File size: 4,958 Bytes
bf53f45
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
import argparse
import logging
import os
import random

import cv2
import torch
import yt_dlp
import sys 
sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), '././')))

from mivolo.data.data_reader import InputType, get_all_files, get_input_type
from mivolo.predictor import Predictor
from timm.utils import setup_default_logging

_logger = logging.getLogger("inference")


def get_direct_video_url(video_url):
    ydl_opts = {
        "format": "bestvideo",
        "quiet": True,  # Suppress terminal output
    }

    with yt_dlp.YoutubeDL(ydl_opts) as ydl:
        info_dict = ydl.extract_info(video_url, download=False)

        if "url" in info_dict:
            direct_url = info_dict["url"]
            resolution = (info_dict["width"], info_dict["height"])
            fps = info_dict["fps"]
            yid = info_dict["id"]
            return direct_url, resolution, fps, yid

    return None, None, None, None


def get_random_frames(cap, num_frames):
    total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
    frame_indices = random.sample(range(total_frames), num_frames)

    frames = []
    for idx in frame_indices:
        cap.set(cv2.CAP_PROP_POS_FRAMES, idx)
        ret, frame = cap.read()
        if ret:
            frames.append(frame)
    return frames


def get_parser():
    parser = argparse.ArgumentParser(description="PyTorch MiVOLO Inference")
    parser.add_argument("--input", type=str, default=None, required=True, help="image file or folder with images")
    parser.add_argument("--output", type=str, default=None, required=True, help="folder for output results")
    parser.add_argument("--detector-weights", type=str, default=None, required=True, help="Detector weights (YOLOv8).")
    parser.add_argument("--checkpoint", default="", type=str, required=True, help="path to mivolo checkpoint")

    parser.add_argument(
        "--with_persons", action="store_true", default=False, help="If set model will run with persons, if available"
    )
    parser.add_argument(
        "--disable_faces", action="store_true", default=False, help="If set model will use only persons if available"
    )

    parser.add_argument("--draw", action="store_true", default=False, help="If set, resulted images will be drawn")
    parser.add_argument("--device", default="cpu", type=str, help="Device (accelerator) to use.")

    return parser


def main(video_path, output_folder, detector_weights, checkpoint, device, with_persons, disable_faces,draw=False):
    setup_default_logging()

    if torch.cuda.is_available():
        torch.backends.cuda.matmul.allow_tf32 = True
        torch.backends.cudnn.benchmark = True

    os.makedirs(output_folder, exist_ok=True)

    # Initialize predictor
    args = argparse.Namespace(
        input=video_path,
        output=output_folder,
        detector_weights=detector_weights,
        checkpoint=checkpoint,
        draw=draw,
        device=device,
        with_persons=with_persons, 
        disable_faces=disable_faces
    )
    
    predictor = Predictor(args, verbose=True)

    if "youtube" in video_path:
        video_path, res, fps, yid = get_direct_video_url(video_path)
        if not video_path:
            raise ValueError(f"Failed to get direct video url {video_path}")

    cap = cv2.VideoCapture(video_path)
    if not cap.isOpened():
        raise ValueError(f"Failed to open video source {video_path}")

    # Extract 4-5 random frames from the video
    random_frames = get_random_frames(cap, num_frames=10)
    age_list = []

    for frame in random_frames:
        detected_objects, out_im, age = predictor.recognize(frame)
        try:
            age_list.append(age[0])  # Attempt to access the first element of age
            if draw:
                bname = os.path.splitext(os.path.basename(video_path))[0]
                filename = os.path.join(output_folder, f"out_{bname}.jpg")
                cv2.imwrite(filename, out_im)
                _logger.info(f"Saved result to {filename}")
        except IndexError:
            continue

    if len(age_list)==0:
        raise ValueError("No person was detected in the frame. Please upload a proper face video.")



    # Calculate and print average age
    avg_age = sum(age_list) / len(age_list) if age_list else 0
    print(f"Age list: {age_list}")
    print(f"Average age: {avg_age:.2f}")
    absolute_age = round(abs(avg_age))

    # Define the range
    lower_bound = absolute_age - 2
    upper_bound = absolute_age + 2

    return absolute_age, lower_bound, upper_bound


if __name__ == "__main__":
    parser = get_parser()
    args = parser.parse_args()
    
    absolute_age, lower_bound, upper_bound = main(args.input, args.output, args.detector_weights, args.checkpoint, args.device, args.with_persons, args.disable_faces ,args.draw)
    # Output the results in the desired format
    print(f"Absolute Age: {absolute_age}")
    print(f"Range: {lower_bound} - {upper_bound}")