
                    mlp_acts=mlp_acts,
                    linear_head_dim=linear_head_dim,
                )
                for i in range(depth)
            ]
        )
        self.final_layer = T2IFinalLayer(hidden_size, patch_size, self.out_channels)

        self.initialize_weights()

        if config:
            logger = get_root_logger(os.path.join(config.work_dir, "train_log.log"))
            logger = logger.warning
        else:
            logger = print
        if get_rank() == 0:
            logger(
                f"use pe: {use_pe}, position embed interpolation: {self.pe_interpolation}, base size: {self.base_size}"
            )
            logger(
                f"attention type: {attn_type}; ffn type: {ffn_type}; "
                f"autocast linear attn: {os.environ.get('AUTOCAST_LINEAR_ATTN', False)}"
            )

    def forward(self, x, timestep, y, mask=None, data_info=None, **kwargs):
        """
        Forward pass of Sana.
        x: (N, C, H, W) tensor of spatial inputs (images or latent representations of images)
        t: (N,) tensor of diffusion timesteps
        y: (N, 1, 120, C) tensor of class labels
        """
        x = x.to(self.dtype)
        timestep = timestep.to(self.dtype)
        y = y.to(self.dtype)
        pos_embed = self.pos_embed.to(self.dtype)
        self.h, self.w = x.shape[-2] // self.patch_size, x.shape[-1] // self.patch_size
        if self.use_pe:
            x = self.x_embedder(x) + pos_embed  # (N, T, D), where T = H * W / patch_size ** 2
        else:
            x = self.x_embedder(x)
        t = self.t_embedder(timestep.to(x.dtype))  # (N, D)
        t0 = self.t_block(t)
        y = self.y_embedder(y, self.training)  # (N, 1, L, D)
        if self.y_norm:
            y = self.attention_y_norm(y)
        if mask is not None:
            if mask.shape[0] != y.shape[0]:
                mask = mask.repeat(y.shape[0] // mask.shape[0], 1)
            mask = mask.squeeze(1).squeeze(1)
            y = y.squeeze(1).masked_select(mask.unsqueeze(-1) != 0).view(1, -1, x.shape[-1])
            y_lens = mask.sum(dim=1).tolist()
        else:
            y_lens = [y.shape[2]] * y.shape[0]
            y = y.squeeze(1).view(1, -1, x.shape[-1])
        for block in self.blocks:
            x = auto_grad_checkpoint(block, x, y, t0, y_lens)  # (N, T, D) #support grad checkpoint
        x = self.final_layer(x, t)  # (N, T, patch_size ** 2 * out_channels)
        x = self.unpatchify(x)  # (N, out_channels, H, W)
        return x

    def __call__(self, *args, **kwargs):
        """
        This method allows the object to be called like a function.
        It simply calls the forward method.
        """
        return self.forward(*args, **kwargs)

    def forward_with_dpmsolver(self, x, timestep, y, mask=None, **kwargs):
        """
        dpm solver donnot need variance prediction
        """
        # https://github.com/openai/glide-text2im/blob/main/notebooks/text2im.ipynb
        model_out = self.forward(x, timestep, y, mask)
        return model_out.chunk(2, dim=1)[0] if self.pred_sigma else model_out

    def unpatchify(self, x):
        """
        x: (N, T, patch_size**2 * C)
        imgs: (N, H, W, C)
        """
        c = self.out_channels
        p = self.x_embedder.patch_size[0]
        h = w = int(x.shape[1] ** 0.5)
        assert h * w == x.shape[1]

        x = x.reshape(shape=(x.shape[0], h, w, p, p, c))
        x = torch.einsum("nhwpqc->nchpwq", x)
        imgs = x.reshape(shape=(x.shape[0], c, h * p, h * p))
        return imgs

    def initialize_weights(self):
        # Initialize transformer layers:
        def _basic_init(module):
            if isinstance(module, nn.Linear):
                torch.nn.init.xavier_uniform_(module.weight)
                if module.bias is not None:
                    nn.init.constant_(module.bias, 0)

        self.apply(_basic_init)

        if self.use_pe:
            # Initialize (and freeze) pos_embed by sin-cos embedding:
            pos_embed = get_2d_sincos_pos_embed(
                self.pos_embed.shape[-1],
                int(self.x_embedder.num_patches**0.5),
                pe_interpolation=self.pe_interpolation,
                base_size=self.base_size,
            )
            self.pos_embed.data.copy_(torch.from_numpy(pos_embed).float().unsqueeze(0))

        # Initialize patch_embed like nn.Linear (instead of nn.Conv2d):
        w = self.x_embedder.proj.weight.data
        nn.init.xavier_uniform_(w.view([w.shape[0], -1]))

        # Initialize timestep embedding MLP:
        nn.init.normal_(self.t_embedder.mlp[0].weight, std=0.02)
        nn.init.normal_(self.t_embedder.mlp[2].weight, std=0.02)
        nn.init.normal_(self.t_block[1].weight, std=0.02)

        # Initialize caption embedding MLP:
        nn.init.normal_(self.y_embedder.y_proj.fc1.weight, std=0.02)
        nn.init.normal_(self.y_embedder.y_proj.fc2.weight, std=0.02)

    @property
    def dtype(self):
        return next(self.parameters()).dtype


def get_2d_sincos_pos_embed(embed_dim, grid_size, cls_token=False, extra_tokens=0, pe_interpolation=1.0, base_size=16):
    """
    grid_size: int of the grid height and width
    return:
    pos_embed: [grid_size*grid_size, embed_dim] or [1+grid_size*grid_size, embed_dim] (w/ or w/o cls_token)
    """
    if isinstance(grid_size, int):
        grid_size = to_2tuple(grid_size)
    grid_h = np.arange(grid_size[0], dtype=np.float32) / (grid_size[0] / base_size) / pe_interpolation
    grid_w = np.arange(grid_size[1], dtype=np.float32) / (grid_size[1] / base_size) / pe_interpolation
    grid = np.meshgrid(grid_w, grid_h)  # here w goes first
    grid = np.stack(grid, axis=0)
    grid = grid.reshape([2, 1, grid_size[1], grid_size[0]])

    pos_embed = get_2d_sincos_pos_embed_from_grid(embed_dim, grid)
    if cls_token and extra_tokens > 0:
        pos_embed = np.concatenate([np.zeros([extra_tokens, embed_dim]), pos_embed], axis=0)
    return pos_embed


def get_2d_sincos_pos_embed_from_grid(embed_dim, grid):
    assert embed_dim % 2 == 0

    # use half of dimensions to encode grid_h
    emb_h = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[0])  # (H*W, D/2)
    emb_w = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[1])  # (H*W, D/2)

    emb = np.concatenate([emb_h, emb_w], axis=1)  # (H*W, D)
    return emb


def get_1d_sincos_pos_embed_from_grid(embed_dim, pos):
    """
    embed_dim: output dimension for each position
    pos: a list of positions to be encoded: size (M,)
    out: (M, D)
    """
    assert embed_dim % 2 == 0
    omega = np.arange(embed_dim // 2, dtype=np.float64)
    omega /= embed_dim / 2.0
    omega = 1.0 / 10000**omega  # (D/2,)

    pos = pos.reshape(-1)  # (M,)
    out = np.einsum("m,d->md", pos, omega)  # (M, D/2), outer product

    emb_sin = np.sin(out)  # (M, D/2)
    emb_cos = np.cos(out)  # (M, D/2)

    emb = np.concatenate([emb_sin, emb_cos], axis=1)  # (M, D)
    return emb


#################################################################################
#                                   Sana Configs                              #
#################################################################################
@MODELS.register_module()
def Sana_600M_P1_D28(**kwargs):
    return Sana(depth=28, hidden_size=1152, patch_size=1, num_heads=16, **kwargs)


@MODELS.register_module()
def Sana_1600M_P1_D20(**kwargs):
    # 20 layers, 1648.48M
    return Sana(depth=20, hidden_size=2240, patch_size=1, num_heads=20, **kwargs)