nvlabs-sana / scripts /inference_dpg.py
imw34531's picture
Upload folder using huggingface_hub
87e21d1 verified
# Copyright 2024 NVIDIA CORPORATION & AFFILIATES
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# SPDX-License-Identifier: Apache-2.0
import argparse
import json
import os
import re
import time
import warnings
from dataclasses import dataclass, field
from typing import Optional
import numpy as np
import pyrallis
import torch
from einops import rearrange
from PIL import Image
from torchvision.utils import _log_api_usage_once, make_grid, save_image
from tqdm import tqdm
warnings.filterwarnings("ignore") # ignore warning
from diffusion import DPMS, FlowEuler, SASolverSampler
from diffusion.data.datasets.utils import *
from diffusion.model.builder import build_model, get_tokenizer_and_text_encoder, get_vae, vae_decode
from diffusion.model.utils import prepare_prompt_ar
from diffusion.utils.config import SanaConfig
from diffusion.utils.logger import get_root_logger
# from diffusion.utils.misc import read_config
from tools.download import find_model
@torch.no_grad()
def pil_image(
tensor,
**kwargs,
) -> Image:
if not torch.jit.is_scripting() and not torch.jit.is_tracing():
_log_api_usage_once(save_image)
grid = make_grid(tensor, **kwargs)
# Add 0.5 after unnormalizing to [0, 255] to round to the nearest integer
ndarr = grid.mul(255).add_(0.5).clamp_(0, 255).permute(1, 2, 0).to("cpu", torch.uint8).numpy()
img = Image.fromarray(ndarr)
return img
def set_env(seed=0, latent_size=256):
torch.manual_seed(seed)
torch.set_grad_enabled(False)
for _ in range(30):
torch.randn(1, 4, latent_size, latent_size)
@torch.inference_mode()
def visualize(items, bs, sample_steps, cfg_scale, pag_scale=1.0):
generator = torch.Generator(device=device).manual_seed(args.seed)
tqdm_desc = f"{save_root.split('/')[-1]} Using GPU: {args.gpu_id}: {args.start_index}-{args.end_index}"
assert bs == 1
for chunk in tqdm(list(get_chunks(items, bs)), desc=tqdm_desc, unit="batch", position=args.gpu_id, leave=True):
prompt = data_dict[chunk[0]]["prompt"]
# Generate images
with torch.no_grad():
all_samples = list()
for _ in range((args.n_samples + batch_size - 1) // batch_size):
prompts, hw, ar = (
[],
torch.tensor([[args.image_size, args.image_size]], dtype=torch.float, device=device).repeat(
batch_size, 1
),
torch.tensor([[1.0]], device=device).repeat(batch_size, 1),
)
for _ in range(batch_size):
prompts.append(prepare_prompt_ar(prompt, base_ratios, device=device, show=False)[0].strip())
latent_size_h, latent_size_w = latent_size, latent_size
# check exists
save_file_name = f"{chunk[0]}.jpg"
save_path = os.path.join(save_root, save_file_name)
if os.path.exists(save_path):
# make sure the noise is totally same
torch.randn(
len(prompts),
config.vae.vae_latent_dim,
latent_size,
latent_size,
device=device,
generator=generator,
)
continue
# prepare text feature
caption_token = tokenizer(
prompts, max_length=max_sequence_length, padding="max_length", truncation=True, return_tensors="pt"
).to(device)
caption_embs = text_encoder(caption_token.input_ids, caption_token.attention_mask)[0][:, None]
emb_masks, null_y = caption_token.attention_mask, null_caption_embs.repeat(len(prompts), 1, 1)[:, None]
# start sampling
with torch.no_grad():
n = len(prompts)
z = torch.randn(
n, config.vae.vae_latent_dim, latent_size, latent_size, device=device, generator=generator
)
model_kwargs = dict(data_info={"img_hw": hw, "aspect_ratio": ar}, mask=emb_masks)
if args.sampling_algo == "dpm-solver":
dpm_solver = DPMS(
model.forward_with_dpmsolver,
condition=caption_embs,
uncondition=null_y,
cfg_scale=cfg_scale,
model_kwargs=model_kwargs,
)
samples = dpm_solver.sample(
z,
steps=sample_steps,
order=2,
skip_type="time_uniform",
method="multistep",
)
elif args.sampling_algo == "sa-solver":
sa_solver = SASolverSampler(model.forward_with_dpmsolver, device=device)
samples = sa_solver.sample(
S=25,
batch_size=n,
shape=(config.vae.vae_latent_dim, latent_size_h, latent_size_w),
eta=1,
conditioning=caption_embs,
unconditional_conditioning=null_y,
unconditional_guidance_scale=cfg_scale,
model_kwargs=model_kwargs,
)[0]
elif args.sampling_algo == "flow_euler":
flow_solver = FlowEuler(
model,
condition=caption_embs,
uncondition=null_y,
cfg_scale=cfg_scale,
model_kwargs=model_kwargs,
)
samples = flow_solver.sample(
z,
steps=sample_steps,
)
elif args.sampling_algo == "flow_dpm-solver":
dpm_solver = DPMS(
model.forward_with_dpmsolver,
condition=caption_embs,
uncondition=null_y,
guidance_type=guidance_type,
cfg_scale=cfg_scale,
pag_scale=pag_scale,
pag_applied_layers=pag_applied_layers,
model_type="flow",
model_kwargs=model_kwargs,
schedule="FLOW",
interval_guidance=args.interval_guidance,
)
samples = dpm_solver.sample(
z,
steps=sample_steps,
order=2,
skip_type="time_uniform_flow",
method="multistep",
flow_shift=flow_shift,
)
else:
raise ValueError(f"{args.sampling_algo} is not defined")
samples = samples.to(weight_dtype)
samples = vae_decode(config.vae.vae_type, vae, samples)
torch.cuda.empty_cache()
all_samples.append(samples)
if all_samples:
# additionally, save as grid
grid = torch.stack(all_samples, 0)
grid = rearrange(grid, "n b c h w -> (n b) c h w")
grid = make_grid(grid, nrow=n_rows, normalize=True, value_range=(-1, 1))
# to image
grid = grid.mul(255).add_(0.5).clamp_(0, 255).permute(1, 2, 0).to("cpu", torch.uint8).numpy()
grid = Image.fromarray(grid.astype(np.uint8))
grid.save(save_path)
del grid
del all_samples
print("Done.")
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument("--config", type=str, help="config")
parser.add_argument("--model_path", default=None, type=str, help="Path to the model file (optional)")
return parser.parse_known_args()[0]
@dataclass
class SanaInference(SanaConfig):
config: Optional[str] = "configs/sana_config/1024ms/Sana_1600M_img1024.yaml" # config
dataset: str = "DPG"
outdir: str = "outputs"
n_samples: int = 4
batch_size: int = 1
skip_grid: bool = False
position_model_path: str = "output/pretrained_models/Sana.pth"
model_path: str = None
txt_file: str = "asset/samples.txt"
json_file: str = None
sample_nums: int = 1065
cfg_scale: float = 4.5
pag_scale: float = 1.0
sampling_algo: str = field(
default="dpm-solver", metadata={"choices": ["dpm-solver", "sa-solver", "flow_euler", "flow_dpm-solver"]}
)
bs: int = 1
seed: int = 0
step: int = -1
add_label: str = ""
tar_and_del: bool = False
exist_time_prefix: str = ""
gpu_id: int = 0
image_size: int = 512
custom_image_size: int = None
start_index: int = 0
end_index: int = 553
interval_guidance: list = field(
default_factory=lambda: [0, 1], metadata={"help": "A list value, like [0, 1.] for use cfg"}
)
ablation_selections: list = None
ablation_key: str = field(default=None, metadata={"choices": ["step", "cfg_scale", "pag_scale"]})
if_save_dirname: bool = False
if __name__ == "__main__":
args = get_args()
config = args = pyrallis.parse(config_class=SanaInference, config_path=args.config)
# config = read_config(args.config)
args.image_size = config.model.image_size
if args.custom_image_size:
args.image_size = args.custom_image_size
print(f"custom_image_size: {args.image_size}")
set_env(args.seed, args.image_size // config.vae.vae_downsample_rate)
device = "cuda" if torch.cuda.is_available() else "cpu"
logger = get_root_logger()
n_rows = args.n_samples // 2
batch_size = args.n_samples
assert args.batch_size == 1, ValueError(f"{batch_size} > 1 is not available in DPG-bench")
# only support fixed latent size currently
latent_size = args.image_size // config.vae.vae_downsample_rate
max_sequence_length = config.text_encoder.model_max_length
pe_interpolation = config.model.pe_interpolation
micro_condition = config.model.micro_condition
flow_shift = config.scheduler.flow_shift
pag_applied_layers = config.model.pag_applied_layers
guidance_type = "classifier-free_PAG"
# guidance_type = config.guidance_type
assert (
isinstance(args.interval_guidance, list)
and len(args.interval_guidance) == 2
and args.interval_guidance[0] <= args.interval_guidance[1]
)
args.interval_guidance = [max(0, args.interval_guidance[0]), min(1, args.interval_guidance[1])]
sample_steps_dict = {"dpm-solver": 20, "sa-solver": 25, "flow_dpm-solver": 20, "flow_euler": 28}
sample_steps = args.step if args.step != -1 else sample_steps_dict[args.sampling_algo]
if config.model.mixed_precision == "fp16":
weight_dtype = torch.float16
elif config.model.mixed_precision == "bf16":
weight_dtype = torch.bfloat16
elif config.model.mixed_precision == "fp32":
weight_dtype = torch.float32
else:
raise ValueError(f"weigh precision {config.model.mixed_precision} is not defined")
logger.info(f"Inference with {weight_dtype}, default guidance_type: {guidance_type}, flow_shift: {flow_shift}")
vae = get_vae(config.vae.vae_type, config.vae.vae_pretrained, device).to(weight_dtype)
tokenizer, text_encoder = get_tokenizer_and_text_encoder(name=config.text_encoder.text_encoder_name, device=device)
null_caption_token = tokenizer(
"", max_length=max_sequence_length, padding="max_length", truncation=True, return_tensors="pt"
).to(device)
null_caption_embs = text_encoder(null_caption_token.input_ids, null_caption_token.attention_mask)[0]
# model setting
pred_sigma = getattr(config.scheduler, "pred_sigma", True)
learn_sigma = getattr(config.scheduler, "learn_sigma", True) and pred_sigma
model_kwargs = {
"input_size": latent_size,
"pe_interpolation": config.model.pe_interpolation,
"config": config,
"model_max_length": config.text_encoder.model_max_length,
"qk_norm": config.model.qk_norm,
"micro_condition": config.model.micro_condition,
"caption_channels": text_encoder.config.hidden_size,
"y_norm": config.text_encoder.y_norm,
"attn_type": config.model.attn_type,
"ffn_type": config.model.ffn_type,
"mlp_ratio": config.model.mlp_ratio,
"mlp_acts": list(config.model.mlp_acts),
"in_channels": config.vae.vae_latent_dim,
"y_norm_scale_factor": config.text_encoder.y_norm_scale_factor,
"use_pe": config.model.use_pe,
"linear_head_dim": config.model.linear_head_dim,
"pred_sigma": pred_sigma,
"learn_sigma": learn_sigma,
}
model = build_model(
config.model.model, use_fp32_attention=config.model.get("fp32_attention", False), **model_kwargs
).to(device)
# model = build_model(config.model, **model_kwargs).to(device)
logger.info(
f"{model.__class__.__name__}:{config.model.model}, Model Parameters: {sum(p.numel() for p in model.parameters()):,}"
)
args.model_path = args.model_path or args.position_model_path
logger.info("Generating sample from ckpt: %s" % args.model_path)
state_dict = find_model(args.model_path)
if "pos_embed" in state_dict["state_dict"]:
del state_dict["state_dict"]["pos_embed"]
missing, unexpected = model.load_state_dict(state_dict["state_dict"], strict=False)
logger.warning(f"Missing keys: {missing}")
logger.warning(f"Unexpected keys: {unexpected}")
model.eval().to(weight_dtype)
base_ratios = eval(f"ASPECT_RATIO_{args.image_size}_TEST")
args.sampling_algo = (
args.sampling_algo
if ("flow" not in args.model_path or args.sampling_algo == "flow_dpm-solver")
else "flow_euler"
)
work_dir = (
f"/{os.path.join(*args.model_path.split('/')[:-2])}"
if args.model_path.startswith("/")
else os.path.join(*args.model_path.split("/")[:-2])
)
# dataset
dict_prompt = args.json_file is not None
if dict_prompt:
data_dict = json.load(open(args.json_file))
items = list(data_dict.keys())
else:
with open(args.txt_file) as f:
items = [item.strip() for item in f.readlines()]
logger.info(f"Eval first {min(args.sample_nums, len(items))}/{len(items)} samples")
items = items[: max(0, args.sample_nums)]
items = items[max(0, args.start_index) : min(len(items), args.end_index)] # save path
match = re.search(r".*epoch_(\d+).*step_(\d+).*", args.model_path)
epoch_name, step_name = match.groups() if match else ("unknown", "unknown")
img_save_dir = os.path.join(str(work_dir), "vis")
os.umask(0o000)
os.makedirs(img_save_dir, exist_ok=True)
logger.info(f"Sampler {args.sampling_algo}")
def create_save_root(args, dataset, epoch_name, step_name, sample_steps, guidance_type):
save_root = os.path.join(
img_save_dir,
# f"{datetime.now().date() if args.exist_time_prefix == '' else args.exist_time_prefix}_"
f"{dataset}_epoch{epoch_name}_step{step_name}_scale{args.cfg_scale}"
f"_step{sample_steps}_size{args.image_size}_bs{batch_size}_samp{args.sampling_algo}"
f"_seed{args.seed}_{str(weight_dtype).split('.')[-1]}",
)
if args.pag_scale != 1.0:
save_root = save_root.replace(f"scale{args.cfg_scale}", f"scale{args.cfg_scale}_pagscale{args.pag_scale}")
if flow_shift != 1.0:
save_root += f"_flowshift{flow_shift}"
if guidance_type != "classifier-free":
save_root += f"_{guidance_type}"
if args.interval_guidance[0] != 0 and args.interval_guidance[1] != 1:
save_root += f"_intervalguidance{args.interval_guidance[0]}{args.interval_guidance[1]}"
save_root += f"_imgnums{args.sample_nums}" + args.add_label
return save_root
def guidance_type_select(default_guidance_type, pag_scale, attn_type):
guidance_type = default_guidance_type
if not (pag_scale > 1.0 and attn_type == "linear"):
logger.info("Setting back to classifier-free")
guidance_type = "classifier-free"
return guidance_type
dataset = "MJHQ-30K" if args.json_file and "MJHQ-30K" in args.json_file else args.dataset
if args.ablation_selections and args.ablation_key:
for ablation_factor in args.ablation_selections:
setattr(args, args.ablation_key, eval(ablation_factor))
print(f"Setting {args.ablation_key}={eval(ablation_factor)}")
sample_steps = args.step if args.step != -1 else sample_steps_dict[args.sampling_algo]
guidance_type = guidance_type_select(guidance_type, args.pag_scale, config.model.attn_type)
save_root = create_save_root(args, dataset, epoch_name, step_name, sample_steps, guidance_type)
os.makedirs(save_root, exist_ok=True)
if args.if_save_dirname and args.gpu_id == 0:
# save at work_dir/metrics/tmp_xxx.txt for metrics testing
with open(f"{work_dir}/metrics/tmp_{dataset}_{time.time()}.txt", "w") as f:
print(f"save tmp file at {work_dir}/metrics/tmp_{dataset}_{time.time()}.txt")
f.write(os.path.basename(save_root))
logger.info(f"Inference with {weight_dtype}, guidance_type: {guidance_type}, flow_shift: {flow_shift}")
visualize(items, args.bs, sample_steps, args.cfg_scale, args.pag_scale)
else:
guidance_type = guidance_type_select(guidance_type, args.pag_scale, config.model.attn_type)
logger.info(f"Inference with {weight_dtype}, guidance_type: {guidance_type}, flow_shift: {flow_shift}")
save_root = create_save_root(args, dataset, epoch_name, step_name, sample_steps, guidance_type)
os.makedirs(save_root, exist_ok=True)
if args.if_save_dirname and args.gpu_id == 0:
# save at work_dir/metrics/tmp_dpg_xxx.txt for metrics testing
with open(f"{work_dir}/metrics/tmp_{dataset}_{time.time()}.txt", "w") as f:
print(f"save tmp file at {work_dir}/metrics/tmp_{dataset}_{time.time()}.txt")
f.write(os.path.basename(save_root))
visualize(items, args.bs, sample_steps, args.cfg_scale, args.pag_scale)