Spaces:
Sleeping
Sleeping
jaiganesan
commited on
Commit
β’
85c15f4
1
Parent(s):
e4f9f91
Initial Commit
Browse files- app.py +388 -0
- requirements.txt +0 -0
app.py
ADDED
@@ -0,0 +1,388 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import os.path
|
3 |
+
import serpapi
|
4 |
+
import requests
|
5 |
+
import streamlit as st
|
6 |
+
from typing import List
|
7 |
+
from docx import Document
|
8 |
+
from bs4 import BeautifulSoup
|
9 |
+
import huggingface_hub as hfh
|
10 |
+
import feedparser
|
11 |
+
from datasets import load_dataset
|
12 |
+
from urllib.parse import quote
|
13 |
+
from llama_index.llms.openai import OpenAI
|
14 |
+
from llama_index.core.schema import MetadataMode, NodeWithScore
|
15 |
+
from langchain_community.document_loaders import WebBaseLoader
|
16 |
+
from llama_index.embeddings.openai import OpenAIEmbedding
|
17 |
+
from langchain_community.document_loaders import PyPDFLoader
|
18 |
+
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
|
19 |
+
from llama_index.postprocessor.cohere_rerank import CohereRerank
|
20 |
+
from llama_index.core.query_engine import RetrieverQueryEngine
|
21 |
+
from llama_index.core.query_engine.multistep_query_engine import MultiStepQueryEngine
|
22 |
+
from llama_index.core.indices.query.query_transform.base import StepDecomposeQueryTransform
|
23 |
+
from llama_index.core.node_parser import SemanticSplitterNodeParser
|
24 |
+
from llama_index.core.retrievers import VectorIndexRetriever, KeywordTableSimpleRetriever, BaseRetriever
|
25 |
+
from llama_index.core.postprocessor import MetadataReplacementPostProcessor, SimilarityPostprocessor
|
26 |
+
from llama_index.core import (VectorStoreIndex, SimpleDirectoryReader, ServiceContext, load_index_from_storage,
|
27 |
+
StorageContext, Document, Settings, SimpleKeywordTableIndex,
|
28 |
+
QueryBundle, get_response_synthesizer)
|
29 |
+
|
30 |
+
import warnings
|
31 |
+
warnings.filterwarnings("ignore")
|
32 |
+
st.session_state.cohere_api_key = None
|
33 |
+
st.session_state.serp_api_key = None
|
34 |
+
st.set_page_config(
|
35 |
+
page_title="My Streamlit App",
|
36 |
+
page_icon=":rocket:",
|
37 |
+
layout="wide",
|
38 |
+
initial_sidebar_state="expanded"
|
39 |
+
)
|
40 |
+
|
41 |
+
|
42 |
+
def setting_api_key(openai_api_key, serp_api_key):
|
43 |
+
try:
|
44 |
+
os.environ['OPENAI_API_KEY'] = openai_api_key
|
45 |
+
st.session_state.hf_token = os.getenv("hf_token")
|
46 |
+
hfh.login(token=st.session_state.hf_token)
|
47 |
+
st.session_state.cohere_api_key = os.getenv("cohere_api_key")
|
48 |
+
st.session_state.serp_api_key = serp_api_key
|
49 |
+
|
50 |
+
except Exception as e:
|
51 |
+
st.warning(e)
|
52 |
+
|
53 |
+
|
54 |
+
def setup_llm_embed():
|
55 |
+
template = """<|system|>
|
56 |
+
Mention Clearly Before response " RAG Output"
|
57 |
+
Please check if the following pieces of context has any mention of the keywords provided
|
58 |
+
in the question.Response as much as you could with context you get.
|
59 |
+
you are Question answering system based AI, Machine Learning , Deep Learning , Generative AI, Data
|
60 |
+
science and Data Analytics.if the following pieces of Context does not relate to Question,
|
61 |
+
You must not answer on your own,you don't know the answer.
|
62 |
+
</s>
|
63 |
+
<|user|>
|
64 |
+
Question:{query_str}</s>
|
65 |
+
<|assistant|> """
|
66 |
+
|
67 |
+
llm = OpenAI(model="gpt-3.5-turbo-0125",
|
68 |
+
temperature=0.1,
|
69 |
+
model_kwargs={'trust_remote_code': True},
|
70 |
+
max_tokens=512,
|
71 |
+
system_prompt=template)
|
72 |
+
|
73 |
+
# embed_model = OpenAIEmbedding(model="text-embedding-3-small")
|
74 |
+
# embed_model = OpenAIEmbedding()
|
75 |
+
embed_model = HuggingFaceEmbedding(model_name="BAAI/bge-base-en-v1.5")
|
76 |
+
return llm, embed_model
|
77 |
+
|
78 |
+
|
79 |
+
def semantic_split(embed_model, documents):
|
80 |
+
sentence_node_parser = SemanticSplitterNodeParser(buffer_size=1, breakpoint_percentile_threshold=90,
|
81 |
+
embed_model=embed_model)
|
82 |
+
nodes = sentence_node_parser.get_nodes_from_documents(documents)
|
83 |
+
return nodes
|
84 |
+
|
85 |
+
|
86 |
+
def ctx_vector_func(llm, embed_model, nodes):
|
87 |
+
# Incorporate Embedding Model and LLM - memory
|
88 |
+
ctx_vector = ServiceContext.from_defaults(
|
89 |
+
llm=llm,
|
90 |
+
embed_model=embed_model,
|
91 |
+
node_parser=nodes)
|
92 |
+
return ctx_vector
|
93 |
+
|
94 |
+
|
95 |
+
def saving_vectors(vector_index, keyword_index):
|
96 |
+
vector_index.storage_context.persist(persist_dir="vectors/vector_index/")
|
97 |
+
keyword_index.storage_context.persist(persist_dir="vectors/keyword_index/")
|
98 |
+
|
99 |
+
|
100 |
+
def create_vector_and_keyword_index(nodes, ctx_vector):
|
101 |
+
vector_index = VectorStoreIndex(nodes, service_context=ctx_vector)
|
102 |
+
keyword_index = SimpleKeywordTableIndex(nodes, service_context=ctx_vector)
|
103 |
+
saving_vectors(vector_index, keyword_index)
|
104 |
+
return vector_index, keyword_index
|
105 |
+
|
106 |
+
|
107 |
+
class CustomRetriever(BaseRetriever):
|
108 |
+
def __init__(
|
109 |
+
self,
|
110 |
+
vector_retriever: VectorIndexRetriever,
|
111 |
+
keyword_retriever: KeywordTableSimpleRetriever,
|
112 |
+
mode: str = "AND",
|
113 |
+
) -> None:
|
114 |
+
|
115 |
+
self._vector_retriever = vector_retriever
|
116 |
+
self._keyword_retriever = keyword_retriever
|
117 |
+
if mode not in ("AND", "OR"):
|
118 |
+
raise ValueError("Invalid mode.")
|
119 |
+
self._mode = mode
|
120 |
+
super().__init__()
|
121 |
+
|
122 |
+
def _retrieve(self, query_bundle: QueryBundle) -> List[NodeWithScore]:
|
123 |
+
|
124 |
+
vector_nodes = self._vector_retriever.retrieve(query_bundle)
|
125 |
+
keyword_nodes = self._keyword_retriever.retrieve(query_bundle)
|
126 |
+
|
127 |
+
vector_ids = {n.node.node_id for n in vector_nodes}
|
128 |
+
keyword_ids = {n.node.node_id for n in keyword_nodes}
|
129 |
+
|
130 |
+
combined_dict = {n.node.node_id: n for n in vector_nodes}
|
131 |
+
combined_dict.update({n.node.node_id: n for n in keyword_nodes})
|
132 |
+
|
133 |
+
if self._mode == "AND":
|
134 |
+
retrieve_ids = vector_ids.intersection(keyword_ids)
|
135 |
+
else:
|
136 |
+
retrieve_ids = vector_ids.union(keyword_ids)
|
137 |
+
|
138 |
+
retrieve_nodes = [combined_dict[rid] for rid in retrieve_ids]
|
139 |
+
return retrieve_nodes
|
140 |
+
|
141 |
+
|
142 |
+
def search_arxiv(query, max_results=8):
|
143 |
+
encoded_query = quote(query)
|
144 |
+
base_url = 'http://export.arxiv.org/api/query?'
|
145 |
+
query_url = f'{base_url}search_query={encoded_query}&start=0&max_results={max_results}'
|
146 |
+
feed = feedparser.parse(query_url)
|
147 |
+
papers = []
|
148 |
+
for entry in feed.entries:
|
149 |
+
paper_info = {
|
150 |
+
'Title': entry.title,
|
151 |
+
'URL': entry.link
|
152 |
+
}
|
153 |
+
papers.append(paper_info)
|
154 |
+
return papers
|
155 |
+
|
156 |
+
|
157 |
+
def remove_empty_lines(lines):
|
158 |
+
non_empty_lines = [line for line in lines if line.strip()]
|
159 |
+
return ' '.join(non_empty_lines)
|
160 |
+
|
161 |
+
|
162 |
+
def get_article_and_arxiv_content(query):
|
163 |
+
# Article content
|
164 |
+
serpapi_api_key = st.session_state.serp_api_key
|
165 |
+
search_engine = "google" # bing
|
166 |
+
|
167 |
+
params = {
|
168 |
+
"engine": "google",
|
169 |
+
"gl": "us",
|
170 |
+
"hl": "en",
|
171 |
+
"api_key": serpapi_api_key,
|
172 |
+
"q": query
|
173 |
+
}
|
174 |
+
serpapi_wrapper = serpapi.GoogleSearch(params)
|
175 |
+
search_results = serpapi_wrapper.get_dict()
|
176 |
+
results = []
|
177 |
+
for result_type in ["organic_results", "related_questions"]:
|
178 |
+
if result_type in search_results:
|
179 |
+
for result in search_results[result_type]:
|
180 |
+
if "title" in result and "link" in result:
|
181 |
+
# Extract title and link
|
182 |
+
item = {"title": result["title"], "link": result["link"]}
|
183 |
+
results.append(item)
|
184 |
+
# Store Each article links in List
|
185 |
+
links = [result['link'] for result in results]
|
186 |
+
titles = [result['title'] for result in results]
|
187 |
+
|
188 |
+
contents = []
|
189 |
+
i = 0
|
190 |
+
for link, title in zip(links, titles):
|
191 |
+
|
192 |
+
response = requests.get(link)
|
193 |
+
soup = BeautifulSoup(response.content, "html.parser")
|
194 |
+
content_tags = soup.find_all(['p', 'h1', 'h2', 'h3', 'h4', 'h5', 'h6'])
|
195 |
+
document = ""
|
196 |
+
for tag in content_tags:
|
197 |
+
document += tag.text + "\n"
|
198 |
+
|
199 |
+
if not document:
|
200 |
+
loader = WebBaseLoader(link)
|
201 |
+
document_ = loader.load()
|
202 |
+
document = document_[0].page_content
|
203 |
+
i += 1
|
204 |
+
if i == 4:
|
205 |
+
break
|
206 |
+
|
207 |
+
article = remove_empty_lines(document.split('\n')) #
|
208 |
+
contents.append(article)
|
209 |
+
|
210 |
+
base_url = "http://export.arxiv.org/api/query"
|
211 |
+
papers_to_download = search_arxiv(query)
|
212 |
+
|
213 |
+
papers_urls = []
|
214 |
+
|
215 |
+
for paper in papers_to_download:
|
216 |
+
page_url = paper['URL']
|
217 |
+
response = requests.get(page_url)
|
218 |
+
soup = BeautifulSoup(response.content, "html.parser")
|
219 |
+
download_link = soup.find("a", class_="abs-button download-pdf")
|
220 |
+
|
221 |
+
if download_link:
|
222 |
+
|
223 |
+
pdf_url = download_link['href']
|
224 |
+
if not pdf_url.startswith("http"):
|
225 |
+
pdf_url = "https://arxiv.org" + pdf_url
|
226 |
+
papers_urls.append(pdf_url)
|
227 |
+
|
228 |
+
paper_content = []
|
229 |
+
for url_ in papers_urls[:2]:
|
230 |
+
loader = PyPDFLoader(url_)
|
231 |
+
pages = loader.load_and_split()
|
232 |
+
paper_text = ''
|
233 |
+
for page in pages:
|
234 |
+
page_text = remove_empty_lines(page.page_content.split('\n'))
|
235 |
+
paper_text += page_text
|
236 |
+
|
237 |
+
if paper_text:
|
238 |
+
paper_content.append(paper_text)
|
239 |
+
|
240 |
+
return contents + paper_content
|
241 |
+
|
242 |
+
# Uploading Locally Generated Index
|
243 |
+
def creating_vector_path():
|
244 |
+
PERSIST_DIR_vector = "vectors/vector_index"
|
245 |
+
PERSIST_DIR_keyword = "vectors/keyword_index"
|
246 |
+
|
247 |
+
if not os.path.exists(PERSIST_DIR_vector):
|
248 |
+
os.makedirs(PERSIST_DIR_vector)
|
249 |
+
|
250 |
+
if not os.path.exists(PERSIST_DIR_keyword):
|
251 |
+
os.makedirs(PERSIST_DIR_keyword)
|
252 |
+
|
253 |
+
return PERSIST_DIR_vector, PERSIST_DIR_keyword
|
254 |
+
|
255 |
+
|
256 |
+
|
257 |
+
def load_vector_index(PERSIST_DIR_vector, PERSIST_DIR_keyword):
|
258 |
+
storage_context = StorageContext.from_defaults(persist_dir=PERSIST_DIR_vector)
|
259 |
+
vector_index = load_index_from_storage(storage_context)
|
260 |
+
storage_context_ = StorageContext.from_defaults(persist_dir=PERSIST_DIR_keyword)
|
261 |
+
keyword_index = load_index_from_storage(storage_context_)
|
262 |
+
return vector_index,keyword_index
|
263 |
+
|
264 |
+
|
265 |
+
def response_generation(query, cohere_api_key, vector_index, keyword_index):
|
266 |
+
cohere_rerank = CohereRerank(api_key=cohere_api_key, top_n=4)
|
267 |
+
postprocessor = SimilarityPostprocessor(similarity_cutoff=0.85) # default 0.80
|
268 |
+
|
269 |
+
sentence_retriever = VectorIndexRetriever(index=vector_index, similarity_top_k=8)
|
270 |
+
keyword_retriever = KeywordTableSimpleRetriever(index=keyword_index, similarity_top_k=8)
|
271 |
+
custom_retriever = CustomRetriever(sentence_retriever, keyword_retriever)
|
272 |
+
|
273 |
+
response_synthesizer = get_response_synthesizer()
|
274 |
+
query_engine = RetrieverQueryEngine(retriever=custom_retriever, response_synthesizer=response_synthesizer,
|
275 |
+
node_postprocessors=[
|
276 |
+
MetadataReplacementPostProcessor(target_metadata_key="window"),
|
277 |
+
cohere_rerank, postprocessor])
|
278 |
+
|
279 |
+
# step_decompose_transform = StepDecomposeQueryTransform(llm, verbose=False)
|
280 |
+
# query_engine = MultiStepQueryEngine(query_engine = query_engine, query_transform=step_decompose_transform )
|
281 |
+
|
282 |
+
response = query_engine.query(query)
|
283 |
+
return response
|
284 |
+
|
285 |
+
|
286 |
+
def stream_output(response):
|
287 |
+
st.write("""<h1 style="font-size: 20px;">Output From RAG </h1>""", unsafe_allow_html=True)
|
288 |
+
for char in response:
|
289 |
+
st.text(char)
|
290 |
+
|
291 |
+
|
292 |
+
def func_add_new_article_content(content_):
|
293 |
+
documents = [Document(text=t) for t in content_]
|
294 |
+
# LLM and Embedding Model Setup
|
295 |
+
llm, embed_model = setup_llm_embed()
|
296 |
+
Settings.llm = llm
|
297 |
+
Settings.embed_model = embed_model
|
298 |
+
|
299 |
+
# Splitting Nodes
|
300 |
+
new_nodes = semantic_split(embed_model, documents)
|
301 |
+
ctx_vector = ctx_vector_func(llm, embed_model, new_nodes) # documents - nodes
|
302 |
+
new_vector_index, new_keyword_index = create_vector_and_keyword_index(new_nodes, ctx_vector) # documents - nodes
|
303 |
+
return new_vector_index, new_keyword_index, new_nodes
|
304 |
+
|
305 |
+
|
306 |
+
def updating_vector(new_nodes, vector_index, keyword_index):
|
307 |
+
vector_index.insert_nodes(new_nodes)
|
308 |
+
keyword_index.insert_nodes(new_nodes)
|
309 |
+
saving_vectors(vector_index, keyword_index)
|
310 |
+
|
311 |
+
|
312 |
+
def main():
|
313 |
+
st.write("""<h1 style="font-size: 30px;">GenAI Question-Answer System Utilizing Advanced Retrieval-Augmented
|
314 |
+
Generation π§</h1>""", unsafe_allow_html=True)
|
315 |
+
|
316 |
+
st.markdown("""This application operates on a paid source model and framework to ensure high accuracy and minimize
|
317 |
+
hallucination. Prior to running the application, it's necessary to configure two keys. Learn more about
|
318 |
+
these keys and how to generate them below.""")
|
319 |
+
if 'key_flag' not in st.session_state:
|
320 |
+
st.session_state.key_flag = False
|
321 |
+
|
322 |
+
col_left, col_right = st.columns([1, 2])
|
323 |
+
with (col_left):
|
324 |
+
st.write("""<h1 style="font-size: 15px;">Enter your OpenAI API key </h1>""", unsafe_allow_html=True)
|
325 |
+
openai_api_key = st.text_input(placeholder="OpenAI api key ", label=" ", type="password")
|
326 |
+
|
327 |
+
st.write("""<h1 style="font-size: 15px;">Enter your SERP API key </h1>""", unsafe_allow_html=True)
|
328 |
+
serp_api_key = st.text_input(placeholder="Serp api key ", label=" ", type="password")
|
329 |
+
|
330 |
+
set_keys_button = st.button("Set Keys ", type="primary")
|
331 |
+
key_flag = False
|
332 |
+
|
333 |
+
try:
|
334 |
+
if set_keys_button and openai_api_key and serp_api_key:
|
335 |
+
setting_api_key(openai_api_key, serp_api_key)
|
336 |
+
st.success("Successful π")
|
337 |
+
st.session_state.key_flag = True
|
338 |
+
elif set_keys_button:
|
339 |
+
st.warning("Please set the necessary API keys !")
|
340 |
+
except Exception as e:
|
341 |
+
st.warning(e)
|
342 |
+
|
343 |
+
with col_right:
|
344 |
+
st.write("""<h1 style="font-size: 15px;">Enter your Question </h1>""", unsafe_allow_html=True)
|
345 |
+
query = st.text_input(placeholder="Query ", label=" ", max_chars=192)
|
346 |
+
|
347 |
+
generate_response_button = st.button("Generate response", type="primary")
|
348 |
+
|
349 |
+
if generate_response_button and st.session_state.key_flag and str(query):
|
350 |
+
vector_path, keyword_path = creating_vector_path()
|
351 |
+
vector_index, keyword_index = load_vector_index(vector_path, keyword_path)
|
352 |
+
response = response_generation(query, st.session_state.cohere_api_key, vector_index, keyword_index)
|
353 |
+
if response in ["Empty Response", "RAG Output"] or not response:
|
354 |
+
with st.spinner("Getting Information from Articles, It will take some time."):
|
355 |
+
content_ = get_article_and_arxiv_content(query)
|
356 |
+
new_vector_index, new_keyword_index, new_nodes = func_add_new_article_content(content_)
|
357 |
+
response = response_generation(query, st.session_state.cohere_api_key, new_vector_index, new_keyword_index)
|
358 |
+
stream_output(response)
|
359 |
+
|
360 |
+
col1, col2 = st.columns([1, 10])
|
361 |
+
thumps_up_button = col1.button("π")
|
362 |
+
thumps_down_button = col2.button("π")
|
363 |
+
if thumps_up_button:
|
364 |
+
st.write("Thank you for your positive feedback!")
|
365 |
+
updating_vector(new_nodes, vector_index, keyword_index)
|
366 |
+
if thumps_down_button:
|
367 |
+
st.write("""We're sorry , We will improve it.""")
|
368 |
+
|
369 |
+
elif response:
|
370 |
+
stream_output(response)
|
371 |
+
col1, col2 = st.columns([1, 10])
|
372 |
+
if col1.button("π"):
|
373 |
+
st.write("Thank you for your positive feedback!")
|
374 |
+
if col2.button("π"):
|
375 |
+
st.write("We're sorry , We will improve it.")
|
376 |
+
|
377 |
+
elif generate_response_button and not str(query) and not st.session_state.key_flag:
|
378 |
+
st.warning("Please set the necessary API keys and Enter the query")
|
379 |
+
|
380 |
+
elif generate_response_button and str(query) and not st.session_state.key_flag:
|
381 |
+
st.warning("Please set the necessary API keys----")
|
382 |
+
|
383 |
+
elif generate_response_button and st.session_state.key_flag and not str(query):
|
384 |
+
st.warning("Please Enter the query !")
|
385 |
+
|
386 |
+
|
387 |
+
if __name__ == "__main__":
|
388 |
+
main()
|
requirements.txt
ADDED
Binary file (6.38 kB). View file
|
|