File size: 51,920 Bytes
09afec6 ed28876 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 |
# Summarization_General_Lib.py
#########################################
# General Summarization Library
# This library is used to perform summarization.
#
####
####################
# Function List
#
# 1. extract_text_from_segments(segments: List[Dict]) -> str
# 2. chat_with_openai(api_key, file_path, custom_prompt_arg)
# 3. chat_with_anthropic(api_key, file_path, model, custom_prompt_arg, max_retries=3, retry_delay=5)
# 4. chat_with_cohere(api_key, file_path, model, custom_prompt_arg)
# 5. chat_with_groq(api_key, input_data, custom_prompt_arg, system_prompt=None):
# 6. chat_with_openrouter(api_key, input_data, custom_prompt_arg, system_prompt=None)
# 7. chat_with_huggingface(api_key, input_data, custom_prompt_arg, system_prompt=None)
# 8. chat_with_deepseek(api_key, input_data, custom_prompt_arg, system_prompt=None)
# 9. chat_with_vllm(input_data, custom_prompt_input, api_key=None, vllm_api_url="http://127.0.0.1:8000/v1/chat/completions", system_prompt=None)
#
#
####################
#
# Import necessary libraries
import json
import logging
import os
import time
from typing import List
import requests
#
# Import 3rd-Party Libraries
#
# Import Local libraries
from App_Function_Libraries.Utils.Utils import load_and_log_configs
#
#######################################################################################################################
# Function Definitions
#
#FIXME: Update to include full arguments
def extract_text_from_segments(segments):
logging.debug(f"Segments received: {segments}")
logging.debug(f"Type of segments: {type(segments)}")
text = ""
if isinstance(segments, list):
for segment in segments:
logging.debug(f"Current segment: {segment}")
logging.debug(f"Type of segment: {type(segment)}")
if 'Text' in segment:
text += segment['Text'] + " "
else:
logging.warning(f"Skipping segment due to missing 'Text' key: {segment}")
else:
logging.warning(f"Unexpected type of 'segments': {type(segments)}")
return text.strip()
def get_openai_embeddings(input_data: str, model: str) -> List[float]:
"""
Get embeddings for the input text from OpenAI API.
Args:
input_data (str): The input text to get embeddings for.
model (str): The model to use for generating embeddings.
Returns:
List[float]: The embeddings generated by the API.
"""
loaded_config_data = load_and_log_configs()
api_key = loaded_config_data['api_keys']['openai']
if not api_key:
logging.error("OpenAI: API key not found or is empty")
raise ValueError("OpenAI: API Key Not Provided/Found in Config file or is empty")
logging.debug(f"OpenAI: Using API Key: {api_key[:5]}...{api_key[-5:]}")
logging.debug(f"OpenAI: Raw input data (first 500 chars): {str(input_data)[:500]}...")
logging.debug(f"OpenAI: Using model: {model}")
headers = {
'Authorization': f'Bearer {api_key}',
'Content-Type': 'application/json'
}
request_data = {
"input": input_data,
"model": model,
}
try:
logging.debug("OpenAI: Posting request to embeddings API")
response = requests.post('https://api.openai.com/v1/embeddings', headers=headers, json=request_data)
logging.debug(f"Full API response data: {response}")
if response.status_code == 200:
response_data = response.json()
if 'data' in response_data and len(response_data['data']) > 0:
embedding = response_data['data'][0]['embedding']
logging.debug("OpenAI: Embeddings retrieved successfully")
return embedding
else:
logging.warning("OpenAI: Embedding data not found in the response")
raise ValueError("OpenAI: Embedding data not available in the response")
else:
logging.error(f"OpenAI: Embeddings request failed with status code {response.status_code}")
logging.error(f"OpenAI: Error response: {response.text}")
raise ValueError(f"OpenAI: Failed to retrieve embeddings. Status code: {response.status_code}")
except requests.RequestException as e:
logging.error(f"OpenAI: Error making API request: {str(e)}", exc_info=True)
raise ValueError(f"OpenAI: Error making API request: {str(e)}")
except Exception as e:
logging.error(f"OpenAI: Unexpected error: {str(e)}", exc_info=True)
raise ValueError(f"OpenAI: Unexpected error occurred: {str(e)}")
def chat_with_openai(api_key, input_data, custom_prompt_arg, temp=None, system_message=None):
loaded_config_data = load_and_log_configs()
openai_api_key = api_key
try:
# API key validation
if not openai_api_key:
logging.info("OpenAI: API key not provided as parameter")
logging.info("OpenAI: Attempting to use API key from config file")
openai_api_key = loaded_config_data['api_keys']['openai']
if not openai_api_key:
logging.error("OpenAI: API key not found or is empty")
return "OpenAI: API Key Not Provided/Found in Config file or is empty"
logging.debug(f"OpenAI: Using API Key: {openai_api_key[:5]}...{openai_api_key[-5:]}")
# Input data handling
logging.debug(f"OpenAI: Raw input data type: {type(input_data)}")
logging.debug(f"OpenAI: Raw input data (first 500 chars): {str(input_data)[:500]}...")
if isinstance(input_data, str):
if input_data.strip().startswith('{'):
# It's likely a JSON string
logging.debug("OpenAI: Parsing provided JSON string data for summarization")
try:
data = json.loads(input_data)
except json.JSONDecodeError as e:
logging.error(f"OpenAI: Error parsing JSON string: {str(e)}")
return f"OpenAI: Error parsing JSON input: {str(e)}"
elif os.path.isfile(input_data):
logging.debug("OpenAI: Loading JSON data from file for summarization")
with open(input_data, 'r') as file:
data = json.load(file)
else:
logging.debug("OpenAI: Using provided string data for summarization")
data = input_data
else:
data = input_data
logging.debug(f"OpenAI: Processed data type: {type(data)}")
logging.debug(f"OpenAI: Processed data (first 500 chars): {str(data)[:500]}...")
# Text extraction
if isinstance(data, dict):
if 'summary' in data:
logging.debug("OpenAI: Summary already exists in the loaded data")
return data['summary']
elif 'segments' in data:
text = extract_text_from_segments(data['segments'])
else:
text = json.dumps(data) # Convert dict to string if no specific format
elif isinstance(data, list):
text = extract_text_from_segments(data)
elif isinstance(data, str):
text = data
else:
raise ValueError(f"OpenAI: Invalid input data format: {type(data)}")
logging.debug(f"OpenAI: Extracted text (first 500 chars): {text[:500]}...")
logging.debug(f"OpenAI: Custom prompt: {custom_prompt_arg}")
openai_model = loaded_config_data['models']['openai'] or "gpt-4o"
logging.debug(f"OpenAI: Using model: {openai_model}")
headers = {
'Authorization': f'Bearer {openai_api_key}',
'Content-Type': 'application/json'
}
logging.debug(
f"OpenAI API Key: {openai_api_key[:5]}...{openai_api_key[-5:] if openai_api_key else None}")
logging.debug("openai: Preparing data + prompt for submittal")
openai_prompt = f"{text} \n\n\n\n{custom_prompt_arg}"
if temp is None:
temp = 0.7
if system_message is None:
system_message = "You are a helpful AI assistant who does whatever the user requests."
temp = float(temp)
data = {
"model": openai_model,
"messages": [
{"role": "system", "content": system_message},
{"role": "user", "content": openai_prompt}
],
"max_tokens": 4096,
"temperature": temp
}
logging.debug("OpenAI: Posting request")
response = requests.post('https://api.openai.com/v1/chat/completions', headers=headers, json=data)
logging.debug(f"Full API response data: {response}")
if response.status_code == 200:
response_data = response.json()
logging.debug(response_data)
if 'choices' in response_data and len(response_data['choices']) > 0:
chat_response = response_data['choices'][0]['message']['content'].strip()
logging.debug("openai: Chat Sent successfully")
logging.debug(f"openai: Chat response: {chat_response}")
return chat_response
else:
logging.warning("openai: Chat response not found in the response data")
return "openai: Chat not available"
else:
logging.error(f"OpenAI: Chat request failed with status code {response.status_code}")
logging.error(f"OpenAI: Error response: {response.text}")
return f"OpenAI: Failed to process chat response. Status code: {response.status_code}"
except json.JSONDecodeError as e:
logging.error(f"OpenAI: Error decoding JSON: {str(e)}", exc_info=True)
return f"OpenAI: Error decoding JSON input: {str(e)}"
except requests.RequestException as e:
logging.error(f"OpenAI: Error making API request: {str(e)}", exc_info=True)
return f"OpenAI: Error making API request: {str(e)}"
except Exception as e:
logging.error(f"OpenAI: Unexpected error: {str(e)}", exc_info=True)
return f"OpenAI: Unexpected error occurred: {str(e)}"
def chat_with_anthropic(api_key, input_data, model, custom_prompt_arg, max_retries=3, retry_delay=5, system_prompt=None, temp=None):
try:
loaded_config_data = load_and_log_configs()
# Check if config was loaded successfully
if loaded_config_data is None:
logging.error("Anthropic: Failed to load configuration data.")
return "Anthropic: Failed to load configuration data."
# Initialize the API key
anthropic_api_key = api_key
# API key validation
if not api_key:
logging.info("Anthropic: API key not provided as parameter")
logging.info("Anthropic: Attempting to use API key from config file")
# Ensure 'api_keys' and 'anthropic' keys exist
try:
anthropic_api_key = loaded_config_data['api_keys']['anthropic']
logging.debug(f"Anthropic: Loaded API Key from config: {anthropic_api_key[:5]}...{anthropic_api_key[-5:]}")
except (KeyError, TypeError) as e:
logging.error(f"Anthropic: Error accessing API key from config: {str(e)}")
return "Anthropic: API Key Not Provided/Found in Config file or is empty"
if not anthropic_api_key or anthropic_api_key == "":
logging.error("Anthropic: API key not found or is empty")
return "Anthropic: API Key Not Provided/Found in Config file or is empty"
if anthropic_api_key:
logging.debug(f"Anthropic: Using API Key: {anthropic_api_key[:5]}...{anthropic_api_key[-5:]}")
else:
logging.debug(f"Anthropic: Using API Key: {api_key[:5]}...{api_key[-5:]}")
if system_prompt is not None:
logging.debug("Anthropic: Using provided system prompt")
pass
else:
system_prompt = "You are a helpful assistant"
logging.debug("Anthropic: Using default system prompt")
logging.debug(f"AnthropicAI: Loaded data: {input_data}")
logging.debug(f"AnthropicAI: Type of data: {type(input_data)}")
# Retrieve the model from config if not provided
if not model:
try:
anthropic_model = loaded_config_data['models']['anthropic']
logging.debug(f"Anthropic: Loaded model from config: {anthropic_model}")
except (KeyError, TypeError) as e:
logging.error(f"Anthropic: Error accessing model from config: {str(e)}")
return "Anthropic: Model configuration not found."
else:
anthropic_model = model
logging.debug(f"Anthropic: Using provided model: {anthropic_model}")
if temp is None:
temp = 1.0
logging.debug(f"Anthropic: Using default temperature: {temp}")
headers = {
'x-api-key': anthropic_api_key,
'anthropic-version': '2023-06-01',
'Content-Type': 'application/json'
}
anthropic_user_prompt = custom_prompt_arg if custom_prompt_arg else ""
logging.debug(f"Anthropic: User Prompt is '{anthropic_user_prompt}'")
user_message = {
"role": "user",
"content": f"{input_data} \n\n\n\n{anthropic_user_prompt}"
}
data = {
"model": anthropic_model,
"max_tokens": 4096, # max possible tokens to return
"messages": [user_message],
"stop_sequences": ["\n\nHuman:"],
"temperature": temp,
"top_k": 0,
"top_p": 1.0,
"metadata": {
"user_id": "example_user_id",
},
"stream": False,
"system": system_prompt
}
for attempt in range(max_retries):
try:
logging.debug("Anthropic: Posting request to API")
response = requests.post('https://api.anthropic.com/v1/messages', headers=headers, json=data)
logging.debug(f"Anthropic: Full API response data: {response}")
# Check if the status code indicates success
if response.status_code == 200:
logging.debug("Anthropic: Post submittal successful")
response_data = response.json()
# Corrected path to access the assistant's reply
if 'content' in response_data and isinstance(response_data['content'], list) and len(response_data['content']) > 0:
chat_response = response_data['content'][0]['text'].strip()
logging.debug("Anthropic: Chat request successful")
print("Chat request processed successfully.")
return chat_response
else:
logging.error("Anthropic: Unexpected data structure in response.")
print("Unexpected response format from Anthropic API:", response.text)
return "Anthropic: Unexpected response format from API."
elif response.status_code == 500: # Handle internal server error specifically
logging.debug("Anthropic: Internal server error")
print("Internal server error from API. Retrying may be necessary.")
time.sleep(retry_delay)
else:
logging.debug(
f"Anthropic: Failed to process chat request, status code {response.status_code}: {response.text}")
print(f"Failed to process chat request, status code {response.status_code}: {response.text}")
return f"Anthropic: Failed to process chat request, status code {response.status_code}: {response.text}"
except requests.RequestException as e:
logging.error(f"Anthropic: Network error during attempt {attempt + 1}/{max_retries}: {str(e)}")
if attempt < max_retries - 1:
logging.debug(f"Anthropic: Retrying in {retry_delay} seconds...")
time.sleep(retry_delay)
else:
return f"Anthropic: Network error: {str(e)}"
except Exception as e:
logging.error(f"Anthropic: Error in processing: {str(e)}")
return f"Anthropic: Error occurred while processing summary with Anthropic: {str(e)}"
# Summarize with Cohere
def chat_with_cohere(api_key, input_data, model=None, custom_prompt_arg=None, system_prompt=None, temp=None):
loaded_config_data = load_and_log_configs()
cohere_api_key = None
try:
# API key validation
if api_key:
logging.info(f"Cohere Chat: API Key from parameter: {api_key[:3]}...{api_key[-3:]}")
cohere_api_key = api_key
else:
logging.info("Cohere Chat: API key not provided as parameter")
logging.info("Cohere Chat: Attempting to use API key from config file")
logging.debug(f"Cohere Chat: Cohere API Key from config: {loaded_config_data['api_keys']['cohere']}")
cohere_api_key = loaded_config_data['api_keys']['cohere']
if cohere_api_key:
logging.debug(f"Cohere Chat: Cohere API Key from config: {cohere_api_key[:3]}...{cohere_api_key[-3:]}")
else:
logging.error("Cohere Chat: API key not found or is empty")
return "Cohere Chat: API Key Not Provided/Found in Config file or is empty"
logging.debug(f"Cohere Chat: Loaded data: {input_data}")
logging.debug(f"Cohere Chat: Type of data: {type(input_data)}")
# Ensure model is set
if not model:
model = loaded_config_data['models']['cohere']
logging.debug(f"Cohere Chat: Using model: {model}")
if temp is None:
temp = 0.3
else:
try:
temp = float(temp)
except ValueError:
logging.warning(f"Cohere Chat: Invalid temperature value '{temp}', defaulting to 0.3")
temp = 0.3
headers = {
'accept': 'application/json',
'content-type': 'application/json',
'Authorization': f'Bearer {cohere_api_key}'
}
# Ensure system_prompt is set
if not system_prompt:
system_prompt = "You are a helpful assistant"
logging.debug(f"Cohere Chat: System Prompt being sent is: '{system_prompt}'")
cohere_prompt = input_data
if custom_prompt_arg:
cohere_prompt += f"\n\n{custom_prompt_arg}"
logging.debug(f"Cohere Chat: User Prompt being sent is: '{cohere_prompt}'")
data = {
"model" : model,
"temperature": temp,
"messages": [
{
"role": "system",
"content": system_prompt
},
{
"role": "user",
"content": cohere_prompt,
}
],
}
logging.debug(f"Cohere Chat: Request data: {json.dumps(data, indent=2)}")
logging.debug("cohere chat: Submitting request to API endpoint")
print("cohere chat: Submitting request to API endpoint")
try:
response = requests.post('https://api.cohere.ai/v2/chat', headers=headers, json=data)
logging.debug(f"Cohere Chat: Raw API response: {response.text}")
except requests.RequestException as e:
logging.error(f"Cohere Chat: Error making API request: {str(e)}")
return f"Cohere Chat: Error making API request: {str(e)}"
if response.status_code == 200:
try:
response_data = response.json()
except json.JSONDecodeError:
logging.error("Cohere Chat: Failed to decode JSON response")
return "Cohere Chat: Failed to decode JSON response"
if response_data is None:
logging.error("Cohere Chat: No response data received.")
return "Cohere Chat: No response data received."
logging.debug(f"cohere chat: Full API response data: {json.dumps(response_data, indent=2)}")
if 'message' in response_data and 'content' in response_data['message']:
content = response_data['message']['content']
if isinstance(content, list) and len(content) > 0:
# Extract text from the first content block
text = content[0].get('text', '').strip()
if text:
logging.debug("Cohere Chat: Chat request successful")
print("Cohere Chat request processed successfully.")
return text
else:
logging.error("Cohere Chat: 'text' field is empty in response content.")
return "Cohere Chat: 'text' field is empty in response content."
else:
logging.error("Cohere Chat: 'content' field is not a list or is empty.")
return "Cohere Chat: 'content' field is not a list or is empty."
else:
logging.error("Cohere Chat: 'message' or 'content' field not found in API response.")
return "Cohere Chat: 'message' or 'content' field not found in API response."
elif response.status_code == 401:
error_message = "Cohere Chat: Unauthorized - Invalid API key"
logging.warning(error_message)
print(error_message)
return error_message
else:
logging.error(f"Cohere Chat: API request failed with status code {response.status_code}: {response.text}")
print(f"Cohere Chat: Failed to process chat response, status code {response.status_code}: {response.text}")
return f"Cohere Chat: API request failed: {response.text}"
except Exception as e:
logging.error(f"Cohere Chat: Error in processing: {str(e)}", exc_info=True)
return f"Cohere Chat: Error occurred while processing chat request with Cohere: {str(e)}"
# https://console.groq.com/docs/quickstart
def chat_with_groq(api_key, input_data, custom_prompt_arg, temp=None, system_message=None):
logging.debug("Groq: Summarization process starting...")
try:
logging.debug("Groq: Loading and validating configurations")
loaded_config_data = load_and_log_configs()
if loaded_config_data is None:
logging.error("Failed to load configuration data")
groq_api_key = None
else:
# Prioritize the API key passed as a parameter
if api_key and api_key.strip():
groq_api_key = api_key
logging.info("Groq: Using API key provided as parameter")
else:
# If no parameter is provided, use the key from the config
groq_api_key = loaded_config_data['api_keys'].get('groq')
if groq_api_key:
logging.info("Groq: Using API key from config file")
else:
logging.warning("Groq: No API key found in config file")
# Final check to ensure we have a valid API key
if not groq_api_key or not groq_api_key.strip():
logging.error("Anthropic: No valid API key available")
# You might want to raise an exception here or handle this case as appropriate for your application
# For example: raise ValueError("No valid Anthropic API key available")
logging.debug(f"Groq: Using API Key: {groq_api_key[:5]}...{groq_api_key[-5:]}")
# Transcript data handling & Validation
if isinstance(input_data, str) and os.path.isfile(input_data):
logging.debug("Groq: Loading json data for summarization")
with open(input_data, 'r') as file:
data = json.load(file)
else:
logging.debug("Groq: Using provided string data for summarization")
data = input_data
# DEBUG - Debug logging to identify sent data
logging.debug(f"Groq: Loaded data: {data[:500]}...(snipped to first 500 chars)")
logging.debug(f"Groq: Type of data: {type(data)}")
if isinstance(data, dict) and 'summary' in data:
# If the loaded data is a dictionary and already contains a summary, return it
logging.debug("Groq: Summary already exists in the loaded data")
return data['summary']
# If the loaded data is a list of segment dictionaries or a string, proceed with summarization
if isinstance(data, list):
segments = data
text = extract_text_from_segments(segments)
elif isinstance(data, str):
text = data
else:
raise ValueError("Groq: Invalid input data format")
# Set the model to be used
groq_model = loaded_config_data['models']['groq']
if temp is None:
temp = 0.2
temp = float(temp)
if system_message is None:
system_message = "You are a helpful AI assistant who does whatever the user requests."
headers = {
'Authorization': f'Bearer {groq_api_key}',
'Content-Type': 'application/json'
}
groq_prompt = f"{text} \n\n\n\n{custom_prompt_arg}"
logging.debug("groq: Prompt being sent is {groq_prompt}")
data = {
"messages": [
{
"role": "system",
"content": system_message,
},
{
"role": "user",
"content": groq_prompt,
}
],
"model": groq_model,
"temperature": temp
}
logging.debug("groq: Submitting request to API endpoint")
print("groq: Submitting request to API endpoint")
response = requests.post('https://api.groq.com/openai/v1/chat/completions', headers=headers, json=data)
response_data = response.json()
logging.debug(f"Full API response data: {response_data}")
if response.status_code == 200:
logging.debug(response_data)
if 'choices' in response_data and len(response_data['choices']) > 0:
summary = response_data['choices'][0]['message']['content'].strip()
logging.debug("groq: Chat request successful")
print("Groq: Chat request successful.")
return summary
else:
logging.error("Groq(chat): Expected data not found in API response.")
return "Groq(chat): Expected data not found in API response."
else:
logging.error(f"groq: API request failed with status code {response.status_code}: {response.text}")
return f"groq: API request failed: {response.text}"
except Exception as e:
logging.error("groq: Error in processing: %s", str(e))
return f"groq: Error occurred while processing summary with groq: {str(e)}"
def chat_with_openrouter(api_key, input_data, custom_prompt_arg, temp=None, system_message=None):
import requests
import json
global openrouter_model, openrouter_api_key
try:
logging.debug("OpenRouter: Loading and validating configurations")
loaded_config_data = load_and_log_configs()
if loaded_config_data is None:
logging.error("Failed to load configuration data")
openrouter_api_key = None
else:
# Prioritize the API key passed as a parameter
if api_key and api_key.strip():
openrouter_api_key = api_key
logging.info("OpenRouter: Using API key provided as parameter")
else:
# If no parameter is provided, use the key from the config
openrouter_api_key = loaded_config_data['api_keys'].get('openrouter')
if openrouter_api_key:
logging.info("OpenRouter: Using API key from config file")
else:
logging.warning("OpenRouter: No API key found in config file")
# Model Selection validation
logging.debug("OpenRouter: Validating model selection")
loaded_config_data = load_and_log_configs()
openrouter_model = loaded_config_data['models']['openrouter']
logging.debug(f"OpenRouter: Using model from config file: {openrouter_model}")
# Final check to ensure we have a valid API key
if not openrouter_api_key or not openrouter_api_key.strip():
logging.error("OpenRouter: No valid API key available")
raise ValueError("No valid Anthropic API key available")
except Exception as e:
logging.error("OpenRouter: Error in processing: %s", str(e))
return f"OpenRouter: Error occurred while processing config file with OpenRouter: {str(e)}"
logging.debug(f"OpenRouter: Using API Key: {openrouter_api_key[:5]}...{openrouter_api_key[-5:]}")
logging.debug(f"OpenRouter: Using Model: {openrouter_model}")
if isinstance(input_data, str) and os.path.isfile(input_data):
logging.debug("OpenRouter: Loading json data for summarization")
with open(input_data, 'r') as file:
data = json.load(file)
else:
logging.debug("OpenRouter: Using provided string data for summarization")
data = input_data
# DEBUG - Debug logging to identify sent data
logging.debug(f"OpenRouter: Loaded data: {data[:500]}...(snipped to first 500 chars)")
logging.debug(f"OpenRouter: Type of data: {type(data)}")
if isinstance(data, dict) and 'summary' in data:
# If the loaded data is a dictionary and already contains a summary, return it
logging.debug("OpenRouter: Summary already exists in the loaded data")
return data['summary']
# If the loaded data is a list of segment dictionaries or a string, proceed with summarization
if isinstance(data, list):
segments = data
text = extract_text_from_segments(segments)
elif isinstance(data, str):
text = data
else:
raise ValueError("OpenRouter: Invalid input data format")
openrouter_prompt = f"{input_data} \n\n\n\n{custom_prompt_arg}"
logging.debug(f"openrouter: User Prompt being sent is {openrouter_prompt}")
if temp is None:
temp = 0.1
temp = float(temp)
if system_message is None:
system_message = "You are a helpful AI assistant who does whatever the user requests."
try:
logging.debug("OpenRouter: Submitting request to API endpoint")
print("OpenRouter: Submitting request to API endpoint")
response = requests.post(
url="https://openrouter.ai/api/v1/chat/completions",
headers={
"Authorization": f"Bearer {openrouter_api_key}",
},
data=json.dumps({
"model": openrouter_model,
"messages": [
{"role": "system", "content": system_message},
{"role": "user", "content": openrouter_prompt}
],
"temperature": temp
})
)
response_data = response.json()
logging.debug("Full API Response Data: %s", response_data)
if response.status_code == 200:
if 'choices' in response_data and len(response_data['choices']) > 0:
summary = response_data['choices'][0]['message']['content'].strip()
logging.debug("openrouter: Chat request successful")
print("openrouter: Chat request successful.")
return summary
else:
logging.error("openrouter: Expected data not found in API response.")
return "openrouter: Expected data not found in API response."
else:
logging.error(f"openrouter: API request failed with status code {response.status_code}: {response.text}")
return f"openrouter: API request failed: {response.text}"
except Exception as e:
logging.error("openrouter: Error in processing: %s", str(e))
return f"openrouter: Error occurred while processing chat request with openrouter: {str(e)}"
# FIXME: This function is not yet implemented properly
def chat_with_huggingface(api_key, input_data, custom_prompt_arg, system_prompt=None, temp=None):
loaded_config_data = load_and_log_configs()
logging.debug(f"huggingface Chat: Chat request process starting...")
try:
# API key validation
if not api_key or api_key.strip() == "":
logging.info("HuggingFace Chat: API key not provided as parameter")
logging.info("HuggingFace Chat: Attempting to use API key from config file")
huggingface_api_key = loaded_config_data['api_keys'].get('huggingface')
logging.debug(f"HuggingFace Chat: API key from config: {huggingface_api_key[:5]}...{huggingface_api_key[-5:]}")
if huggingface_api_key is None or huggingface_api_key.strip() == "":
logging.error("HuggingFace Chat: API key not found or is empty")
return "HuggingFace Chat: API Key Not Provided/Found in Config file or is empty"
if huggingface_api_key:
logging.info("HuggingFace Chat: Using API key from config file")
headers = {
"Authorization": f"Bearer {huggingface_api_key}"
}
# Setup model
huggingface_model = loaded_config_data['models']['huggingface']
API_URL = f"https://api-inference.huggingface.co/models/{huggingface_model}/v1/chat/completions"
if temp is None:
temp = 1.0
temp = float(temp)
huggingface_prompt = f"{custom_prompt_arg}\n\n\n{input_data}"
logging.debug(f"HuggingFace chat: Prompt being sent is {huggingface_prompt}")
data = {
"model": f"{huggingface_model}",
"messages": [{"role": "user", "content": f"{huggingface_prompt}"}],
"max_tokens": 4096,
"stream": False,
"temperature": temp
}
logging.debug("HuggingFace Chat: Submitting request...")
response = requests.post(API_URL, headers=headers, json=data)
logging.debug(f"Full API response data: {response.text}")
if response.status_code == 200:
response_json = response.json()
if "choices" in response_json and len(response_json["choices"]) > 0:
generated_text = response_json["choices"][0]["message"]["content"]
logging.debug("HuggingFace Chat: Chat request successful")
print("HuggingFace Chat: Chat request successful.")
return generated_text.strip()
else:
logging.error("HuggingFace Chat: No generated text in the response")
return "HuggingFace Chat: No generated text in the response"
else:
logging.error(
f"HuggingFace Chat: Chat request failed with status code {response.status_code}: {response.text}")
return f"HuggingFace Chat: Failed to process chat request, status code {response.status_code}: {response.text}"
except Exception as e:
logging.error(f"HuggingFace Chat: Error in processing: {str(e)}")
print(f"HuggingFace Chat: Error occurred while processing chat request with huggingface: {str(e)}")
return None
def chat_with_deepseek(api_key, input_data, custom_prompt_arg, temp=0.1, system_message="You are a helpful AI assistant who does whatever the user requests.", max_retries=3, retry_delay=5):
"""
Interacts with the DeepSeek API to generate summaries based on input data.
Parameters:
api_key (str): DeepSeek API key. If not provided, the key from the config is used.
input_data (str or list): The data to summarize. Can be a string or a list of segments.
custom_prompt_arg (str): Custom prompt to append to the input data.
temp (float, optional): Temperature setting for the model. Defaults to 0.1.
system_message (str, optional): System prompt for the assistant. Defaults to a helpful assistant message.
max_retries (int, optional): Maximum number of retries for failed API calls. Defaults to 3.
retry_delay (int, optional): Delay between retries in seconds. Defaults to 5.
Returns:
str: The summary generated by DeepSeek or an error message.
"""
logging.debug("DeepSeek: Summarization process starting...")
try:
logging.debug("DeepSeek: Loading and validating configurations")
loaded_config_data = load_and_log_configs()
if loaded_config_data is None:
logging.error("DeepSeek: Failed to load configuration data")
return "DeepSeek: Failed to load configuration data."
# Prioritize the API key passed as a parameter
if api_key and api_key.strip():
deepseek_api_key = api_key.strip()
logging.info("DeepSeek: Using API key provided as parameter")
else:
# If no parameter is provided, use the key from the config
deepseek_api_key = loaded_config_data['api_keys'].get('deepseek')
if deepseek_api_key and deepseek_api_key.strip():
deepseek_api_key = deepseek_api_key.strip()
logging.info("DeepSeek: Using API key from config file")
else:
logging.error("DeepSeek: No valid API key available")
return "DeepSeek: API Key Not Provided/Found in Config file or is empty"
logging.debug("DeepSeek: Using API Key")
# Input data handling
if isinstance(input_data, str) and os.path.isfile(input_data):
logging.debug("DeepSeek: Loading JSON data for summarization")
with open(input_data, 'r', encoding='utf-8') as file:
try:
data = json.load(file)
except json.JSONDecodeError as e:
logging.error(f"DeepSeek: JSON decoding failed: {str(e)}")
return f"DeepSeek: Invalid JSON file. Error: {str(e)}"
else:
logging.debug("DeepSeek: Using provided string data for summarization")
data = input_data
# DEBUG - Debug logging to identify sent data
if isinstance(data, str):
snipped_data = data[:500] + "..." if len(data) > 500 else data
logging.debug(f"DeepSeek: Loaded data (snipped to first 500 chars): {snipped_data}")
elif isinstance(data, list):
snipped_data = json.dumps(data[:2], indent=2) + "..." if len(data) > 2 else json.dumps(data, indent=2)
logging.debug(f"DeepSeek: Loaded data (snipped to first 2 segments): {snipped_data}")
else:
logging.debug(f"DeepSeek: Loaded data: {data}")
logging.debug(f"DeepSeek: Type of data: {type(data)}")
if isinstance(data, dict) and 'summary' in data:
# If the loaded data is a dictionary and already contains a summary, return it
logging.debug("DeepSeek: Summary already exists in the loaded data")
return data['summary']
# Text extraction
if isinstance(data, list):
segments = data
try:
text = extract_text_from_segments(segments)
logging.debug("DeepSeek: Extracted text from segments")
except Exception as e:
logging.error(f"DeepSeek: Error extracting text from segments: {str(e)}")
return f"DeepSeek: Error extracting text from segments: {str(e)}"
elif isinstance(data, str):
text = data
logging.debug("DeepSeek: Using string data directly")
else:
raise ValueError("DeepSeek: Invalid input data format")
# Retrieve the model from config if not provided
deepseek_model = loaded_config_data['models'].get('deepseek', "deepseek-chat")
logging.debug(f"DeepSeek: Using model: {deepseek_model}")
# Ensure temperature is a float within acceptable range
try:
temp = float(temp)
if not (0.0 <= temp <= 1.0):
logging.warning("DeepSeek: Temperature out of bounds (0.0 - 1.0). Setting to default 0.1")
temp = 0.1
except (ValueError, TypeError):
logging.warning("DeepSeek: Invalid temperature value. Setting to default 0.1")
temp = 0.1
# Set default system prompt if not provided
if system_message is not None:
logging.debug("DeepSeek: Using provided system prompt")
else:
system_message = "You are a helpful AI assistant who does whatever the user requests."
logging.debug("DeepSeek: Using default system prompt")
headers = {
'Authorization': f'Bearer {deepseek_api_key}',
'Content-Type': 'application/json'
}
logging.debug("DeepSeek: Preparing data and prompt for submittal")
deepseek_prompt = f"{text}\n\n\n\n{custom_prompt_arg}"
payload = {
"model": deepseek_model,
"messages": [
{"role": "system", "content": system_message},
{"role": "user", "content": deepseek_prompt}
],
"stream": False,
"temperature": temp
}
logging.debug("DeepSeek: Posting request to API")
for attempt in range(1, max_retries + 1):
try:
response = requests.post('https://api.deepseek.com/chat/completions', headers=headers, json=payload, timeout=30)
logging.debug(f"DeepSeek: Full API response: {response.status_code} - {response.text}")
if response.status_code == 200:
response_data = response.json()
logging.debug(f"DeepSeek: Response JSON: {json.dumps(response_data, indent=2)}")
# Adjust parsing based on actual API response structure
if 'choices' in response_data:
if len(response_data['choices']) > 0:
summary = response_data['choices'][0]['message']['content'].strip()
logging.debug("DeepSeek: Chat request successful")
return summary
else:
logging.error("DeepSeek: 'choices' key is empty in response")
else:
logging.error("DeepSeek: 'choices' key missing in response")
return "DeepSeek: Unexpected response format from API."
elif 500 <= response.status_code < 600:
logging.error(f"DeepSeek: Server error (status code {response.status_code}). Attempt {attempt} of {max_retries}. Retrying in {retry_delay} seconds...")
else:
logging.error(f"DeepSeek: Request failed with status code {response.status_code}. Response: {response.text}")
return f"DeepSeek: Failed to process chat request. Status code: {response.status_code}"
except requests.Timeout:
logging.error(f"DeepSeek: Request timed out. Attempt {attempt} of {max_retries}. Retrying in {retry_delay} seconds...")
except requests.RequestException as e:
logging.error(f"DeepSeek: Request exception occurred: {str(e)}. Attempt {attempt} of {max_retries}. Retrying in {retry_delay} seconds...")
if attempt < max_retries:
time.sleep(retry_delay)
else:
logging.error("DeepSeek: Max retries reached. Failed to get a successful response.")
return "DeepSeek: Failed to get a successful response from API after multiple attempts."
except Exception as e:
logging.error(f"DeepSeek: Unexpected error in processing: {str(e)}", exc_info=True)
return f"DeepSeek: Error occurred while processing chat request: {str(e)}"
def chat_with_mistral(api_key, input_data, custom_prompt_arg, temp=None, system_message=None):
logging.debug("Mistral: Chat request made")
try:
logging.debug("Mistral: Loading and validating configurations")
loaded_config_data = load_and_log_configs()
if loaded_config_data is None:
logging.error("Failed to load configuration data")
mistral_api_key = None
else:
# Prioritize the API key passed as a parameter
if api_key and api_key.strip():
mistral_api_key = api_key
logging.info("Mistral: Using API key provided as parameter")
else:
# If no parameter is provided, use the key from the config
mistral_api_key = loaded_config_data['api_keys'].get('mistral')
if mistral_api_key:
logging.info("Mistral: Using API key from config file")
else:
logging.warning("Mistral: No API key found in config file")
# Final check to ensure we have a valid API key
if not mistral_api_key or not mistral_api_key.strip():
logging.error("Mistral: No valid API key available")
return "Mistral: No valid API key available"
logging.debug(f"Mistral: Using API Key: {mistral_api_key[:5]}...{mistral_api_key[-5:]}")
logging.debug("Mistral: Using provided string data")
data = input_data
# Text extraction
if isinstance(input_data, list):
text = extract_text_from_segments(input_data)
elif isinstance(input_data, str):
text = input_data
else:
raise ValueError("Mistral: Invalid input data format")
mistral_model = loaded_config_data['models'].get('mistral', "mistral-large-latest")
temp = float(temp) if temp is not None else 0.2
if system_message is None:
system_message = "You are a helpful AI assistant who does whatever the user requests."
headers = {
'Authorization': f'Bearer {mistral_api_key}',
'Content-Type': 'application/json'
}
logging.debug(
f"Deepseek API Key: {mistral_api_key[:5]}...{mistral_api_key[-5:] if mistral_api_key else None}")
logging.debug("Mistral: Preparing data + prompt for submittal")
mistral_prompt = f"{custom_prompt_arg}\n\n\n\n{text} "
data = {
"model": mistral_model,
"messages": [
{"role": "system",
"content": system_message},
{"role": "user",
"content": mistral_prompt}
],
"temperature": temp,
"top_p": 1,
"max_tokens": 4096,
"stream": False,
"safe_prompt": False
}
logging.debug("Mistral: Posting request")
response = requests.post('https://api.mistral.ai/v1/chat/completions', headers=headers, json=data)
logging.debug(f"Full API response data: {response}")
if response.status_code == 200:
response_data = response.json()
logging.debug(response_data)
if 'choices' in response_data and len(response_data['choices']) > 0:
summary = response_data['choices'][0]['message']['content'].strip()
logging.debug("Mistral: request successful")
return summary
else:
logging.warning("Mistral: Chat response not found in the response data")
return "Mistral: Chat response not available"
else:
logging.error(f"Mistral: Chat request failed with status code {response.status_code}")
logging.error(f"Mistral: Error response: {response.text}")
return f"Mistral: Failed to process summary. Status code: {response.status_code}. Error: {response.text}"
except Exception as e:
logging.error(f"Mistral: Error in processing: {str(e)}", exc_info=True)
return f"Mistral: Error occurred while processing Chat: {str(e)}"
# Stashed in here since OpenAI usage.... #FIXME
# FIXME - https://docs.vllm.ai/en/latest/getting_started/quickstart.html .... Great docs.
# def chat_with_vllm(input_data, custom_prompt_input, api_key=None, vllm_api_url="http://127.0.0.1:8000/v1/chat/completions", system_prompt=None):
# loaded_config_data = load_and_log_configs()
# llm_model = loaded_config_data['models']['vllm']
# # API key validation
# if api_key is None:
# logging.info("vLLM: API key not provided as parameter")
# logging.info("vLLM: Attempting to use API key from config file")
# api_key = loaded_config_data['api_keys']['llama']
#
# if api_key is None or api_key.strip() == "":
# logging.info("vLLM: API key not found or is empty")
# vllm_client = OpenAI(
# base_url=vllm_api_url,
# api_key=custom_prompt_input
# )
#
# if isinstance(input_data, str) and os.path.isfile(input_data):
# logging.debug("vLLM: Loading json data for summarization")
# with open(input_data, 'r') as file:
# data = json.load(file)
# else:
# logging.debug("vLLM: Using provided string data for summarization")
# data = input_data
#
# logging.debug(f"vLLM: Loaded data: {data}")
# logging.debug(f"vLLM: Type of data: {type(data)}")
#
# if isinstance(data, dict) and 'summary' in data:
# # If the loaded data is a dictionary and already contains a summary, return it
# logging.debug("vLLM: Summary already exists in the loaded data")
# return data['summary']
#
# # If the loaded data is a list of segment dictionaries or a string, proceed with summarization
# if isinstance(data, list):
# segments = data
# text = extract_text_from_segments(segments)
# elif isinstance(data, str):
# text = data
# else:
# raise ValueError("Invalid input data format")
#
#
# custom_prompt = custom_prompt_input
#
# completion = client.chat.completions.create(
# model=llm_model,
# messages=[
# {"role": "system", "content": f"{system_prompt}"},
# {"role": "user", "content": f"{text} \n\n\n\n{custom_prompt}"}
# ]
# )
# vllm_summary = completion.choices[0].message.content
# return vllm_summary
#
#
####################################################################################################################### |