Spaces:
Configuration error
Configuration error
# Copyright 2024 NVIDIA CORPORATION & AFFILIATES | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# | |
# SPDX-License-Identifier: Apache-2.0 | |
import argparse | |
import json | |
import os | |
import re | |
import time | |
import warnings | |
from dataclasses import dataclass, field | |
from typing import Optional | |
import numpy as np | |
import pyrallis | |
import torch | |
from einops import rearrange | |
from PIL import Image | |
from torchvision.utils import _log_api_usage_once, make_grid, save_image | |
from tqdm import tqdm | |
warnings.filterwarnings("ignore") # ignore warning | |
from diffusion import DPMS, FlowEuler, SASolverSampler | |
from diffusion.data.datasets.utils import * | |
from diffusion.model.builder import build_model, get_tokenizer_and_text_encoder, get_vae, vae_decode | |
from diffusion.model.utils import prepare_prompt_ar | |
from diffusion.utils.config import SanaConfig | |
from diffusion.utils.logger import get_root_logger | |
# from diffusion.utils.misc import read_config | |
from tools.download import find_model | |
def pil_image( | |
tensor, | |
**kwargs, | |
) -> Image: | |
if not torch.jit.is_scripting() and not torch.jit.is_tracing(): | |
_log_api_usage_once(save_image) | |
grid = make_grid(tensor, **kwargs) | |
# Add 0.5 after unnormalizing to [0, 255] to round to the nearest integer | |
ndarr = grid.mul(255).add_(0.5).clamp_(0, 255).permute(1, 2, 0).to("cpu", torch.uint8).numpy() | |
img = Image.fromarray(ndarr) | |
return img | |
def set_env(seed=0, latent_size=256): | |
torch.manual_seed(seed) | |
torch.set_grad_enabled(False) | |
for _ in range(30): | |
torch.randn(1, 4, latent_size, latent_size) | |
def visualize(items, bs, sample_steps, cfg_scale, pag_scale=1.0): | |
generator = torch.Generator(device=device).manual_seed(args.seed) | |
tqdm_desc = f"{save_root.split('/')[-1]} Using GPU: {args.gpu_id}: {args.start_index}-{args.end_index}" | |
assert bs == 1 | |
for chunk in tqdm(list(get_chunks(items, bs)), desc=tqdm_desc, unit="batch", position=args.gpu_id, leave=True): | |
prompt = data_dict[chunk[0]]["prompt"] | |
# Generate images | |
with torch.no_grad(): | |
all_samples = list() | |
for _ in range((args.n_samples + batch_size - 1) // batch_size): | |
prompts, hw, ar = ( | |
[], | |
torch.tensor([[args.image_size, args.image_size]], dtype=torch.float, device=device).repeat( | |
batch_size, 1 | |
), | |
torch.tensor([[1.0]], device=device).repeat(batch_size, 1), | |
) | |
for _ in range(batch_size): | |
prompts.append(prepare_prompt_ar(prompt, base_ratios, device=device, show=False)[0].strip()) | |
latent_size_h, latent_size_w = latent_size, latent_size | |
# check exists | |
save_file_name = f"{chunk[0]}.jpg" | |
save_path = os.path.join(save_root, save_file_name) | |
if os.path.exists(save_path): | |
# make sure the noise is totally same | |
torch.randn( | |
len(prompts), | |
config.vae.vae_latent_dim, | |
latent_size, | |
latent_size, | |
device=device, | |
generator=generator, | |
) | |
continue | |
# prepare text feature | |
caption_token = tokenizer( | |
prompts, max_length=max_sequence_length, padding="max_length", truncation=True, return_tensors="pt" | |
).to(device) | |
caption_embs = text_encoder(caption_token.input_ids, caption_token.attention_mask)[0][:, None] | |
emb_masks, null_y = caption_token.attention_mask, null_caption_embs.repeat(len(prompts), 1, 1)[:, None] | |
# start sampling | |
with torch.no_grad(): | |
n = len(prompts) | |
z = torch.randn( | |
n, config.vae.vae_latent_dim, latent_size, latent_size, device=device, generator=generator | |
) | |
model_kwargs = dict(data_info={"img_hw": hw, "aspect_ratio": ar}, mask=emb_masks) | |
if args.sampling_algo == "dpm-solver": | |
dpm_solver = DPMS( | |
model.forward_with_dpmsolver, | |
condition=caption_embs, | |
uncondition=null_y, | |
cfg_scale=cfg_scale, | |
model_kwargs=model_kwargs, | |
) | |
samples = dpm_solver.sample( | |
z, | |
steps=sample_steps, | |
order=2, | |
skip_type="time_uniform", | |
method="multistep", | |
) | |
elif args.sampling_algo == "sa-solver": | |
sa_solver = SASolverSampler(model.forward_with_dpmsolver, device=device) | |
samples = sa_solver.sample( | |
S=25, | |
batch_size=n, | |
shape=(config.vae.vae_latent_dim, latent_size_h, latent_size_w), | |
eta=1, | |
conditioning=caption_embs, | |
unconditional_conditioning=null_y, | |
unconditional_guidance_scale=cfg_scale, | |
model_kwargs=model_kwargs, | |
)[0] | |
elif args.sampling_algo == "flow_euler": | |
flow_solver = FlowEuler( | |
model, | |
condition=caption_embs, | |
uncondition=null_y, | |
cfg_scale=cfg_scale, | |
model_kwargs=model_kwargs, | |
) | |
samples = flow_solver.sample( | |
z, | |
steps=sample_steps, | |
) | |
elif args.sampling_algo == "flow_dpm-solver": | |
dpm_solver = DPMS( | |
model.forward_with_dpmsolver, | |
condition=caption_embs, | |
uncondition=null_y, | |
guidance_type=guidance_type, | |
cfg_scale=cfg_scale, | |
pag_scale=pag_scale, | |
pag_applied_layers=pag_applied_layers, | |
model_type="flow", | |
model_kwargs=model_kwargs, | |
schedule="FLOW", | |
interval_guidance=args.interval_guidance, | |
) | |
samples = dpm_solver.sample( | |
z, | |
steps=sample_steps, | |
order=2, | |
skip_type="time_uniform_flow", | |
method="multistep", | |
flow_shift=flow_shift, | |
) | |
else: | |
raise ValueError(f"{args.sampling_algo} is not defined") | |
samples = samples.to(weight_dtype) | |
samples = vae_decode(config.vae.vae_type, vae, samples) | |
torch.cuda.empty_cache() | |
all_samples.append(samples) | |
if all_samples: | |
# additionally, save as grid | |
grid = torch.stack(all_samples, 0) | |
grid = rearrange(grid, "n b c h w -> (n b) c h w") | |
grid = make_grid(grid, nrow=n_rows, normalize=True, value_range=(-1, 1)) | |
# to image | |
grid = grid.mul(255).add_(0.5).clamp_(0, 255).permute(1, 2, 0).to("cpu", torch.uint8).numpy() | |
grid = Image.fromarray(grid.astype(np.uint8)) | |
grid.save(save_path) | |
del grid | |
del all_samples | |
print("Done.") | |
def get_args(): | |
parser = argparse.ArgumentParser() | |
parser.add_argument("--config", type=str, help="config") | |
parser.add_argument("--model_path", default=None, type=str, help="Path to the model file (optional)") | |
return parser.parse_known_args()[0] | |
class SanaInference(SanaConfig): | |
config: Optional[str] = "configs/sana_config/1024ms/Sana_1600M_img1024.yaml" # config | |
dataset: str = "DPG" | |
outdir: str = "outputs" | |
n_samples: int = 4 | |
batch_size: int = 1 | |
skip_grid: bool = False | |
position_model_path: str = "output/pretrained_models/Sana.pth" | |
model_path: str = None | |
txt_file: str = "asset/samples.txt" | |
json_file: str = None | |
sample_nums: int = 1065 | |
cfg_scale: float = 4.5 | |
pag_scale: float = 1.0 | |
sampling_algo: str = field( | |
default="dpm-solver", metadata={"choices": ["dpm-solver", "sa-solver", "flow_euler", "flow_dpm-solver"]} | |
) | |
bs: int = 1 | |
seed: int = 0 | |
step: int = -1 | |
add_label: str = "" | |
tar_and_del: bool = False | |
exist_time_prefix: str = "" | |
gpu_id: int = 0 | |
image_size: int = 512 | |
custom_image_size: int = None | |
start_index: int = 0 | |
end_index: int = 553 | |
interval_guidance: list = field( | |
default_factory=lambda: [0, 1], metadata={"help": "A list value, like [0, 1.] for use cfg"} | |
) | |
ablation_selections: list = None | |
ablation_key: str = field(default=None, metadata={"choices": ["step", "cfg_scale", "pag_scale"]}) | |
if_save_dirname: bool = False | |
if __name__ == "__main__": | |
args = get_args() | |
config = args = pyrallis.parse(config_class=SanaInference, config_path=args.config) | |
# config = read_config(args.config) | |
args.image_size = config.model.image_size | |
if args.custom_image_size: | |
args.image_size = args.custom_image_size | |
print(f"custom_image_size: {args.image_size}") | |
set_env(args.seed, args.image_size // config.vae.vae_downsample_rate) | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
logger = get_root_logger() | |
n_rows = args.n_samples // 2 | |
batch_size = args.n_samples | |
assert args.batch_size == 1, ValueError(f"{batch_size} > 1 is not available in DPG-bench") | |
# only support fixed latent size currently | |
latent_size = args.image_size // config.vae.vae_downsample_rate | |
max_sequence_length = config.text_encoder.model_max_length | |
pe_interpolation = config.model.pe_interpolation | |
micro_condition = config.model.micro_condition | |
flow_shift = config.scheduler.flow_shift | |
pag_applied_layers = config.model.pag_applied_layers | |
guidance_type = "classifier-free_PAG" | |
# guidance_type = config.guidance_type | |
assert ( | |
isinstance(args.interval_guidance, list) | |
and len(args.interval_guidance) == 2 | |
and args.interval_guidance[0] <= args.interval_guidance[1] | |
) | |
args.interval_guidance = [max(0, args.interval_guidance[0]), min(1, args.interval_guidance[1])] | |
sample_steps_dict = {"dpm-solver": 20, "sa-solver": 25, "flow_dpm-solver": 20, "flow_euler": 28} | |
sample_steps = args.step if args.step != -1 else sample_steps_dict[args.sampling_algo] | |
if config.model.mixed_precision == "fp16": | |
weight_dtype = torch.float16 | |
elif config.model.mixed_precision == "bf16": | |
weight_dtype = torch.bfloat16 | |
elif config.model.mixed_precision == "fp32": | |
weight_dtype = torch.float32 | |
else: | |
raise ValueError(f"weigh precision {config.model.mixed_precision} is not defined") | |
logger.info(f"Inference with {weight_dtype}, default guidance_type: {guidance_type}, flow_shift: {flow_shift}") | |
vae = get_vae(config.vae.vae_type, config.vae.vae_pretrained, device).to(weight_dtype) | |
tokenizer, text_encoder = get_tokenizer_and_text_encoder(name=config.text_encoder.text_encoder_name, device=device) | |
null_caption_token = tokenizer( | |
"", max_length=max_sequence_length, padding="max_length", truncation=True, return_tensors="pt" | |
).to(device) | |
null_caption_embs = text_encoder(null_caption_token.input_ids, null_caption_token.attention_mask)[0] | |
# model setting | |
pred_sigma = getattr(config.scheduler, "pred_sigma", True) | |
learn_sigma = getattr(config.scheduler, "learn_sigma", True) and pred_sigma | |
model_kwargs = { | |
"input_size": latent_size, | |
"pe_interpolation": config.model.pe_interpolation, | |
"config": config, | |
"model_max_length": config.text_encoder.model_max_length, | |
"qk_norm": config.model.qk_norm, | |
"micro_condition": config.model.micro_condition, | |
"caption_channels": text_encoder.config.hidden_size, | |
"y_norm": config.text_encoder.y_norm, | |
"attn_type": config.model.attn_type, | |
"ffn_type": config.model.ffn_type, | |
"mlp_ratio": config.model.mlp_ratio, | |
"mlp_acts": list(config.model.mlp_acts), | |
"in_channels": config.vae.vae_latent_dim, | |
"y_norm_scale_factor": config.text_encoder.y_norm_scale_factor, | |
"use_pe": config.model.use_pe, | |
"linear_head_dim": config.model.linear_head_dim, | |
"pred_sigma": pred_sigma, | |
"learn_sigma": learn_sigma, | |
} | |
model = build_model( | |
config.model.model, use_fp32_attention=config.model.get("fp32_attention", False), **model_kwargs | |
).to(device) | |
# model = build_model(config.model, **model_kwargs).to(device) | |
logger.info( | |
f"{model.__class__.__name__}:{config.model.model}, Model Parameters: {sum(p.numel() for p in model.parameters()):,}" | |
) | |
args.model_path = args.model_path or args.position_model_path | |
logger.info("Generating sample from ckpt: %s" % args.model_path) | |
state_dict = find_model(args.model_path) | |
if "pos_embed" in state_dict["state_dict"]: | |
del state_dict["state_dict"]["pos_embed"] | |
missing, unexpected = model.load_state_dict(state_dict["state_dict"], strict=False) | |
logger.warning(f"Missing keys: {missing}") | |
logger.warning(f"Unexpected keys: {unexpected}") | |
model.eval().to(weight_dtype) | |
base_ratios = eval(f"ASPECT_RATIO_{args.image_size}_TEST") | |
args.sampling_algo = ( | |
args.sampling_algo | |
if ("flow" not in args.model_path or args.sampling_algo == "flow_dpm-solver") | |
else "flow_euler" | |
) | |
work_dir = ( | |
f"/{os.path.join(*args.model_path.split('/')[:-2])}" | |
if args.model_path.startswith("/") | |
else os.path.join(*args.model_path.split("/")[:-2]) | |
) | |
# dataset | |
dict_prompt = args.json_file is not None | |
if dict_prompt: | |
data_dict = json.load(open(args.json_file)) | |
items = list(data_dict.keys()) | |
else: | |
with open(args.txt_file) as f: | |
items = [item.strip() for item in f.readlines()] | |
logger.info(f"Eval first {min(args.sample_nums, len(items))}/{len(items)} samples") | |
items = items[: max(0, args.sample_nums)] | |
items = items[max(0, args.start_index) : min(len(items), args.end_index)] # save path | |
match = re.search(r".*epoch_(\d+).*step_(\d+).*", args.model_path) | |
epoch_name, step_name = match.groups() if match else ("unknown", "unknown") | |
img_save_dir = os.path.join(str(work_dir), "vis") | |
os.umask(0o000) | |
os.makedirs(img_save_dir, exist_ok=True) | |
logger.info(f"Sampler {args.sampling_algo}") | |
def create_save_root(args, dataset, epoch_name, step_name, sample_steps, guidance_type): | |
save_root = os.path.join( | |
img_save_dir, | |
# f"{datetime.now().date() if args.exist_time_prefix == '' else args.exist_time_prefix}_" | |
f"{dataset}_epoch{epoch_name}_step{step_name}_scale{args.cfg_scale}" | |
f"_step{sample_steps}_size{args.image_size}_bs{batch_size}_samp{args.sampling_algo}" | |
f"_seed{args.seed}_{str(weight_dtype).split('.')[-1]}", | |
) | |
if args.pag_scale != 1.0: | |
save_root = save_root.replace(f"scale{args.cfg_scale}", f"scale{args.cfg_scale}_pagscale{args.pag_scale}") | |
if flow_shift != 1.0: | |
save_root += f"_flowshift{flow_shift}" | |
if guidance_type != "classifier-free": | |
save_root += f"_{guidance_type}" | |
if args.interval_guidance[0] != 0 and args.interval_guidance[1] != 1: | |
save_root += f"_intervalguidance{args.interval_guidance[0]}{args.interval_guidance[1]}" | |
save_root += f"_imgnums{args.sample_nums}" + args.add_label | |
return save_root | |
def guidance_type_select(default_guidance_type, pag_scale, attn_type): | |
guidance_type = default_guidance_type | |
if not (pag_scale > 1.0 and attn_type == "linear"): | |
logger.info("Setting back to classifier-free") | |
guidance_type = "classifier-free" | |
return guidance_type | |
dataset = "MJHQ-30K" if args.json_file and "MJHQ-30K" in args.json_file else args.dataset | |
if args.ablation_selections and args.ablation_key: | |
for ablation_factor in args.ablation_selections: | |
setattr(args, args.ablation_key, eval(ablation_factor)) | |
print(f"Setting {args.ablation_key}={eval(ablation_factor)}") | |
sample_steps = args.step if args.step != -1 else sample_steps_dict[args.sampling_algo] | |
guidance_type = guidance_type_select(guidance_type, args.pag_scale, config.model.attn_type) | |
save_root = create_save_root(args, dataset, epoch_name, step_name, sample_steps, guidance_type) | |
os.makedirs(save_root, exist_ok=True) | |
if args.if_save_dirname and args.gpu_id == 0: | |
# save at work_dir/metrics/tmp_xxx.txt for metrics testing | |
with open(f"{work_dir}/metrics/tmp_{dataset}_{time.time()}.txt", "w") as f: | |
print(f"save tmp file at {work_dir}/metrics/tmp_{dataset}_{time.time()}.txt") | |
f.write(os.path.basename(save_root)) | |
logger.info(f"Inference with {weight_dtype}, guidance_type: {guidance_type}, flow_shift: {flow_shift}") | |
visualize(items, args.bs, sample_steps, args.cfg_scale, args.pag_scale) | |
else: | |
guidance_type = guidance_type_select(guidance_type, args.pag_scale, config.model.attn_type) | |
logger.info(f"Inference with {weight_dtype}, guidance_type: {guidance_type}, flow_shift: {flow_shift}") | |
save_root = create_save_root(args, dataset, epoch_name, step_name, sample_steps, guidance_type) | |
os.makedirs(save_root, exist_ok=True) | |
if args.if_save_dirname and args.gpu_id == 0: | |
# save at work_dir/metrics/tmp_dpg_xxx.txt for metrics testing | |
with open(f"{work_dir}/metrics/tmp_{dataset}_{time.time()}.txt", "w") as f: | |
print(f"save tmp file at {work_dir}/metrics/tmp_{dataset}_{time.time()}.txt") | |
f.write(os.path.basename(save_root)) | |
visualize(items, args.bs, sample_steps, args.cfg_scale, args.pag_scale) | |