Spaces:
Sleeping
Sleeping
File size: 1,611 Bytes
c3e75ac 63debe3 0b7cb96 63debe3 0b7cb96 c3e75ac 0b7cb96 c3e75ac 0b7cb96 c3e75ac 0b7cb96 c3e75ac 0b7cb96 c3e75ac 9a4023b 0b7cb96 3299692 54f8640 0b7cb96 c3e75ac 0b7cb96 c3e75ac 0b7cb96 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 |
import torch
from torch import nn
import torchvision.transforms as transforms
import torch.nn.functional as F
from pathlib import Path
import gradio as gr
from huggingface_hub import hf_hub_download
LABELS = Path("classes.txt").read_text().splitlines()
num_classes = len(LABELS)
model = nn.Sequential(
nn.Conv2d(1, 64, 3, padding="same"),
nn.ReLU(),
nn.MaxPool2d(2),
nn.Conv2d(64, 128, 3, padding="same"),
nn.ReLU(),
nn.MaxPool2d(2),
nn.Conv2d(128, 256, 3, padding="same"),
nn.ReLU(),
nn.MaxPool2d(2),
nn.Flatten(),
nn.Linear(2304, 512),
nn.ReLU(),
nn.Linear(512, num_classes),
)
model_path = hf_hub_download(repo_id="jerilseb/quickdraw-small", filename="model.pth")
state_dict = torch.load(model_path, map_location="cpu")
model.load_state_dict(state_dict)
model.eval()
transform = transforms.Compose(
[
transforms.Resize((28, 28)),
transforms.ToTensor(),
transforms.Normalize((0.5,), (0.5,)),
]
)
def predict(image):
image = image['composite']
tensor = transform(image).unsqueeze(0)
with torch.no_grad():
out = model(tensor)
probabilities = F.softmax(out[0], dim=0)
values, indices = torch.topk(probabilities, 5)
return {LABELS[i]: v.item() for i, v in zip(indices, values)}
inputs = gr.ImageEditor(
type="pil",
height=720,
width=720,
layers=False,
image_mode="L",
brush=gr.Brush(default_color="white", default_size=20),
sources=[],
label="Draw a shape",
)
demo = gr.Interface(predict, inputs=inputs, outputs="label", live=True)
demo.launch(debug=True)
|