nvlabs-sana / scripts /interface.py
imw34531's picture
Upload folder using huggingface_hub
87e21d1 verified
#!/usr/bin/env python
# Copyright 2024 NVIDIA CORPORATION & AFFILIATES
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# SPDX-License-Identifier: Apache-2.0
import argparse
import gc
import os
import random
import warnings
from dataclasses import dataclass, field
from datetime import datetime
from typing import List, Optional, Tuple, Union
import gradio as gr
import numpy as np
import pyrallis
import torch
from gradio.components import Image, Textbox
from torchvision.utils import _log_api_usage_once, make_grid, save_image
warnings.filterwarnings("ignore") # ignore warning
from asset.examples import examples
from diffusion import DPMS, FlowEuler, SASolverSampler
from diffusion.data.datasets.utils import *
from diffusion.model.builder import build_model, get_tokenizer_and_text_encoder, get_vae, vae_decode
from diffusion.model.utils import prepare_prompt_ar, resize_and_crop_tensor
from diffusion.utils.config import SanaConfig
from diffusion.utils.dist_utils import flush
from tools.download import find_model
# from diffusion.utils.misc import read_config
MAX_SEED = np.iinfo(np.int32).max
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument("--config", type=str, help="config path")
return parser.parse_known_args()[0]
@dataclass
class SanaInference(SanaConfig):
config: Optional[str] = "configs/sana_config/1024ms/Sana_1600M_img1024.yaml" # config
model_path: str = field(
default="output/Sana_1600M/SANA.pth", metadata={"help": "Path to the model file (positional)"}
)
output: str = "./output"
bs: int = 1
image_size: int = 1024
cfg_scale: float = 5.0
pag_scale: float = 2.0
seed: int = 42
step: int = -1
port: int = 7788
custom_image_size: Optional[int] = None
shield_model_path: str = field(
default="google/shieldgemma-2b",
metadata={"help": "The path to shield model, we employ ShieldGemma-2B by default."},
)
@torch.no_grad()
def ndarr_image(
tensor: Union[torch.Tensor, List[torch.Tensor]],
**kwargs,
) -> None:
if not torch.jit.is_scripting() and not torch.jit.is_tracing():
_log_api_usage_once(save_image)
grid = make_grid(tensor, **kwargs)
# Add 0.5 after unnormalizing to [0, 255] to round to the nearest integer
ndarr = grid.mul(255).add_(0.5).clamp_(0, 255).permute(1, 2, 0).to("cpu", torch.uint8).numpy()
return ndarr
def set_env(seed=0):
torch.manual_seed(seed)
torch.set_grad_enabled(False)
for _ in range(30):
torch.randn(1, 4, args.image_size, args.image_size)
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
if randomize_seed:
seed = random.randint(0, MAX_SEED)
return seed
def classify_height_width_bin(height: int, width: int, ratios: dict) -> Tuple[int, int]:
"""Returns binned height and width."""
ar = float(height / width)
closest_ratio = min(ratios.keys(), key=lambda ratio: abs(float(ratio) - ar))
default_hw = ratios[closest_ratio]
return int(default_hw[0]), int(default_hw[1])
@torch.inference_mode()
def generate_img(
prompt,
sampler,
sample_steps,
scale,
pag_scale=1.0,
guidance_type="classifier-free",
seed=0,
randomize_seed=False,
base_size=1024,
height=1024,
width=1024,
):
flush()
gc.collect()
torch.cuda.empty_cache()
seed = int(randomize_seed_fn(seed, randomize_seed))
set_env(seed)
base_ratios = eval(f"ASPECT_RATIO_{base_size}_TEST")
os.makedirs(f"output/demo/online_demo_prompts/", exist_ok=True)
save_promt_path = f"output/demo/online_demo_prompts/tested_prompts{datetime.now().date()}.txt"
with open(save_promt_path, "a") as f:
f.write(f"{seed}: {prompt}" + "\n")
print(f"{seed}: {prompt}")
prompt_clean, prompt_show, _, _, _ = prepare_prompt_ar(prompt, base_ratios, device=device) # ar for aspect ratio
orig_height, orig_width = height, width
height, width = classify_height_width_bin(height, width, ratios=base_ratios)
prompt_show += (
f"\n Sample steps: {sample_steps}, CFG Scale: {scale}, PAG Scale: {pag_scale}, flow_shift: {flow_shift}"
)
prompt_clean = prompt_clean.strip()
if isinstance(prompt_clean, str):
prompts = [prompt_clean]
# prepare text feature
if not config.text_encoder.chi_prompt:
max_length_all = max_sequence_length
prompts_all = prompts
else:
chi_prompt = "\n".join(config.text_encoder.chi_prompt)
prompts_all = [chi_prompt + prompt for prompt in prompts]
num_chi_prompt_tokens = len(tokenizer.encode(chi_prompt))
max_length_all = num_chi_prompt_tokens + max_sequence_length - 2 # magic number 2: [bos], [_]
caption_token = tokenizer(
prompts_all, max_length=max_length_all, padding="max_length", truncation=True, return_tensors="pt"
).to(device)
select_index = [0] + list(range(-max_sequence_length + 1, 0))
caption_embs = text_encoder(caption_token.input_ids, caption_token.attention_mask)[0][:, None][:, :, select_index]
emb_masks = caption_token.attention_mask[:, select_index]
null_y = null_caption_embs.repeat(len(prompts), 1, 1)[:, None]
n = len(prompts)
latent_size_h, latent_size_w = height // config.vae.vae_downsample_rate, width // config.vae.vae_downsample_rate
z = torch.randn(n, config.vae.vae_latent_dim, latent_size_h, latent_size_w, device=device, dtype=weight_dtype)
model_kwargs = dict(data_info={"img_hw": (latent_size_h, latent_size_w), "aspect_ratio": 1.0}, mask=emb_masks)
print(f"Latent Size: {z.shape}")
# Sample images:
if sampler == "dpm-solver":
# Create sampling noise:
dpm_solver = DPMS(
model.forward_with_dpmsolver,
condition=caption_embs,
uncondition=null_y,
cfg_scale=scale,
model_kwargs=model_kwargs,
)
samples = dpm_solver.sample(
z,
steps=sample_steps,
order=2,
skip_type="time_uniform",
method="multistep",
)
elif sampler == "sa-solver":
# Create sampling noise:
sa_solver = SASolverSampler(model.forward_with_dpmsolver, device=device)
samples = sa_solver.sample(
S=sample_steps,
batch_size=n,
shape=(4, latent_size_h, latent_size_w),
eta=1,
conditioning=caption_embs,
unconditional_conditioning=null_y,
unconditional_guidance_scale=scale,
model_kwargs=model_kwargs,
)[0]
elif sampler == "flow_euler":
flow_solver = FlowEuler(
model, condition=caption_embs, uncondition=null_y, cfg_scale=scale, model_kwargs=model_kwargs
)
samples = flow_solver.sample(
z,
steps=sample_steps,
)
elif sampler == "flow_dpm-solver":
if not (pag_scale > 1.0 and config.model.attn_type == "linear"):
guidance_type = "classifier-free"
dpm_solver = DPMS(
model,
condition=caption_embs,
uncondition=null_y,
guidance_type=guidance_type,
cfg_scale=scale,
pag_scale=pag_scale,
pag_applied_layers=pag_applied_layers,
model_type="flow",
model_kwargs=model_kwargs,
schedule="FLOW",
)
samples = dpm_solver.sample(
z,
steps=sample_steps,
order=2,
skip_type="time_uniform_flow",
method="multistep",
flow_shift=flow_shift,
)
else:
raise ValueError(f"{args.sampling_algo} is not defined")
samples = samples.to(weight_dtype)
samples = vae_decode(config.vae.vae_type, vae, samples)
samples = resize_and_crop_tensor(samples, orig_width, orig_height)
display_model_info = (
f"Model path: {args.model_path},\nBase image size: {args.image_size}, \nSampling Algo: {sampler}"
)
return ndarr_image(samples, normalize=True, value_range=(-1, 1)), prompt_show, display_model_info, seed
if __name__ == "__main__":
from diffusion.utils.logger import get_root_logger
args = get_args()
config = args = pyrallis.parse(config_class=SanaInference, config_path=args.config)
# config = read_config(args.config)
device = "cuda" if torch.cuda.is_available() else "cpu"
logger = get_root_logger()
args.image_size = config.model.image_size
assert args.image_size in [
256,
512,
1024,
2048,
4096,
], "We only provide pre-trained models for 256x256, 512x512, 1024x1024, 2048x2048 and 4096x4096 resolutions."
# only support fixed latent size currently
latent_size = config.model.image_size // config.vae.vae_downsample_rate
max_sequence_length = config.text_encoder.model_max_length
pe_interpolation = config.model.pe_interpolation
micro_condition = config.model.micro_condition
pag_applied_layers = config.model.pag_applied_layers
flow_shift = config.scheduler.flow_shift
if config.model.mixed_precision == "fp16":
weight_dtype = torch.float16
elif config.model.mixed_precision == "bf16":
weight_dtype = torch.bfloat16
elif config.model.mixed_precision == "fp32":
weight_dtype = torch.float32
else:
raise ValueError(f"weigh precision {config.model.mixed_precision} is not defined")
logger.info(f"Inference with {weight_dtype}")
vae = get_vae(config.vae.vae_type, config.vae.vae_pretrained, device).to(weight_dtype)
tokenizer, text_encoder = get_tokenizer_and_text_encoder(name=config.text_encoder.text_encoder_name, device=device)
# model setting
pred_sigma = getattr(config.scheduler, "pred_sigma", True)
learn_sigma = getattr(config.scheduler, "learn_sigma", True) and pred_sigma
model_kwargs = {
"input_size": latent_size,
"pe_interpolation": config.model.pe_interpolation,
"config": config,
"model_max_length": config.text_encoder.model_max_length,
"qk_norm": config.model.qk_norm,
"micro_condition": config.model.micro_condition,
"caption_channels": text_encoder.config.hidden_size,
"y_norm": config.text_encoder.y_norm,
"attn_type": config.model.attn_type,
"ffn_type": config.model.ffn_type,
"mlp_ratio": config.model.mlp_ratio,
"mlp_acts": list(config.model.mlp_acts),
"in_channels": config.vae.vae_latent_dim,
"y_norm_scale_factor": config.text_encoder.y_norm_scale_factor,
"use_pe": config.model.use_pe,
"linear_head_dim": config.model.linear_head_dim,
"pred_sigma": pred_sigma,
"learn_sigma": learn_sigma,
}
model = build_model(
config.model.model, use_fp32_attention=config.model.get("fp32_attention", False), **model_kwargs
).to(device)
# model = build_model(config.model, **model_kwargs).to(device)
logger.info(
f"{model.__class__.__name__}:{config.model.model}, Model Parameters: {sum(p.numel() for p in model.parameters()):,}"
)
logger.info("Generating sample from ckpt: %s" % args.model_path)
state_dict = find_model(args.model_path)
if "pos_embed" in state_dict["state_dict"]:
del state_dict["state_dict"]["pos_embed"]
missing, unexpected = model.load_state_dict(state_dict["state_dict"], strict=False)
logger.warning(f"Missing keys: {missing}")
logger.warning(f"Unexpected keys: {unexpected}")
model.eval().to(weight_dtype)
base_ratios = eval(f"ASPECT_RATIO_{args.image_size}_TEST")
null_caption_token = tokenizer(
"", max_length=max_sequence_length, padding="max_length", truncation=True, return_tensors="pt"
).to(device)
null_caption_embs = text_encoder(null_caption_token.input_ids, attention_mask=null_caption_token.attention_mask)[0]
model_size = "1.6" if "D20" in args.model_path else "0.6"
title = f"""
<div style='display: flex; align-items: center; justify-content: center; text-align: center;'>
<img src="https://raw.githubusercontent.com/NVlabs/Sana/refs/heads/main/asset/logo.png" width="50%" alt="logo"/>
</div>
"""
DESCRIPTION = f"""
<p><span style="font-size: 36px; font-weight: bold;">Sana-{model_size}B</span><span style="font-size: 20px; font-weight: bold;">{args.image_size}px</span></p>
<p style="font-size: 16px; font-weight: bold;">Sana: Efficient High-Resolution Image Synthesis with Linear Diffusion Transformer</p>
<p><span style="font-size: 16px;"><a href="https://arxiv.org/abs/2410.10629">[Paper]</a></span> <span style="font-size: 16px;"><a href="https://github.com/NVlabs/Sana">[Github(coming soon)]</a></span> <span style="font-size: 16px;"><a href="https://nvlabs.github.io/Sana">[Project]</a></span</p>
<p style="font-size: 16px; font-weight: bold;">Powered by <a href="https://hanlab.mit.edu/projects/dc-ae">DC-AE</a> with 32x latent space</p>
"""
if model_size == "0.6":
DESCRIPTION += "\n<p>0.6B model's text rendering ability is limited.</p>"
if not torch.cuda.is_available():
DESCRIPTION += "\n<p>Running on CPU 🥶 This demo does not work on CPU.</p>"
demo = gr.Interface(
fn=generate_img,
inputs=[
Textbox(
label="Note: If you want to specify a aspect ratio or determine a customized height and width, "
"use --ar h:w (or --aspect_ratio h:w) or --hw h:w. If no aspect ratio or hw is given, all setting will be default.",
placeholder="Please enter your prompt. \n",
),
gr.Radio(
choices=["dpm-solver", "sa-solver", "flow_dpm-solver", "flow_euler"],
label=f"Sampler",
interactive=True,
value="flow_dpm-solver",
),
gr.Slider(label="Sample Steps", minimum=1, maximum=100, value=20, step=1),
gr.Slider(label="Guidance Scale", minimum=1.0, maximum=30.0, value=5.0, step=0.1),
gr.Slider(label="PAG Scale", minimum=1.0, maximum=10.0, value=2.5, step=0.5),
gr.Radio(
choices=["classifier-free", "classifier-free_PAG", "classifier-free_PAG_seq"],
label=f"Guidance Type",
interactive=True,
value="classifier-free_PAG_seq",
),
gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
),
gr.Checkbox(label="Randomize seed", value=True),
gr.Radio(
choices=[256, 512, 1024, 2048, 4096],
label=f"Base Size",
interactive=True,
value=args.image_size,
),
gr.Slider(
label="Height",
minimum=256,
maximum=6000,
step=32,
value=args.image_size,
),
gr.Slider(
label="Width",
minimum=256,
maximum=6000,
step=32,
value=args.image_size,
),
],
outputs=[
Image(type="numpy", label="Img"),
Textbox(label="clean prompt"),
Textbox(label="model info"),
gr.Slider(label="seed"),
],
title=title,
description=DESCRIPTION,
examples=examples,
)
demo.launch(server_name="0.0.0.0", server_port=args.port, debug=True, share=True)