File size: 8,320 Bytes
87e21d1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
# Copyright 2024 NVIDIA CORPORATION & AFFILIATES
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# SPDX-License-Identifier: Apache-2.0

import copy
import warnings

import torch
import torch.nn as nn
from torch.nn.modules.batchnorm import _BatchNorm

__all__ = ["LayerNorm2d", "build_norm", "get_norm_name", "reset_bn", "remove_bn", "set_norm_eps"]


class LayerNorm2d(nn.LayerNorm):
    rmsnorm = False

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        out = x if LayerNorm2d.rmsnorm else x - torch.mean(x, dim=1, keepdim=True)
        out = out / torch.sqrt(torch.square(out).mean(dim=1, keepdim=True) + self.eps)
        if self.elementwise_affine:
            out = out * self.weight.view(1, -1, 1, 1) + self.bias.view(1, -1, 1, 1)
        return out

    def extra_repr(self) -> str:
        return f"{self.normalized_shape}, eps={self.eps}, elementwise_affine={self.elementwise_affine}, rmsnorm={self.rmsnorm}"


# register normalization function here
#   name: module, kwargs with default values
REGISTERED_NORMALIZATION_DICT: dict[str, tuple[type, dict[str, any]]] = {
    "bn2d": (nn.BatchNorm2d, {"num_features": None, "eps": 1e-5, "momentum": 0.1, "affine": True}),
    "syncbn": (nn.SyncBatchNorm, {"num_features": None, "eps": 1e-5, "momentum": 0.1, "affine": True}),
    "ln": (nn.LayerNorm, {"normalized_shape": None, "eps": 1e-5, "elementwise_affine": True}),
    "ln2d": (LayerNorm2d, {"normalized_shape": None, "eps": 1e-5, "elementwise_affine": True}),
}


def build_norm(name="bn2d", num_features=None, affine=True, **kwargs) -> nn.Module or None:
    if name in ["ln", "ln2d"]:
        kwargs["normalized_shape"] = num_features
        kwargs["elementwise_affine"] = affine
    else:
        kwargs["num_features"] = num_features
        kwargs["affine"] = affine
    if name in REGISTERED_NORMALIZATION_DICT:
        norm_cls, default_args = copy.deepcopy(REGISTERED_NORMALIZATION_DICT[name])
        for key in default_args:
            if key in kwargs:
                default_args[key] = kwargs[key]
        return norm_cls(**default_args)
    elif name is None or name.lower() == "none":
        return None
    else:
        raise ValueError("do not support: %s" % name)


def get_norm_name(norm: nn.Module or None) -> str or None:
    if norm is None:
        return None
    module2name = {}
    for key, config in REGISTERED_NORMALIZATION_DICT.items():
        module2name[config[0].__name__] = key
    return module2name.get(type(norm).__name__, "unknown")


def reset_bn(
    model: nn.Module,
    data_loader: list,
    sync=True,
    progress_bar=False,
) -> None:
    import copy

    import torch.nn.functional as F
    from packages.apps.utils import AverageMeter, is_master, sync_tensor
    from packages.models.utils import get_device, list_join
    from tqdm import tqdm

    bn_mean = {}
    bn_var = {}

    tmp_model = copy.deepcopy(model)
    for name, m in tmp_model.named_modules():
        if isinstance(m, _BatchNorm):
            bn_mean[name] = AverageMeter(is_distributed=False)
            bn_var[name] = AverageMeter(is_distributed=False)

            def new_forward(bn, mean_est, var_est):
                def lambda_forward(x):
                    x = x.contiguous()
                    if sync:
                        batch_mean = x.mean(0, keepdim=True).mean(2, keepdim=True).mean(3, keepdim=True)  # 1, C, 1, 1
                        batch_mean = sync_tensor(batch_mean, reduce="cat")
                        batch_mean = torch.mean(batch_mean, dim=0, keepdim=True)

                        batch_var = (x - batch_mean) * (x - batch_mean)
                        batch_var = batch_var.mean(0, keepdim=True).mean(2, keepdim=True).mean(3, keepdim=True)
                        batch_var = sync_tensor(batch_var, reduce="cat")
                        batch_var = torch.mean(batch_var, dim=0, keepdim=True)
                    else:
                        batch_mean = x.mean(0, keepdim=True).mean(2, keepdim=True).mean(3, keepdim=True)  # 1, C, 1, 1
                        batch_var = (x - batch_mean) * (x - batch_mean)
                        batch_var = batch_var.mean(0, keepdim=True).mean(2, keepdim=True).mean(3, keepdim=True)

                    batch_mean = torch.squeeze(batch_mean)
                    batch_var = torch.squeeze(batch_var)

                    mean_est.update(batch_mean.data, x.size(0))
                    var_est.update(batch_var.data, x.size(0))

                    # bn forward using calculated mean & var
                    _feature_dim = batch_mean.shape[0]
                    return F.batch_norm(
                        x,
                        batch_mean,
                        batch_var,
                        bn.weight[:_feature_dim],
                        bn.bias[:_feature_dim],
                        False,
                        0.0,
                        bn.eps,
                    )

                return lambda_forward

            m.forward = new_forward(m, bn_mean[name], bn_var[name])

    # skip if there is no batch normalization layers in the network
    if len(bn_mean) == 0:
        return

    tmp_model.eval()
    with torch.inference_mode():
        with tqdm(total=len(data_loader), desc="reset bn", disable=not progress_bar or not is_master()) as t:
            for images in data_loader:
                images = images.to(get_device(tmp_model))
                tmp_model(images)
                t.set_postfix(
                    {
                        "bs": images.size(0),
                        "res": list_join(images.shape[-2:], "x"),
                    }
                )
                t.update()

    for name, m in model.named_modules():
        if name in bn_mean and bn_mean[name].count > 0:
            feature_dim = bn_mean[name].avg.size(0)
            assert isinstance(m, _BatchNorm)
            m.running_mean.data[:feature_dim].copy_(bn_mean[name].avg)
            m.running_var.data[:feature_dim].copy_(bn_var[name].avg)


def remove_bn(model: nn.Module) -> None:
    for m in model.modules():
        if isinstance(m, _BatchNorm):
            m.weight = m.bias = None
            m.forward = lambda x: x


def set_norm_eps(model: nn.Module, eps: float or None = None, momentum: float or None = None) -> None:
    for m in model.modules():
        if isinstance(m, (nn.GroupNorm, nn.LayerNorm, _BatchNorm)):
            if eps is not None:
                m.eps = eps
            if momentum is not None:
                m.momentum = momentum


class RMSNorm(torch.nn.Module):
    def __init__(self, dim: int, scale_factor=1.0, eps: float = 1e-6):
        """
            Initialize the RMSNorm normalization layer.

        Args:
            dim (int): The dimension of the input tensor.
            eps (float, optional): A small value added to the denominator for numerical stability. Default is 1e-6.

        Attributes:
            eps (float): A small value added to the denominator for numerical stability.
            weight (nn.Parameter): Learnable scaling parameter.

        """
        super().__init__()
        self.eps = eps
        self.weight = nn.Parameter(torch.ones(dim) * scale_factor)

    def _norm(self, x):
        """
        Apply the RMSNorm normalization to the input tensor.

        Args:
            x (torch.Tensor): The input tensor.

        Returns:
            torch.Tensor: The normalized tensor.

        """
        return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps)

    def forward(self, x):
        """
        Forward pass through the RMSNorm layer.

        Args:
            x (torch.Tensor): The input tensor.

        Returns:
            torch.Tensor: The output tensor after applying RMSNorm.

        """
        return (self.weight * self._norm(x.float())).type_as(x)