Spaces:
Sleeping
Sleeping
Upload 4 files
Browse files- app.py +51 -0
- eyebrow_detection_modified_copy.py +125 -0
- heartBPM_modified_copy.py +101 -0
- requirements.txt +14 -0
app.py
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from concurrent.futures import ThreadPoolExecutor
|
3 |
+
import gradio as gr
|
4 |
+
from bpm_app.heartBPM_modified_copy import heart
|
5 |
+
from stress_detection.eyebrow_detection_modified_copy import stress
|
6 |
+
from age_estimator.mivolo.demo_copy import main as age_estimation_main
|
7 |
+
|
8 |
+
def process_video(video_file):
|
9 |
+
# Validate the input file path
|
10 |
+
if not video_file or not os.path.isfile(video_file):
|
11 |
+
return {'error': 'Invalid video path'}
|
12 |
+
|
13 |
+
# Run functions in parallel
|
14 |
+
with ThreadPoolExecutor() as executor:
|
15 |
+
heart_future = executor.submit(heart, video_file)
|
16 |
+
stress_future = executor.submit(stress, video_file, duration=30)
|
17 |
+
|
18 |
+
# Define parameters for age estimation
|
19 |
+
output_folder = 'output'
|
20 |
+
detector_weights = 'age_estimator/mivolo/models/yolov8x_person_face.pt'
|
21 |
+
checkpoint = 'age_estimator/mivolo/models/model_imdb_cross_person_4.22_99.46.pth.tar'
|
22 |
+
device = 'cpu'
|
23 |
+
with_persons = True
|
24 |
+
disable_faces = False
|
25 |
+
draw = True
|
26 |
+
|
27 |
+
age_future = executor.submit(
|
28 |
+
age_estimation_main, video_file, output_folder, detector_weights, checkpoint, device, with_persons, disable_faces, draw
|
29 |
+
)
|
30 |
+
|
31 |
+
# Retrieve results
|
32 |
+
avg_bpm, frames_processed = heart_future.result()
|
33 |
+
stressed_count, not_stressed_count, most_frequent_label = stress_future.result()
|
34 |
+
absolute_age, lower_bound, upper_bound = age_future.result()
|
35 |
+
|
36 |
+
# Compile results
|
37 |
+
results = {
|
38 |
+
'Average BPM': avg_bpm,
|
39 |
+
'Most Frequent State': most_frequent_label,
|
40 |
+
'Age Range': f"{lower_bound} - {upper_bound}"
|
41 |
+
}
|
42 |
+
|
43 |
+
return results
|
44 |
+
|
45 |
+
# Define Gradio interface
|
46 |
+
gr.Interface(
|
47 |
+
fn=process_video,
|
48 |
+
inputs=gr.Video(label="Upload a video file"),
|
49 |
+
outputs="json",
|
50 |
+
title="Parallel Video Processing for Heart Rate, Stress, and Age Estimation"
|
51 |
+
).launch()
|
eyebrow_detection_modified_copy.py
ADDED
@@ -0,0 +1,125 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
from scipy.spatial import distance as dist
|
3 |
+
from imutils import face_utils
|
4 |
+
import numpy as np
|
5 |
+
import imutils
|
6 |
+
import time
|
7 |
+
import dlib
|
8 |
+
import cv2
|
9 |
+
import matplotlib.pyplot as plt
|
10 |
+
from keras.preprocessing.image import img_to_array
|
11 |
+
from keras.models import load_model
|
12 |
+
|
13 |
+
def eye_brow_distance(leye, reye):
|
14 |
+
global points
|
15 |
+
distq = dist.euclidean(leye, reye)
|
16 |
+
points.append(int(distq))
|
17 |
+
return distq
|
18 |
+
|
19 |
+
def emotion_finder(faces, frame):
|
20 |
+
global emotion_classifier
|
21 |
+
EMOTIONS = ["angry", "disgust", "scared", "happy", "sad", "surprised", "neutral"]
|
22 |
+
x, y, w, h = face_utils.rect_to_bb(faces)
|
23 |
+
frame = frame[y:y + h, x:x + w]
|
24 |
+
roi = cv2.resize(frame, (64, 64))
|
25 |
+
roi = roi.astype("float") / 255.0
|
26 |
+
roi = img_to_array(roi)
|
27 |
+
roi = np.expand_dims(roi, axis=0)
|
28 |
+
preds = emotion_classifier.predict(roi)[0]
|
29 |
+
emotion_probability = np.max(preds)
|
30 |
+
label = EMOTIONS[preds.argmax()]
|
31 |
+
return label
|
32 |
+
|
33 |
+
def normalize_values(points, disp):
|
34 |
+
normalized_value = abs(disp - np.min(points)) / abs(np.max(points) - np.min(points))
|
35 |
+
stress_value = np.exp(-(normalized_value))
|
36 |
+
return stress_value
|
37 |
+
|
38 |
+
def stress(video_path, duration):
|
39 |
+
global points, emotion_classifier
|
40 |
+
detector = dlib.get_frontal_face_detector()
|
41 |
+
predictor = dlib.shape_predictor("stress_detection/models/data")
|
42 |
+
emotion_classifier = load_model("stress_detection/models/_mini_XCEPTION.102-0.66.hdf5", compile=False)
|
43 |
+
|
44 |
+
cap = cv2.VideoCapture(video_path)
|
45 |
+
points = []
|
46 |
+
stress_labels = []
|
47 |
+
start_time = time.time()
|
48 |
+
|
49 |
+
while True:
|
50 |
+
current_time = time.time()
|
51 |
+
if current_time - start_time >= duration:
|
52 |
+
break
|
53 |
+
|
54 |
+
ret, frame = cap.read()
|
55 |
+
if not ret:
|
56 |
+
break
|
57 |
+
|
58 |
+
frame = cv2.flip(frame, 1)
|
59 |
+
frame = imutils.resize(frame, width=500, height=500)
|
60 |
+
|
61 |
+
(lBegin, lEnd) = face_utils.FACIAL_LANDMARKS_IDXS["right_eyebrow"]
|
62 |
+
(rBegin, rEnd) = face_utils.FACIAL_LANDMARKS_IDXS["left_eyebrow"]
|
63 |
+
|
64 |
+
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
|
65 |
+
|
66 |
+
try:
|
67 |
+
detections = detector(gray, 0)
|
68 |
+
for detection in detections:
|
69 |
+
emotion = emotion_finder(detection, gray)
|
70 |
+
shape = predictor(gray, detection)
|
71 |
+
shape = face_utils.shape_to_np(shape)
|
72 |
+
|
73 |
+
leyebrow = shape[lBegin:lEnd]
|
74 |
+
reyebrow = shape[rBegin:rEnd]
|
75 |
+
|
76 |
+
distq = eye_brow_distance(leyebrow[-1], reyebrow[0])
|
77 |
+
stress_value = normalize_values(points, distq)
|
78 |
+
|
79 |
+
# Determine stress label for this frame
|
80 |
+
if emotion in ['scared', 'sad', 'angry'] and stress_value >= 0.75:
|
81 |
+
stress_label = 'stressed'
|
82 |
+
else:
|
83 |
+
stress_label = 'not stressed'
|
84 |
+
|
85 |
+
# Store stress label in list
|
86 |
+
stress_labels.append(stress_label)
|
87 |
+
|
88 |
+
except Exception as e:
|
89 |
+
print(f'Error: {e}')
|
90 |
+
|
91 |
+
key = cv2.waitKey(1) & 0xFF
|
92 |
+
if key == ord('q'):
|
93 |
+
break
|
94 |
+
|
95 |
+
cap.release()
|
96 |
+
|
97 |
+
# Count occurrences of 'stressed' and 'not stressed'
|
98 |
+
stressed_count = stress_labels.count('stressed')
|
99 |
+
not_stressed_count = stress_labels.count('not stressed')
|
100 |
+
|
101 |
+
# Determine which label occurred more frequently
|
102 |
+
if stressed_count > not_stressed_count:
|
103 |
+
most_frequent_label = 'stressed'
|
104 |
+
else:
|
105 |
+
most_frequent_label = 'not stressed'
|
106 |
+
|
107 |
+
return stressed_count, not_stressed_count, most_frequent_label
|
108 |
+
|
109 |
+
def main():
|
110 |
+
# Argument parsing
|
111 |
+
parser = argparse.ArgumentParser(description='Stress Detection from Video')
|
112 |
+
parser.add_argument('--video', type=str, required=True, default='output.mp4', help='Path to the input video file')
|
113 |
+
parser.add_argument('--duration', type=int, default=30, help='Duration for analysis in seconds')
|
114 |
+
args = parser.parse_args()
|
115 |
+
|
116 |
+
# Call the stress function and get the results
|
117 |
+
stressed_count, not_stressed_count, most_frequent_label = stress(args.video, args.duration)
|
118 |
+
|
119 |
+
# Display the result
|
120 |
+
print(f"Stressed frames: {stressed_count}")
|
121 |
+
print(f"Not stressed frames: {not_stressed_count}")
|
122 |
+
print(f"Most frequent state: {most_frequent_label}")
|
123 |
+
|
124 |
+
if __name__ == '__main__':
|
125 |
+
main()
|
heartBPM_modified_copy.py
ADDED
@@ -0,0 +1,101 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import cv2
|
3 |
+
import time
|
4 |
+
from cvzone.FaceDetectionModule import FaceDetector
|
5 |
+
|
6 |
+
# Initialization
|
7 |
+
videoWidth = 160
|
8 |
+
videoHeight = 120
|
9 |
+
videoChannels = 3
|
10 |
+
videoFrameRate = 15
|
11 |
+
|
12 |
+
# Helper Methods
|
13 |
+
def buildGauss(frame, levels):
|
14 |
+
pyramid = [frame]
|
15 |
+
for level in range(levels):
|
16 |
+
frame = cv2.pyrDown(frame)
|
17 |
+
pyramid.append(frame)
|
18 |
+
return pyramid
|
19 |
+
|
20 |
+
def reconstructFrame(pyramid, index, levels):
|
21 |
+
filteredFrame = pyramid[index]
|
22 |
+
for level in range(levels):
|
23 |
+
filteredFrame = cv2.pyrUp(filteredFrame)
|
24 |
+
filteredFrame = filteredFrame[:videoHeight, :videoWidth]
|
25 |
+
return filteredFrame
|
26 |
+
|
27 |
+
# Main heart rate function
|
28 |
+
def heart(video_file_path):
|
29 |
+
levels = 3
|
30 |
+
alpha = 170
|
31 |
+
minFrequency = 1.0
|
32 |
+
maxFrequency = 2.0
|
33 |
+
bufferSize = 150
|
34 |
+
bufferIndex = 0
|
35 |
+
|
36 |
+
detector = FaceDetector()
|
37 |
+
|
38 |
+
video = cv2.VideoCapture(video_file_path)
|
39 |
+
|
40 |
+
firstFrame = np.zeros((videoHeight, videoWidth, videoChannels))
|
41 |
+
firstGauss = buildGauss(firstFrame, levels + 1)[levels]
|
42 |
+
videoGauss = np.zeros((bufferSize, firstGauss.shape[0], firstGauss.shape[1], videoChannels))
|
43 |
+
fourierTransformAvg = np.zeros((bufferSize))
|
44 |
+
|
45 |
+
frequencies = (1.0 * videoFrameRate) * np.arange(bufferSize) / (1.0 * bufferSize)
|
46 |
+
mask = (frequencies >= minFrequency) & (frequencies <= maxFrequency)
|
47 |
+
|
48 |
+
bpmCalculationFrequency = 10
|
49 |
+
bpmBufferIndex = 0
|
50 |
+
bpmBufferSize = 10
|
51 |
+
bpmBuffer = np.zeros((bpmBufferSize))
|
52 |
+
|
53 |
+
bpmList = []
|
54 |
+
startTime = time.time()
|
55 |
+
frameCount = 0
|
56 |
+
|
57 |
+
while True:
|
58 |
+
ret, frame = video.read()
|
59 |
+
if not ret:
|
60 |
+
break
|
61 |
+
|
62 |
+
elapsedTime = time.time() - startTime
|
63 |
+
if elapsedTime >= 30:
|
64 |
+
break
|
65 |
+
|
66 |
+
frame, bboxs = detector.findFaces(frame, draw=False)
|
67 |
+
frameCount += 1
|
68 |
+
|
69 |
+
if bboxs:
|
70 |
+
x1, y1, w1, h1 = bboxs[0]['bbox']
|
71 |
+
|
72 |
+
# Check if the bounding box is valid
|
73 |
+
if x1 >= 0 and y1 >= 0 and w1 > 0 and h1 > 0:
|
74 |
+
detectionFrame = frame[y1:y1 + h1, x1:x1 + w1]
|
75 |
+
|
76 |
+
# Check if detectionFrame is valid and not empty before resizing
|
77 |
+
if detectionFrame.size != 0:
|
78 |
+
detectionFrame = cv2.resize(detectionFrame, (videoWidth, videoHeight))
|
79 |
+
|
80 |
+
videoGauss[bufferIndex] = buildGauss(detectionFrame, levels + 1)[levels]
|
81 |
+
fourierTransform = np.fft.fft(videoGauss, axis=0)
|
82 |
+
fourierTransform[mask == False] = 0
|
83 |
+
|
84 |
+
if bufferIndex % bpmCalculationFrequency == 0:
|
85 |
+
for buf in range(bufferSize):
|
86 |
+
fourierTransformAvg[buf] = np.real(fourierTransform[buf]).mean()
|
87 |
+
hz = frequencies[np.argmax(fourierTransformAvg)]
|
88 |
+
bpm = 60.0 * hz
|
89 |
+
bpmBuffer[bpmBufferIndex] = bpm
|
90 |
+
bpmBufferIndex = (bpmBufferIndex + 1) % bpmBufferSize
|
91 |
+
bpmList.append(bpmBuffer.mean())
|
92 |
+
|
93 |
+
bufferIndex = (bufferIndex + 1) % bufferSize
|
94 |
+
else:
|
95 |
+
# If no face is detected, skip to the next frame
|
96 |
+
continue
|
97 |
+
|
98 |
+
avgBPM = np.mean(bpmList) if bpmList else 0
|
99 |
+
video.release()
|
100 |
+
|
101 |
+
return avgBPM, frameCount
|
requirements.txt
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
huggingface_hub
|
2 |
+
tensorflow
|
3 |
+
ultralytics==8.1.0
|
4 |
+
timm==0.8.13.dev0
|
5 |
+
yt_dlp
|
6 |
+
lapx>=0.5.2
|
7 |
+
typing-extensions
|
8 |
+
cvzone
|
9 |
+
keras
|
10 |
+
cmake
|
11 |
+
dlib
|
12 |
+
imutils
|
13 |
+
opencv-python
|
14 |
+
|