introvoyz041's picture
Upload folder using huggingface_hub
3f31c34 verified
raw
history blame
2.43 kB
import os
import numpy as np
import pandas as pd
import torch
from PIL import Image
from torch.utils.data import Dataset
from utils import random_box, random_click
class ISIC2016(Dataset):
def __init__(self, args, data_path , transform = None, transform_msk = None, mode = 'Training',prompt = 'click', plane = False):
df = pd.read_csv(os.path.join(data_path, 'ISBI2016_ISIC_Part1_' + mode + '_GroundTruth.csv'), encoding='gbk')
self.name_list = df.iloc[:,1].tolist()
self.label_list = df.iloc[:,2].tolist()
self.data_path = data_path
self.mode = mode
self.prompt = prompt
self.img_size = args.image_size
self.transform = transform
self.transform_msk = transform_msk
def __len__(self):
return len(self.name_list)
def __getitem__(self, index):
# if self.mode == 'Training':
# point_label = random.randint(0, 1)
# inout = random.randint(0, 1)
# else:
# inout = 1
# point_label = 1
point_label = 1
"""Get the images"""
name = self.name_list[index]
img_path = os.path.join(self.data_path, name)
mask_name = self.label_list[index]
msk_path = os.path.join(self.data_path, mask_name)
img = Image.open(img_path).convert('RGB')
mask = Image.open(msk_path).convert('L')
# if self.mode == 'Training':
# label = 0 if self.label_list[index] == 'benign' else 1
# else:
# label = int(self.label_list[index])
newsize = (self.img_size, self.img_size)
mask = mask.resize(newsize)
if self.prompt == 'click':
point_label, pt = random_click(np.array(mask) / 255, point_label)
if self.transform:
state = torch.get_rng_state()
img = self.transform(img)
torch.set_rng_state(state)
if self.transform_msk:
mask = self.transform_msk(mask).int()
# if (inout == 0 and point_label == 1) or (inout == 1 and point_label == 0):
# mask = 1 - mask
name = name.split('/')[-1].split(".jpg")[0]
image_meta_dict = {'filename_or_obj':name}
return {
'image':img,
'label': mask,
'p_label':point_label,
'pt':pt,
'image_meta_dict':image_meta_dict,
}