File size: 7,040 Bytes
81d98d1 8d4348e 81d98d1 144690a 81d98d1 1332bb5 81d98d1 144690a 81d98d1 1332bb5 81d98d1 85b2df4 81d98d1 e82b78c 81d98d1 e82b78c 81d98d1 e82b78c 81d98d1 144690a 81d98d1 8d4348e 10f304d 81d98d1 e82b78c 81d98d1 10f304d 81d98d1 144690a 8d4348e 144690a 31c9c03 1332bb5 6013c7b 1332bb5 e82b78c 1332bb5 10f304d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 |
import textwrap
import requests
from bs4 import BeautifulSoup
import difflib
from langchain.document_loaders import GutenbergLoader
import os
import langchain
from fastapi import FastAPI
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain import PromptTemplate, ConversationChain, LLMChain
from langchain.vectorstores import Chroma, FAISS
from langchain.llms import HuggingFacePipeline
from InstructorEmbedding import INSTRUCTOR
from langchain.embeddings import HuggingFaceInstructEmbeddings
from langchain.chains import RetrievalQA, ConversationalRetrievalChain
import torch
import transformers
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
from langchain.llms import Replicate
from langchain import PromptTemplate, LLMChain
class Configuration:
model_name = 'llama2-13b'
temperature = 0.5
top_p = 0.95
repetition_penalty = 1.15
split_chunk_size = 1000
split_overlap = 100
embeddings_model_repo = 'hkunlp/instructor-large'
k = 3
Embeddings_path = '/book-vectordb-chroma'
Persist_directory = './book-vectordb-chroma'
# Function to search for a book by name and return the best match URL
def search_book_by_name(book_name):
base_url = "https://www.gutenberg.org/"
search_url = base_url + "ebooks/search/?query=" + book_name.replace(" ", "+") + "&submit_search=Go%21"
response = requests.get(search_url)
soup = BeautifulSoup(response.content, "html.parser")
# Find the best match link based on similarity ratio
best_match_ratio = 0
best_match_url = ""
for link in soup.find_all("li", class_="booklink"):
link_title = link.find("span", class_="title").get_text()
similarity_ratio = difflib.SequenceMatcher(None, book_name.lower(), link_title.lower()).ratio()
if similarity_ratio > best_match_ratio:
best_match_ratio = similarity_ratio
best_match_url = base_url + link.find("a").get("href")
return best_match_url
# Function to get the "Plain Text UTF-8" download link from the book page
def get_plain_text_link(book_url):
response = requests.get(book_url)
soup = BeautifulSoup(response.content, "html.parser")
plain_text_link = ""
for row in soup.find_all("tr"):
format_cell = row.find("td", class_="unpadded icon_save")
if format_cell and "Plain Text UTF-8" in format_cell.get_text():
plain_text_link = format_cell.find("a").get("href")
break
return plain_text_link
# Function to get the content of the "Plain Text UTF-8" link
def get_plain_text_content(plain_text_link):
response = requests.get(plain_text_link)
content = response.text
return content
def select_book(book_name):
best_match_url = search_book_by_name(book_name)
if best_match_url:
book_id = best_match_url.split('/')[-1] # Extract the book ID
formatted_url = f'https://www.gutenberg.org/cache/epub/{book_id}/pg{book_id}.txt'
print(formatted_url)
loader = GutenbergLoader(formatted_url)
book_content = loader.load()
print("Book content loaded.")
return book_content
else:
print("No matching book found.")
return None
book_embeddings = None
def create_book_embeddings(book_content):
print("Creating instructor embeddings...")
text_splitter = RecursiveCharacterTextSplitter(chunk_size = Configuration.split_chunk_size,
chunk_overlap = Configuration.split_overlap)
print("Book content split into chunks.")
texts = text_splitter.split_documents(book_content)
print("Creating book embeddings...")
try:
book_embeddings = Chroma.load(persist_directory = '.',
collection_name = 'book')
except:
book_embeddings = Chroma.from_documents(documents = texts,
embedding = instructor_embeddings,
persist_directory = '.',
collection_name = 'book')
print("Book embeddings created.")
book_embeddings.add_documents(documents=texts, embedding=instructor_embeddings)
book_embeddings.persist()
def wrap_text_preserve_newlines(text, width=200): # 110
# Split the input text into lines based on newline characters
lines = text.split('\n')
# Wrap each line individually
wrapped_lines = [textwrap.fill(line, width=width) for line in lines]
# Join the wrapped lines back together using newline characters
wrapped_text = '\n'.join(wrapped_lines)
return wrapped_text
def process_llm_response(llm_response):
print(llm_response)
ans = wrap_text_preserve_newlines(llm_response['result'])
sources_used = ' \n'.join([str(source.metadata['source']) for source in llm_response['source_documents']])
ans = ans + '\n\nSources: \n' + sources_used
return ans
prompt_template = """Use the following pieces of context to answer the question at the end. If you don't know the answer, just say that you don't know, don't try to make up an answer.
{context}
Question: {question}
Answer:"""
PROMPT = PromptTemplate(
template=prompt_template, input_variables=["context", "question"]
)
def generate_answer_from_embeddings(query):
"""
Retrieve documents from the vector database and then pass them to the language model to generate an answer.
Args:
query: The user's question.
book_embeddings: The embeddings of the book.
Returns:
The answer to the question.
"""
retriever = book_embeddings.as_retriever(search_kwargs={"k": Configuration.k, "search_type": "similarity"})
docs = book_embeddings.similarity_search(query)
qa_chain = RetrievalQA.from_chain_type(
llm=llm,
chain_type="stuff",
retriever=retriever,
chain_type_kwargs={"prompt": PROMPT},
return_source_documents=True,
verbose=False,
)
llm_response = qa_chain(query)
ans = process_llm_response(llm_response)
return ans
app = FastAPI()
REPLICATE_API_TOKEN="r8_KWM7ZPHF27SufFBDWyTQdAHvU07aUHm2aUjQh"
os.environ["REPLICATE_API_TOKEN"] = REPLICATE_API_TOKEN
llm = Replicate(
model= "replicate/llama-2-70b-chat:2796ee9483c3fd7aa2e171d38f4ca12251a30609463dcfd4cd76703f22e96cdf",
input={"temperature": 0.75, "max_length": 500, "top_p": 1},
)
instructor_embeddings = HuggingFaceInstructEmbeddings(model_name = Configuration.embeddings_model_repo,
model_kwargs = {"device": "cpu"})
book_content = None
@app.get("/book")
def get_book(book_name: str):
print("Getting book...")
book_content = select_book(book_name)
create_book_embeddings(book_content)
return {"status": "success"}
@app.get("/answer")
def get_answer(query: str):
return generate_answer_from_embeddings(query)
|