File size: 13,690 Bytes
2e66664
 
 
 
 
 
5eedccd
2e66664
 
 
 
 
6fc042a
0247649
2e66664
5eedccd
 
 
 
 
 
 
 
 
2e66664
 
 
 
 
 
 
 
 
6bbce1b
 
0247649
6bbce1b
fe2ddc5
2e66664
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a990e23
 
 
 
 
 
 
 
 
 
 
 
 
f5db6d5
a990e23
 
 
 
 
 
 
 
 
 
 
 
 
 
0ea0beb
a990e23
 
c13752e
9e8da41
a990e23
f5db6d5
 
 
341951b
f5db6d5
 
 
a990e23
 
 
 
f5db6d5
2e66664
6f16821
f9582e0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6bbce1b
 
 
6f16821
acc6615
6bbce1b
 
 
f9582e0
 
 
6bbce1b
6f16821
488698d
5eedccd
2e66664
 
 
a8cb9ce
6bbce1b
2e66664
6fc042a
 
 
 
6bbce1b
db9ab3b
6bbce1b
 
 
 
 
 
 
 
 
 
 
 
 
fea46cb
6bbce1b
 
fea46cb
6bbce1b
 
db9ab3b
6bbce1b
 
 
db9ab3b
6bbce1b
 
 
 
fea46cb
6bbce1b
fea46cb
6bbce1b
 
 
fea46cb
6bbce1b
fea46cb
6bbce1b
 
 
fea46cb
6bbce1b
fea46cb
6bbce1b
 
 
db9ab3b
6bbce1b
 
db9ab3b
6bbce1b
 
db9ab3b
6bbce1b
 
 
 
 
 
6fc042a
 
db9ab3b
6fc042a
 
 
 
6bbce1b
8889a57
6bbce1b
 
fea46cb
 
 
 
 
 
6bbce1b
 
6fc042a
fea46cb
 
 
6bbce1b
6fc042a
 
c13752e
6fc042a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c13752e
6fc042a
9e8da41
6fc042a
71be77a
6fc042a
 
 
 
2e66664
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
import torch
import soundfile as sf
import numpy as np
import argparse
import os
import yaml
import julius

import sys
currentdir = os.path.dirname(os.path.realpath(__file__))
sys.path.append(os.path.dirname(currentdir))
from networks import Dasp_Mastering_Style_Transfer, Effects_Encoder
from modules.loss import AudioFeatureLoss, Loss
from modules.data_normalization import Audio_Effects_Normalizer


def convert_audio(wav: torch.Tensor, from_rate: float,
                  to_rate: float, to_channels: int) -> torch.Tensor:
    """Convert audio to new sample rate and number of audio channels.
    """
    wav = julius.resample_frac(wav, int(from_rate), int(to_rate))
    wav = convert_audio_channels(wav, to_channels)
    return wav

class MasteringStyleTransfer:
    def __init__(self, args):
        self.args = args
        self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
        
        # Load models
        self.effects_encoder = self.load_effects_encoder()
        self.mastering_converter = self.load_mastering_converter()

        self.fx_normalizer = Audio_Effects_Normalizer(precomputed_feature_path=args.fx_norm_feature_path, \
                                                        STEMS=['mixture'], \
                                                        EFFECTS=['eq', 'imager', 'loudness'])


    def load_effects_encoder(self):
        effects_encoder = Effects_Encoder(self.args.cfg_enc)
        reload_weights(effects_encoder, self.args.encoder_path, self.device)
        effects_encoder.to(self.device)
        effects_encoder.eval()
        return effects_encoder

    def load_mastering_converter(self):
        mastering_converter = Dasp_Mastering_Style_Transfer(num_features=2048,
                                                            sample_rate=self.args.sample_rate,
                                                            tgt_fx_names=['eq', 'distortion', 'multiband_comp', 'gain', 'imager', 'limiter'],
                                                            model_type='tcn',
                                                            config=self.args.cfg_converter,
                                                            batch_size=1)
        reload_weights(mastering_converter, self.args.model_path, self.device)
        mastering_converter.to(self.device)
        mastering_converter.eval()
        return mastering_converter

    def get_reference_embedding(self, reference_tensor):
        with torch.no_grad():
            reference_feature = self.effects_encoder(reference_tensor)
        return reference_feature

    def mastering_style_transfer(self, input_tensor, reference_feature):
        with torch.no_grad():
            output_audio = self.mastering_converter(input_tensor, reference_feature)
            predicted_params = self.mastering_converter.get_last_predicted_params()
        return output_audio, predicted_params

    def inference_time_optimization(self, input_tensor, reference_tensor, ito_config, initial_reference_feature):
        fit_embedding = torch.nn.Parameter(initial_reference_feature)
        optimizer = getattr(torch.optim, ito_config['optimizer'])([fit_embedding], lr=ito_config['learning_rate'])

        af_loss = AudioFeatureLoss(
            weights=ito_config['af_weights'],
            sample_rate=ito_config['sample_rate'],
            stem_separation=False,
            use_clap=False
        )

        min_loss = float('inf')
        min_loss_step = 0
        all_results = []

        for step in range(ito_config['num_steps']):
            optimizer.zero_grad()

            output_audio = self.mastering_converter(input_tensor, fit_embedding)
            current_params = self.mastering_converter.get_last_predicted_params()

            losses = af_loss(output_audio, reference_tensor)
            total_loss = sum(losses.values())

            if total_loss < min_loss:
                min_loss = total_loss.item()
                min_loss_step = step

            # Log top 5 parameter differences
            if step == 0:
                initial_params = current_params
            top_5_diff = self.get_top_n_diff_string(initial_params, current_params, top_n=5)
            log_entry = f"Step {step + 1}\n   Loss: {total_loss.item():.4f}\n{top_5_diff}\n"

            all_results.append({
                'step': step + 1,
                'loss': total_loss.item(),
                'audio': output_audio.detach().cpu().numpy(),
                'params': current_params,
                'log': log_entry
            })

            total_loss.backward()
            optimizer.step()

        return all_results, min_loss_step

    def preprocess_audio(self, audio, target_sample_rate=44100, normalize=False):
        sample_rate, data = audio

        # Normalize audio to -1 to 1 range
        if data.dtype == np.int16:
            data = data.astype(np.float32) / 32768.0
        elif data.dtype == np.float32:
            data = np.clip(data, -1.0, 1.0)
        else:
            raise ValueError(f"Unsupported audio data type: {data.dtype}")

        # Ensure stereo channels
        if data.ndim == 1:
            data = np.stack([data, data])
        elif data.ndim == 2:
            if data.shape[0] == 2:
                pass  # Already in correct shape
            elif data.shape[1] == 2:
                data = data.T
            else:
                data = np.stack([data[:, 0], data[:, 0]])  # Duplicate mono channel
        else:
            raise ValueError(f"Unsupported audio shape: {data.shape}")

        # Resample if necessary
        if sample_rate != target_sample_rate:
            data = julius.resample_frac(torch.from_numpy(data), sample_rate, target_sample_rate).numpy()

        # Apply fx normalization for input audio during mastering style transfer
        if normalize:
            data = self.fx_normalizer.normalize_audio(data.T, 'mixture').T

        # Convert to torch tensor
        data_tensor = torch.FloatTensor(data).unsqueeze(0)

        return data_tensor.to(self.device)

    def process_audio(self, input_audio, reference_audio):
        input_tensor = self.preprocess_audio(input_audio, self.args.sample_rate, normalize=True)
        reference_tensor = self.preprocess_audio(reference_audio, self.args.sample_rate)

        reference_feature = self.get_reference_embedding(reference_tensor)

        output_audio, predicted_params = self.mastering_style_transfer(input_tensor, reference_feature)

        return output_audio, predicted_params, self.args.sample_rate, input_tensor

    def get_param_output_string(self, params):
        if params is None:
            return "No parameters available"
        
        param_mapper = {
            'eq': {
                'low_shelf_gain_db': ('Low Shelf Gain', 'dB', -20, 20),
                'low_shelf_cutoff_freq': ('Low Shelf Cutoff', 'Hz', 20, 2000),
                'low_shelf_q_factor': ('Low Shelf Q', '', 0.1, 5.0),
                'band0_gain_db': ('Low-Mid Band Gain', 'dB', -20, 20),
                'band0_cutoff_freq': ('Low-Mid Band Frequency', 'Hz', 80, 2000),
                'band0_q_factor': ('Low-Mid Band Q', '', 0.1, 5.0),
                'band1_gain_db': ('Mid Band Gain', 'dB', -20, 20),
                'band1_cutoff_freq': ('Mid Band Frequency', 'Hz', 2000, 8000),
                'band1_q_factor': ('Mid Band Q', '', 0.1, 5.0),
                'band2_gain_db': ('High-Mid Band Gain', 'dB', -20, 20),
                'band2_cutoff_freq': ('High-Mid Band Frequency', 'Hz', 8000, 12000),
                'band2_q_factor': ('High-Mid Band Q', '', 0.1, 5.0),
                'band3_gain_db': ('High Band Gain', 'dB', -20, 20),
                'band3_cutoff_freq': ('High Band Frequency', 'Hz', 12000, 20000),
                'band3_q_factor': ('High Band Q', '', 0.1, 5.0),
                'high_shelf_gain_db': ('High Shelf Gain', 'dB', -20, 20),
                'high_shelf_cutoff_freq': ('High Shelf Cutoff', 'Hz', 4000, 20000),
                'high_shelf_q_factor': ('High Shelf Q', '', 0.1, 5.0),
            },
            'distortion': {
                'drive_db': ('Drive', 'dB', 0, 8),
                'parallel_weight_factor': ('Dry/Wet Mix', '%', 0, 100),
            },
            'multiband_comp': {
                'low_cutoff': ('Low/Mid Crossover', 'Hz', 20, 1000),
                'high_cutoff': ('Mid/High Crossover', 'Hz', 1000, 20000),
                'parallel_weight_factor': ('Dry/Wet Mix', '%', 0, 100),
                'low_shelf_comp_thresh': ('Low Band Comp Threshold', 'dB', -60, 0),
                'low_shelf_comp_ratio': ('Low Band Comp Ratio', ': 1', 1, 20),
                'low_shelf_exp_thresh': ('Low Band Exp Threshold', 'dB', -60, 0),
                'low_shelf_exp_ratio': ('Low Band Exp Ratio', ': 1', 1, 20),
                'low_shelf_at': ('Low Band Attack Time', 'ms', 5, 100),
                'low_shelf_rt': ('Low Band Release Time', 'ms', 5, 100),
                'mid_band_comp_thresh': ('Mid Band Comp Threshold', 'dB', -60, 0),
                'mid_band_comp_ratio': ('Mid Band Comp Ratio', ': 1', 1, 20),
                'mid_band_exp_thresh': ('Mid Band Exp Threshold', 'dB', -60, 0),
                'mid_band_exp_ratio': ('Mid Band Exp Ratio', ': 1', 0, 1),
                'mid_band_at': ('Mid Band Attack Time', 'ms', 5, 100),
                'mid_band_rt': ('Mid Band Release Time', 'ms', 5, 100),
                'high_shelf_comp_thresh': ('High Band Comp Threshold', 'dB', -60, 0),
                'high_shelf_comp_ratio': ('High Band Comp Ratio', ': 1', 1, 20),
                'high_shelf_exp_thresh': ('High Band Exp Threshold', 'dB', -60, 0),
                'high_shelf_exp_ratio': ('High Band Exp Ratio', ': 1', 1, 20),
                'high_shelf_at': ('High Band Attack Time', 'ms', 5, 100),
                'high_shelf_rt': ('High Band Release Time', 'ms', 5, 100),
            },
            'gain': {
                'gain_db': ('Output Gain', 'dB', -24, 24),
            },
            'imager': {
                'width': ('Stereo Width', '', 0, 1),
            },
            'limiter': {
                'threshold': ('Threshold', 'dB', -60, 0),
                'at': ('Attack Time', 'ms', 5, 100),
                'rt': ('Release Time', 'ms', 5, 100),
            },
        }
        
        output = []
        for fx_name, fx_params in params.items():
            output.append(f"{fx_name.upper()}:")
            if isinstance(fx_params, dict):
                for param_name, param_value in fx_params.items():
                    if isinstance(param_value, torch.Tensor):
                        param_value = param_value.item()
                    
                    print(f"fx name: {fx_name}   param_name: {param_name}")
                    if fx_name in param_mapper and param_name in param_mapper[fx_name]:
                        friendly_name, unit, min_val, max_val = param_mapper[fx_name][param_name]
                        if unit=='%':
                            param_value = param_value * 100
                        current_content = f"  {friendly_name}: {param_value:.2f} {unit}"
                        if param_name=='mid_band_exp_ratio':
                            current_content += f" (Range: {min_val}-{max_val})"
                        output.append(current_content)
                    else:
                        output.append(f"  {param_name}: {param_value:.2f}")
            else:
                # stereo imager
                width_percentage = fx_params.item() * 200
                output.append(f"  Stereo Width: {width_percentage:.2f}% (Range: 0-200%)")
    
        return "\n".join(output)

    def get_top_n_diff_string(self, initial_params, ito_params, top_n=5):
        if initial_params is None or ito_params is None:
            return "Cannot compare parameters"
        
        all_diffs = []
        for fx_name in initial_params.keys():
            if isinstance(initial_params[fx_name], dict):
                for param_name in initial_params[fx_name].keys():
                    initial_value = initial_params[fx_name][param_name]
                    ito_value = ito_params[fx_name][param_name]
                    
                    param_range = self.mastering_converter.fx_processors[fx_name].param_ranges[param_name]
                    normalized_diff = abs((ito_value - initial_value) / (param_range[1] - param_range[0]))
                    
                    all_diffs.append((fx_name, param_name, initial_value.item(), ito_value.item(), normalized_diff.item()))
            else:
                initial_value = initial_params[fx_name]
                ito_value = ito_params[fx_name]
                normalized_diff = abs(ito_value - initial_value)
                all_diffs.append((fx_name, 'width', initial_value.item(), ito_value.item(), normalized_diff.item()))

        top_diffs = sorted(all_diffs, key=lambda x: x[4], reverse=True)[:top_n]
        
        output = [f"   Top {top_n} parameter differences (initial / ITO / normalized diff):"]
        for fx_name, param_name, initial_value, ito_value, normalized_diff in top_diffs:
            output.append(f"      {fx_name.upper()} - {param_name}: {initial_value:.2f} / {ito_value:.2f} / {normalized_diff:.2f}")
        
        return "\n".join(output)


def reload_weights(model, ckpt_path, device):
    checkpoint = torch.load(ckpt_path, map_location=device)

    from collections import OrderedDict
    new_state_dict = OrderedDict()
    for k, v in checkpoint["model"].items():
        name = k[7:] # remove `module.`
        new_state_dict[name] = v
    model.load_state_dict(new_state_dict, strict=False)