File size: 17,094 Bytes
e682d93
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
# from ultralytics import YOLO
import os
import io
import base64
import time
from PIL import Image, ImageDraw, ImageFont
import json
import requests
# utility function
import os
from openai import AzureOpenAI

import json
import sys
import os
import cv2
import numpy as np
# %matplotlib inline
from matplotlib import pyplot as plt
import easyocr
reader = easyocr.Reader(['en'])
import time
import base64

import os
import ast
import torch
from typing import Tuple, List
from torchvision.ops import box_convert
import re
from torchvision.transforms import ToPILImage
import supervision as sv
import torchvision.transforms as T


def get_caption_model_processor(model_name, model_name_or_path="Salesforce/blip2-opt-2.7b", device=None):
    if not device:
        device = "cuda" if torch.cuda.is_available() else "cpu"
    if model_name == "blip2":
        from transformers import Blip2Processor, Blip2ForConditionalGeneration
        processor = Blip2Processor.from_pretrained("Salesforce/blip2-opt-2.7b")
        if device == 'cpu':
            model = Blip2ForConditionalGeneration.from_pretrained(
            model_name_or_path, device_map=None, torch_dtype=torch.float32
        ) 
        else:
            model = Blip2ForConditionalGeneration.from_pretrained(
            model_name_or_path, device_map=None, torch_dtype=torch.float16
        ).to(device)
    elif model_name == "florence2":
        from transformers import AutoProcessor, AutoModelForCausalLM 
        processor = AutoProcessor.from_pretrained("microsoft/Florence-2-base", trust_remote_code=True)
        if device == 'cpu':
            model = AutoModelForCausalLM.from_pretrained(model_name_or_path, torch_dtype=torch.float32, trust_remote_code=True)
        else:
            model = AutoModelForCausalLM.from_pretrained(model_name_or_path, torch_dtype=torch.float16, trust_remote_code=True).to(device)
    return {'model': model.to(device), 'processor': processor}


def get_yolo_model(model_path):
    from ultralytics import YOLO
    # Load the model.
    model = YOLO(model_path)
    return model


@torch.inference_mode()
def get_parsed_content_icon(filtered_boxes, ocr_bbox, image_source, caption_model_processor, prompt=None):
    to_pil = ToPILImage()
    if ocr_bbox:
        non_ocr_boxes = filtered_boxes[len(ocr_bbox):]
    else:
        non_ocr_boxes = filtered_boxes
    croped_pil_image = []
    for i, coord in enumerate(non_ocr_boxes):
        xmin, xmax = int(coord[0]*image_source.shape[1]), int(coord[2]*image_source.shape[1])
        ymin, ymax = int(coord[1]*image_source.shape[0]), int(coord[3]*image_source.shape[0])
        cropped_image = image_source[ymin:ymax, xmin:xmax, :]
        croped_pil_image.append(to_pil(cropped_image))

    model, processor = caption_model_processor['model'], caption_model_processor['processor']
    if not prompt:
        if 'florence' in model.config.name_or_path:
            prompt = "<CAPTION>"
        else:
            prompt = "The image shows"

    batch_size = 10  # Number of samples per batch
    generated_texts = []
    device = model.device

    for i in range(0, len(croped_pil_image), batch_size):
        batch = croped_pil_image[i:i+batch_size]
        if model.device.type == 'cuda':
            inputs = processor(images=batch, text=[prompt]*len(batch), return_tensors="pt").to(device=device, dtype=torch.float16)
        else:
            inputs = processor(images=batch, text=[prompt]*len(batch), return_tensors="pt").to(device=device)
        if 'florence' in model.config.name_or_path:
            generated_ids = model.generate(input_ids=inputs["input_ids"],pixel_values=inputs["pixel_values"],max_new_tokens=1024,num_beams=3, do_sample=False)
        else:
            generated_ids = model.generate(**inputs, max_length=100, num_beams=5, no_repeat_ngram_size=2, early_stopping=True, num_return_sequences=1) # temperature=0.01, do_sample=True,
        generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)
        generated_text = [gen.strip() for gen in generated_text]
        generated_texts.extend(generated_text)

    return generated_texts



def get_parsed_content_icon_phi3v(filtered_boxes, ocr_bbox, image_source, caption_model_processor):
    to_pil = ToPILImage()
    if ocr_bbox:
        non_ocr_boxes = filtered_boxes[len(ocr_bbox):]
    else:
        non_ocr_boxes = filtered_boxes
    croped_pil_image = []
    for i, coord in enumerate(non_ocr_boxes):
        xmin, xmax = int(coord[0]*image_source.shape[1]), int(coord[2]*image_source.shape[1])
        ymin, ymax = int(coord[1]*image_source.shape[0]), int(coord[3]*image_source.shape[0])
        cropped_image = image_source[ymin:ymax, xmin:xmax, :]
        croped_pil_image.append(to_pil(cropped_image))

    model, processor = caption_model_processor['model'], caption_model_processor['processor']
    device = model.device
    messages = [{"role": "user", "content": "<|image_1|>\ndescribe the icon in one sentence"}] 
    prompt = processor.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)

    batch_size = 5  # Number of samples per batch
    generated_texts = []

    for i in range(0, len(croped_pil_image), batch_size):
        images = croped_pil_image[i:i+batch_size]
        image_inputs = [processor.image_processor(x, return_tensors="pt") for x in images]
        inputs ={'input_ids': [], 'attention_mask': [], 'pixel_values': [], 'image_sizes': []}
        texts = [prompt] * len(images)
        for i, txt in enumerate(texts):
            input = processor._convert_images_texts_to_inputs(image_inputs[i], txt, return_tensors="pt")
            inputs['input_ids'].append(input['input_ids'])
            inputs['attention_mask'].append(input['attention_mask'])
            inputs['pixel_values'].append(input['pixel_values'])
            inputs['image_sizes'].append(input['image_sizes'])
        max_len = max([x.shape[1] for x in inputs['input_ids']])
        for i, v in enumerate(inputs['input_ids']):
            inputs['input_ids'][i] = torch.cat([processor.tokenizer.pad_token_id * torch.ones(1, max_len - v.shape[1], dtype=torch.long), v], dim=1)
            inputs['attention_mask'][i] = torch.cat([torch.zeros(1, max_len - v.shape[1], dtype=torch.long), inputs['attention_mask'][i]], dim=1)
        inputs_cat = {k: torch.concatenate(v).to(device) for k, v in inputs.items()}

        generation_args = { 
            "max_new_tokens": 25, 
            "temperature": 0.01, 
            "do_sample": False, 
        } 
        generate_ids = model.generate(**inputs_cat, eos_token_id=processor.tokenizer.eos_token_id, **generation_args) 
        # # remove input tokens 
        generate_ids = generate_ids[:, inputs_cat['input_ids'].shape[1]:]
        response = processor.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)
        response = [res.strip('\n').strip() for res in response]
        generated_texts.extend(response)

    return generated_texts

def remove_overlap(boxes, iou_threshold, ocr_bbox=None):
    assert ocr_bbox is None or isinstance(ocr_bbox, List)

    def box_area(box):
        return (box[2] - box[0]) * (box[3] - box[1])

    def intersection_area(box1, box2):
        x1 = max(box1[0], box2[0])
        y1 = max(box1[1], box2[1])
        x2 = min(box1[2], box2[2])
        y2 = min(box1[3], box2[3])
        return max(0, x2 - x1) * max(0, y2 - y1)

    def IoU(box1, box2):
        intersection = intersection_area(box1, box2)
        union = box_area(box1) + box_area(box2) - intersection + 1e-6
        if box_area(box1) > 0 and box_area(box2) > 0:
            ratio1 = intersection / box_area(box1)
            ratio2 = intersection / box_area(box2)
        else:
            ratio1, ratio2 = 0, 0
        return max(intersection / union, ratio1, ratio2)

    boxes = boxes.tolist()
    filtered_boxes = []
    if ocr_bbox:
        filtered_boxes.extend(ocr_bbox)
    # print('ocr_bbox!!!', ocr_bbox)
    for i, box1 in enumerate(boxes):
        # if not any(IoU(box1, box2) > iou_threshold and box_area(box1) > box_area(box2) for j, box2 in enumerate(boxes) if i != j):
        is_valid_box = True
        for j, box2 in enumerate(boxes):
            if i != j and IoU(box1, box2) > iou_threshold and box_area(box1) > box_area(box2):
                is_valid_box = False
                break
        if is_valid_box:
            # add the following 2 lines to include ocr bbox
            if ocr_bbox:
                if not any(IoU(box1, box3) > iou_threshold for k, box3 in enumerate(ocr_bbox)):
                    filtered_boxes.append(box1)
            else:
                filtered_boxes.append(box1)
    return torch.tensor(filtered_boxes)

def load_image(image_path: str) -> Tuple[np.array, torch.Tensor]:
    transform = T.Compose(
        [
            T.RandomResize([800], max_size=1333),
            T.ToTensor(),
            T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
        ]
    )
    image_source = Image.open(image_path).convert("RGB")
    image = np.asarray(image_source)
    image_transformed, _ = transform(image_source, None)
    return image, image_transformed


def annotate(image_source: np.ndarray, boxes: torch.Tensor, logits: torch.Tensor, phrases: List[str], text_scale: float, 
             text_padding=5, text_thickness=2, thickness=3) -> np.ndarray:
    """    
    This function annotates an image with bounding boxes and labels.

    Parameters:
    image_source (np.ndarray): The source image to be annotated.
    boxes (torch.Tensor): A tensor containing bounding box coordinates. in cxcywh format, pixel scale
    logits (torch.Tensor): A tensor containing confidence scores for each bounding box.
    phrases (List[str]): A list of labels for each bounding box.
    text_scale (float): The scale of the text to be displayed. 0.8 for mobile/web, 0.3 for desktop # 0.4 for mind2web

    Returns:
    np.ndarray: The annotated image.
    """
    h, w, _ = image_source.shape
    boxes = boxes * torch.Tensor([w, h, w, h])
    xyxy = box_convert(boxes=boxes, in_fmt="cxcywh", out_fmt="xyxy").numpy()
    xywh = box_convert(boxes=boxes, in_fmt="cxcywh", out_fmt="xywh").numpy()
    detections = sv.Detections(xyxy=xyxy)

    labels = [f"{phrase}" for phrase in range(boxes.shape[0])]

    from util.box_annotator import BoxAnnotator 
    box_annotator = BoxAnnotator(text_scale=text_scale, text_padding=text_padding,text_thickness=text_thickness,thickness=thickness) # 0.8 for mobile/web, 0.3 for desktop # 0.4 for mind2web
    annotated_frame = image_source.copy()
    annotated_frame = box_annotator.annotate(scene=annotated_frame, detections=detections, labels=labels, image_size=(w,h))

    label_coordinates = {f"{phrase}": v for phrase, v in zip(phrases, xywh)}
    return annotated_frame, label_coordinates


def predict(model, image, caption, box_threshold, text_threshold):
    """ Use huggingface model to replace the original model
    """
    model, processor = model['model'], model['processor']
    device = model.device

    inputs = processor(images=image, text=caption, return_tensors="pt").to(device)
    with torch.no_grad():
        outputs = model(**inputs)

    results = processor.post_process_grounded_object_detection(
        outputs,
        inputs.input_ids,
        box_threshold=box_threshold, # 0.4,
        text_threshold=text_threshold, # 0.3,
        target_sizes=[image.size[::-1]]
    )[0]
    boxes, logits, phrases = results["boxes"], results["scores"], results["labels"]
    return boxes, logits, phrases


def predict_yolo(model, image_path, box_threshold):
    """ Use huggingface model to replace the original model
    """
    # model = model['model']
    
    result = model.predict(
    source=image_path,
    conf=box_threshold,
    # iou=0.5, # default 0.7
    )
    boxes = result[0].boxes.xyxy#.tolist() # in pixel space
    conf = result[0].boxes.conf
    phrases = [str(i) for i in range(len(boxes))]

    return boxes, conf, phrases


def get_som_labeled_img(img_path, model=None, BOX_TRESHOLD = 0.01, output_coord_in_ratio=False, ocr_bbox=None, text_scale=0.4, text_padding=5, draw_bbox_config=None, caption_model_processor=None, ocr_text=[], use_local_semantics=True, iou_threshold=0.9,prompt=None):
    """ ocr_bbox: list of xyxy format bbox
    """
    TEXT_PROMPT = "clickable buttons on the screen"
    # BOX_TRESHOLD = 0.02 # 0.05/0.02 for web and 0.1 for mobile
    TEXT_TRESHOLD = 0.01 # 0.9 # 0.01
    image_source = Image.open(img_path).convert("RGB")
    w, h = image_source.size
    # import pdb; pdb.set_trace()
    if False: # TODO
        xyxy, logits, phrases = predict(model=model, image=image_source, caption=TEXT_PROMPT, box_threshold=BOX_TRESHOLD, text_threshold=TEXT_TRESHOLD)
    else:
        xyxy, logits, phrases = predict_yolo(model=model, image_path=img_path, box_threshold=BOX_TRESHOLD)
    xyxy = xyxy / torch.Tensor([w, h, w, h]).to(xyxy.device)
    image_source = np.asarray(image_source)
    phrases = [str(i) for i in range(len(phrases))]

    # annotate the image with labels
    h, w, _ = image_source.shape
    if ocr_bbox:
        ocr_bbox = torch.tensor(ocr_bbox) / torch.Tensor([w, h, w, h])
        ocr_bbox=ocr_bbox.tolist()
    else:
        print('no ocr bbox!!!')
        ocr_bbox = None
    filtered_boxes = remove_overlap(boxes=xyxy, iou_threshold=iou_threshold, ocr_bbox=ocr_bbox)
    
    # get parsed icon local semantics
    if use_local_semantics:
        caption_model = caption_model_processor['model']
        if 'phi3_v' in caption_model.config.model_type: 
            parsed_content_icon = get_parsed_content_icon_phi3v(filtered_boxes, ocr_bbox, image_source, caption_model_processor)
        else:
            parsed_content_icon = get_parsed_content_icon(filtered_boxes, ocr_bbox, image_source, caption_model_processor, prompt=prompt)
        ocr_text = [f"Text Box ID {i}: {txt}" for i, txt in enumerate(ocr_text)]
        icon_start = len(ocr_text)
        parsed_content_icon_ls = []
        for i, txt in enumerate(parsed_content_icon):
            parsed_content_icon_ls.append(f"Icon Box ID {str(i+icon_start)}: {txt}")
        parsed_content_merged = ocr_text + parsed_content_icon_ls
    else:
        ocr_text = [f"Text Box ID {i}: {txt}" for i, txt in enumerate(ocr_text)]
        parsed_content_merged = ocr_text

    filtered_boxes = box_convert(boxes=filtered_boxes, in_fmt="xyxy", out_fmt="cxcywh")

    phrases = [i for i in range(len(filtered_boxes))]
    
    # draw boxes
    if draw_bbox_config:
        annotated_frame, label_coordinates = annotate(image_source=image_source, boxes=filtered_boxes, logits=logits, phrases=phrases, **draw_bbox_config)
    else:
        annotated_frame, label_coordinates = annotate(image_source=image_source, boxes=filtered_boxes, logits=logits, phrases=phrases, text_scale=text_scale, text_padding=text_padding)
    
    pil_img = Image.fromarray(annotated_frame)
    buffered = io.BytesIO()
    pil_img.save(buffered, format="PNG")
    encoded_image = base64.b64encode(buffered.getvalue()).decode('ascii')
    if output_coord_in_ratio:
        # h, w, _ = image_source.shape
        label_coordinates = {k: [v[0]/w, v[1]/h, v[2]/w, v[3]/h] for k, v in label_coordinates.items()}
        assert w == annotated_frame.shape[1] and h == annotated_frame.shape[0]

    return encoded_image, label_coordinates, parsed_content_merged


def get_xywh(input):
    x, y, w, h = input[0][0], input[0][1], input[2][0] - input[0][0], input[2][1] - input[0][1]
    x, y, w, h = int(x), int(y), int(w), int(h)
    return x, y, w, h

def get_xyxy(input):
    x, y, xp, yp = input[0][0], input[0][1], input[2][0], input[2][1]
    x, y, xp, yp = int(x), int(y), int(xp), int(yp)
    return x, y, xp, yp

def get_xywh_yolo(input):
    x, y, w, h = input[0], input[1], input[2] - input[0], input[3] - input[1]
    x, y, w, h = int(x), int(y), int(w), int(h)
    return x, y, w, h
    


def check_ocr_box(image_path, display_img = True, output_bb_format='xywh', goal_filtering=None, easyocr_args=None):
    if easyocr_args is None:
        easyocr_args = {}
    result = reader.readtext(image_path, **easyocr_args)
    is_goal_filtered = False
    # print('goal filtering pred:', result[-5:])
    coord = [item[0] for item in result]
    text = [item[1] for item in result]
    # read the image using cv2
    if display_img:
        opencv_img = cv2.imread(image_path)
        opencv_img = cv2.cvtColor(opencv_img, cv2.COLOR_RGB2BGR)
        bb = []
        for item in coord:
            x, y, a, b = get_xywh(item)
            # print(x, y, a, b)
            bb.append((x, y, a, b))
            cv2.rectangle(opencv_img, (x, y), (x+a, y+b), (0, 255, 0), 2)
        
        # Display the image
        plt.imshow(opencv_img)
    else:
        if output_bb_format == 'xywh':
            bb = [get_xywh(item) for item in coord]
        elif output_bb_format == 'xyxy':
            bb = [get_xyxy(item) for item in coord]
        # print('bounding box!!!', bb)
    return (text, bb), is_goal_filtered