Spaces:
Configuration error
Configuration error
# Copyright 2024 NVIDIA CORPORATION & AFFILIATES | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# | |
# SPDX-License-Identifier: Apache-2.0 | |
import os | |
import time | |
from mmcv import Registry, build_from_cfg | |
from termcolor import colored | |
from torch.utils.data import DataLoader | |
from diffusion.data.transforms import get_transform | |
from diffusion.utils.logger import get_root_logger | |
DATASETS = Registry("datasets") | |
DATA_ROOT = "data" | |
def set_data_root(data_root): | |
global DATA_ROOT | |
DATA_ROOT = data_root | |
def get_data_path(data_dir): | |
if os.path.isabs(data_dir): | |
return data_dir | |
global DATA_ROOT | |
return os.path.join(DATA_ROOT, data_dir) | |
def get_data_root_and_path(data_dir): | |
if os.path.isabs(data_dir): | |
return data_dir | |
global DATA_ROOT | |
return DATA_ROOT, os.path.join(DATA_ROOT, data_dir) | |
def build_dataset(cfg, resolution=224, **kwargs): | |
logger = get_root_logger() | |
dataset_type = cfg.get("type") | |
logger.info(f"Constructing dataset {dataset_type}...") | |
t = time.time() | |
transform = cfg.pop("transform", "default_train") | |
transform = get_transform(transform, resolution) | |
dataset = build_from_cfg(cfg, DATASETS, default_args=dict(transform=transform, resolution=resolution, **kwargs)) | |
logger.info( | |
f"{colored(f'Dataset {dataset_type} constructed: ', 'green', attrs=['bold'])}" | |
f"time: {(time.time() - t):.2f} s, length (use/ori): {len(dataset)}/{dataset.ori_imgs_nums}" | |
) | |
return dataset | |
def build_dataloader(dataset, batch_size=256, num_workers=4, shuffle=True, **kwargs): | |
if "batch_sampler" in kwargs: | |
dataloader = DataLoader( | |
dataset, batch_sampler=kwargs["batch_sampler"], num_workers=num_workers, pin_memory=True | |
) | |
else: | |
dataloader = DataLoader( | |
dataset, batch_size=batch_size, shuffle=shuffle, num_workers=num_workers, pin_memory=True, **kwargs | |
) | |
return dataloader | |