Spaces:
Sleeping
Sleeping
#!/usr/bin/python3 | |
# -*- coding: utf-8 -*- | |
import argparse | |
from collections import defaultdict | |
from datetime import datetime | |
import functools | |
import io | |
import logging | |
from pathlib import Path | |
import platform | |
import time | |
from project_settings import project_path, log_directory | |
import log | |
log.setup(log_directory=log_directory) | |
import gradio as gr | |
import torch | |
import torchaudio | |
from toolbox.k2_sherpa.examples import examples | |
from toolbox.k2_sherpa import decode, models | |
from toolbox.k2_sherpa.utils import audio_convert | |
main_logger = logging.getLogger("main") | |
def get_args(): | |
parser = argparse.ArgumentParser() | |
parser.add_argument( | |
"--pretrained_model_dir", | |
default=(project_path / "pretrained_models").as_posix(), | |
type=str | |
) | |
args = parser.parse_args() | |
return args | |
def update_model_dropdown(language: str): | |
if language not in models.model_map.keys(): | |
raise ValueError(f"Unsupported language: {language}") | |
choices = models.model_map[language] | |
choices = [c["repo_id"] for c in choices] | |
return gr.Dropdown( | |
choices=choices, | |
value=choices[0], | |
interactive=True, | |
) | |
def build_html_output(s: str, style: str = "result_item_success"): | |
return f""" | |
<div class='result'> | |
<div class='result_item {style}'> | |
{s} | |
</div> | |
</div> | |
""" | |
def process( | |
language: str, | |
repo_id: str, | |
decoding_method: str, | |
num_active_paths: int, | |
add_punctuation: str, | |
in_filename: str, | |
pretrained_model_dir: Path, | |
): | |
main_logger.info("language: {}".format(language)) | |
main_logger.info("repo_id: {}".format(repo_id)) | |
main_logger.info("decoding_method: {}".format(decoding_method)) | |
main_logger.info("num_active_paths: {}".format(num_active_paths)) | |
main_logger.info("in_filename: {}".format(in_filename)) | |
m_list = models.model_map.get(language) | |
if m_list is None: | |
raise AssertionError("language invalid: {}".format(language)) | |
m_dict = None | |
for m in m_list: | |
if m["repo_id"] == repo_id: | |
m_dict = m | |
if m_dict is None: | |
raise AssertionError("repo_id invalid: {}".format(repo_id)) | |
local_model_dir = pretrained_model_dir / "huggingface" / repo_id | |
out_filename = io.BytesIO() | |
audio_convert(in_filename, out_filename) | |
recognizer = models.load_recognizer( | |
repo_id=m_dict["repo_id"], | |
nn_model_file=m_dict["nn_model_file"], | |
tokens_file=m_dict["tokens_file"], | |
sub_folder=m_dict["sub_folder"], | |
local_model_dir=local_model_dir, | |
recognizer_type=m_dict["recognizer_type"], | |
decoding_method=decoding_method, | |
num_active_paths=num_active_paths, | |
) | |
now = datetime.now() | |
date_time = now.strftime("%Y-%m-%d %H:%M:%S.%f") | |
logging.info(f"Started at {date_time}") | |
start = time.time() | |
text = decode.decode_by_recognizer(recognizer=recognizer, | |
filename=out_filename, | |
) | |
date_time = now.strftime("%Y-%m-%d %H:%M:%S.%f") | |
end = time.time() | |
metadata = torchaudio.info(out_filename) | |
duration = metadata.num_frames / 16000 | |
rtf = (end - start) / duration | |
main_logger.info(f"Finished at {date_time} s. Elapsed: {end - start: .3f} s") | |
info = f""" | |
Wave duration : {duration: .3f} s <br/> | |
Processing time: {end - start: .3f} s <br/> | |
RTF: {end - start: .3f}/{duration: .3f} = {rtf:.3f} <br/> | |
""" | |
main_logger.info(info) | |
main_logger.info(f"\nrepo_id: {repo_id}\nhyp: {text}") | |
return text, build_html_output(info) | |
def process_uploaded_file(language: str, | |
repo_id: str, | |
decoding_method: str, | |
num_active_paths: int, | |
add_punctuation: str, | |
in_filename: str, | |
pretrained_model_dir: Path, | |
): | |
if in_filename is None or in_filename == "": | |
return "", build_html_output( | |
"Please first upload a file and then click " | |
'the button "submit for recognition"', | |
"result_item_error", | |
) | |
main_logger.info(f"Processing uploaded file: {in_filename}") | |
try: | |
return process( | |
in_filename=in_filename, | |
language=language, | |
repo_id=repo_id, | |
decoding_method=decoding_method, | |
num_active_paths=num_active_paths, | |
add_punctuation=add_punctuation, | |
pretrained_model_dir=pretrained_model_dir, | |
) | |
except Exception as e: | |
msg = "transcribe error: {}".format(str(e)) | |
main_logger.info(msg) | |
return "", build_html_output(msg, "result_item_error") | |
# css style is copied from | |
# https://huggingface.co/spaces/alphacep/asr/blob/main/app.py#L113 | |
css = """ | |
.result {display:flex;flex-direction:column} | |
.result_item {padding:15px;margin-bottom:8px;border-radius:15px;width:100%} | |
.result_item_success {background-color:mediumaquamarine;color:white;align-self:start} | |
.result_item_error {background-color:#ff7070;color:white;align-self:start} | |
""" | |
def main(): | |
args = get_args() | |
pretrained_model_dir = Path(args.pretrained_model_dir) | |
pretrained_model_dir.mkdir(exist_ok=True) | |
process_uploaded_file_ = functools.partial( | |
process_uploaded_file, | |
pretrained_model_dir=pretrained_model_dir, | |
) | |
title = "# Automatic Speech Recognition with Next-gen Kaldi" | |
language_choices = list(models.model_map.keys()) | |
language_to_models = defaultdict(list) | |
for k, v in models.model_map.items(): | |
for m in v: | |
repo_id = m["repo_id"] | |
language_to_models[k].append(repo_id) | |
# blocks | |
with gr.Blocks(css=css) as blocks: | |
gr.Markdown(value=title) | |
with gr.Tabs(): | |
with gr.TabItem("Upload from disk"): | |
language_radio = gr.Radio( | |
label="Language", | |
choices=language_choices, | |
value=language_choices[0], | |
) | |
model_dropdown = gr.Dropdown( | |
choices=language_to_models[language_choices[0]], | |
label="Select a model", | |
value=language_to_models[language_choices[0]][0], | |
) | |
decoding_method_radio = gr.Radio( | |
label="Decoding method", | |
choices=["greedy_search", "modified_beam_search"], | |
value="greedy_search", | |
) | |
num_active_paths_slider = gr.Slider( | |
minimum=1, | |
value=4, | |
step=1, | |
label="Number of active paths for modified_beam_search", | |
) | |
punct_radio = gr.Radio( | |
label="Whether to add punctuation (Only for Chinese and English)", | |
choices=["Yes", "No"], | |
value="Yes", | |
) | |
uploaded_file = gr.Audio( | |
sources=["upload"], | |
type="filepath", | |
label="Upload from disk", | |
) | |
upload_button = gr.Button("Submit for recognition") | |
uploaded_output = gr.Textbox(label="Recognized speech from uploaded file") | |
uploaded_html_info = gr.HTML(label="Info") | |
gr.Examples( | |
examples=examples, | |
inputs=[ | |
language_radio, | |
model_dropdown, | |
decoding_method_radio, | |
num_active_paths_slider, | |
punct_radio, | |
uploaded_file, | |
], | |
outputs=[uploaded_output, uploaded_html_info], | |
fn=process_uploaded_file_, | |
) | |
upload_button.click( | |
process_uploaded_file_, | |
inputs=[ | |
language_radio, | |
model_dropdown, | |
decoding_method_radio, | |
num_active_paths_slider, | |
punct_radio, | |
uploaded_file, | |
], | |
outputs=[uploaded_output, uploaded_html_info], | |
) | |
language_radio.change( | |
update_model_dropdown, | |
inputs=language_radio, | |
outputs=model_dropdown, | |
) | |
blocks.queue().launch( | |
share=False if platform.system() == "Windows" else False, | |
server_name="127.0.0.1" if platform.system() == "Windows" else "0.0.0.0", | |
server_port=7860 | |
) | |
return | |
if __name__ == "__main__": | |
main() | |